Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Ocean Acidification International Coordination Centre (2015): Data compilation on the biological response to ocean acidification: environmental and experimental context of data sets and related literature [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.149999, Supplement to: Yang, Yan; Hansson, L; Gattuso, Jean-Pierre (2016): Data compilation on the biological response to ocean acidification: an update. Earth System Science Data, 8(1), 79-87, https://doi.org/10.5194/essd-8-79-2016

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Related to:
Aberle, Nicole; Schulz, Kai Georg; Stuhr, Annegret; Malzahn, Arne; Ludwig, Andrea; Riebesell, Ulf (2013): High tolerance of microzooplankton to ocean acidification in an Arctic coastal plankton community. Biogeosciences, 10(3), 1471-1481, https://doi.org/10.5194/bg-10-1471-2013
Agostini, Sylvain; Fujimura, Hiroyuki; Higuchi, Tomihiko; Yuyama, Ikuko; Casareto, Beatriz E; Suzuki, Yoshimi; Nakano, Yoshiyuki (2013): The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis. Comptes Rendus Biologies, 336(8), 384-391, https://doi.org/10.1016/j.crvi.2013.07.003
Albright, R; Mason, B; Langdon, Chris (2008): Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs, 27(3), 485-490, https://doi.org/10.1007/s00338-008-0392-5
Alexandre, Ana; Silva, João; Buapet, Pimchanok; Björk, Mats; Santos, Rui (2012): Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii. Ecology and Evolution, 2(10), 2625-2635, https://doi.org/10.1002/ece3.333
Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L (2013): Elevated CO2 Affects Predator-Prey Interactions through Altered Performance. PLoS ONE, 8(3), e58520, https://doi.org/10.1371/journal.pone.0058520.t002
Allan, Bridie J M; Miller, Garielle M; McCormick, Mark I; Domenici, Paolo; Munday, Philip L (2014): Parental effects improve escape performance of juvenile reef fish in a high-CO2 world. Proceedings of the Royal Society B-Biological Sciences, 281(1777), 20132179-20132179, https://doi.org/10.1098/rspb.2013.2179
Allen, Katherine A; Hönish, Bärbel; Eggins, Stephen M; Yu, Jimin; Spero, Howard J; Elderfield, Henry (2011): Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulina universa. Earth and Planetary Science Letters, 309(3-4), 291-301, https://doi.org/10.1016/j.epsl.2011.07.010
Allgaier, Martin; Riebesell, Ulf; Vogt, Meike; Thyrhaug, Runar; Grossart, Hans-Peter (2008): Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study. Biogeosciences, 5(4), 1007-1022, https://doi.org/10.5194/bg-5-1007-2008
Allison, Nicola; Cohen, Itay; Finch, Adrian A; Erez, Jonathan; EMIF (2011): Controls on Sr/Ca and Mg/Ca in scleractinian corals: The effects of Ca-ATPase and transcellular Ca channels on skeletal chemistry. Geochimica et Cosmochimica Acta, 75(21), 6350-6360, https://doi.org/10.1016/j.gca.2011.08.012
Alsterberg, Christian; Eklöf, Johan S; Gamfeldt, Lars; Havenhand, Jonathan N; Sundbäck, Kristina (2013): Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Proceedings of the National Academy of Sciences, 110(21), 8603-8608, https://doi.org/10.1073/pnas.1303797110
Andersen, Sissel; Grefsrud, E S; Harboe, T (2013): Effect of increased pCO2 level on early shell development in great scallop (Pecten maximus Lamarck) larvae. Biogeosciences, 10(10), 6161-6184, https://doi.org/10.5194/bg-10-6161-2013
Andersson, Andreas J; Kuffner, Ilsa B; Mackenzie, Fred T; Jokiel, Paul L; Rodgers, Ku'ulei; Tan, A (2009): Net Loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidence. Biogeosciences, 6(8), 1811-1823, https://doi.org/10.5194/bg-6-1811-2009
Andersson, Andreas J; Mackenzie, Fred T; Bates, Nicolas R (2008): Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Marine Ecology Progress Series, 373, 265-273, https://doi.org/10.3354/meps07639
Anlauf, Holger; D'Croz, Luis; O'Dea, Aaron (2011): A corrosive concoction: The combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. Journal of Experimental Marine Biology and Ecology, 397(1), 13-20, https://doi.org/10.1016/j.jembe.2010.11.009
Anthony, Kenneth R N; Kline, David I; Diaz-Pulido, Guillermo; Dove, Sophie; Hoegh-Guldberg, Ove (2008): Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 7442-7446, https://doi.org/10.1073/pnas.0804478105
Antia, Avan N; Suffrian, K; Holste, Linda; Müller, Marius N; Nejstgaard, Jens Christian; Simonelli, P; Carotenuto, Y; Putzeys, S (2008): Dissolution of coccolithophorid calcite by microzooplankton and copepod grazing. Biogeosciences Discussions, 5(1), 1-23, https://doi.org/10.5194/bgd-5-1-2008
Apostolaki, Eugenia T; Vizzini, Salvatrice; Hendriks, Iris; Olsen, Ylva (2014): Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent. Marine Environmental Research, 99, 9-15, https://doi.org/10.1016/j.marenvres.2014.05.008
Appelhans, Yasmin S; Thomsen, Jörn; Opitz, Stephan; Pansch, Christian; Melzner, Frank; Wahl, Martin (2014): Juvenile sea stars exposed to acidification decrease feeding and growth with no acclimation potential. Marine Ecology Progress Series, 509, 227-239, https://doi.org/10.3354/meps10884
Archer, S D; Kimmance, S A; Stephens, J A; Hopkins, Frances E; Bellerby, Richard G J; Schulz, Kai Georg; Piontek, Judith; Engel, Anja (2013): Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters. Biogeosciences, 10(3), 1893-1908, https://doi.org/10.5194/bg-10-1893-2013
Arnold, Thomas; Freundlich, Grace; Weilnau, Taylor; Verdi, Arielle; Tibbetts, Ian R (2014): Impacts of groundwater discharge at Myora Springs (North Stradbroke Island, Australia) on the phenolic metabolism of eelgrass, Zostera muelleri, and grazing by the juvenile rabbitfish, Siganus fuscescens. PLoS ONE, 9(8), e104738, https://doi.org/10.1371/journal.pone.0104738.t003
Arnold, Thomas; Mealey, Christopher; Leahey, Hannah; Miller, A Whitman; Hall-Spencer, Jason M; Milazzo, Marco; Maers, Kelly (2012): Ocean Acidification and the Loss of Phenolic Substances in Marine Plants. PLoS ONE, 7(4), e35107, https://doi.org/10.1371/journal.pone.0035107.t004
Arnosti, Carol; Grossart, Hans-Peter; Mühling, M; Joint, Ian; Passow, Uta (2011): Dynamics of extracellular enzyme activities in seawater under changed atmospheric pCO2: a mesocosm investigation. Aquatic Microbial Ecology, 64(3), 285-298, https://doi.org/10.3354/ame01522
Asnaghi, Valentina; Mangialajo, Luisa; Gattuso, Jean-Pierre; Francour, Patrice; Privitera, Davide; Chiantore, Mariachiara (2014): Effects of ocean acidification and diet on thickness and carbonate elemental composition of the test of juvenile sea urchins. Marine Environmental Research, 93, 78-84, https://doi.org/10.1016/j.marenvres.2013.08.005
Bach, Lennart Thomas; Mackinder, Luke C M; Schulz, Kai Georg; Wheeler, Glen; Schroeder, Declan C; Brownlee, Colin; Riebesell, Ulf (2013): Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytologist, 199(1), 121-134, https://doi.org/10.1111/nph.12225
Bach, Lennart Thomas; Riebesell, Ulf; Schulz, Kai Georg (2011): Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 56(6), 2040-2050, https://doi.org/10.4319/lo.2011.56.6.2040
Baggini, Cecilia; Salomidi, Maria; Voutsinas, Emanuela; Bray, Laura; Krasakopoulou, Evangelia; Hall-Spencer, Jason M (2014): Seasonality Affects Macroalgal Community Response to Increases in pCO2. PLoS ONE, 9(9), e106520, https://doi.org/10.1371/journal.pone.0106520
Barcelos e Ramos, Joana; Biswas, Haimanti; Schulz, Kai Georg; LaRoche, Julie; Riebesell, Ulf (2007): Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Global Biogeochemical Cycles, 21, https://doi.org/10.1029/2006GB002898
Barcelos e Ramos, Joana; Müller, Marius N; Riebesell, Ulf (2010): Short-term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrations. Biogeosciences, 7(1), 177-186, https://doi.org/10.5194/bg-7-177-2010
Barcelos e Ramos, Joana; Schulz, Kai Georg; Brownlee, Colin; Sett, Scarlett; Azevedo, Eduardo Brito (2014): Effects of Increasing Seawater Carbon Dioxide Concentrations on Chain Formation of the Diatom Asterionellopsis glacialis. PLoS ONE, 9(3), e90749, https://doi.org/10.1371/journal.pone.0090749
Basallote, M Dolores; De Orte, Manoela R; DelValls, T Angel; Riba, Inmaculada (2014): Studying the Effect of CO2-Induced Acidification on Sediment Toxicity Using Acute Amphipod Toxicity Test. Environmental Science & Technology, 48(15), 8864-8872, https://doi.org/10.1021/es5015373
Bates, Nicolas R; Amat, A; Andersson, Andreas J (2010): Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification. Biogeosciences, 7(8), 2509-2530, https://doi.org/10.5194/bg-7-2509-2010
Baumann, Hannes; Talmage, Stephanie C; Gobler, Christopher J (2012): Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Climate Change, 2, 38-41, https://doi.org/10.1038/nclimate1291
Beaufort, Luc; Probert, Ian; de Garidel-Thoron, Thibault; Bendif, E M; Ruiz-Pino, Diana; Metzi, N; Goyet, Catherine; Buchet, Noëlle; Coupel, Pierre; Grelaud, Michaël; Rost, Björn; Rickaby, Rosalind E M; De Vargas, Colomban (2011): Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature, 476, 80-83, https://doi.org/10.1038/nature10295
Bechmann, Renée Katrin; Taban, Ingrid Christina; Westerlund, Stig; Godal, Brit Fjone; Arnberg, Maj; Vingen, Sjur; Ingvarsdottir, Anna; Baussant, Thierry (2011): Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis). Journal of Toxicology and Environmental Health-Part A-Current Issues, 74(7-9), 424-438, https://doi.org/10.1080/15287394.2011.550460
Bednaršek, Nina; Tarling, Geraint A; Bakker, Dorothee C E; Fielding, Sophie; Cohen, Anne L; Kuzirian, Alan; McCorkle, Daniel C; Lézé, Bertrand; Montagna, Roberto (2012): Description and quantification of pteropod shell dissolution: A sensitive bioindicator of ocean acidification. Global Change Biology, 18(7), 2378-2388, https://doi.org/10.1111/j.1365-2486.2012.02668.x
Bednaršek, Nina; Tarling, Geraint A; Bakker, Dorothee C E; Fielding, Sophie; Jones, Elizabeth M; Venables, H J; Ward, Peter; Kuzirian, Alan; Lézé, Bertrand; Feely, Richard A; Murphy, Eugene J (2012): Extensive dissolution of live pteropods in the Southern Ocean. Nature Geoscience, 5(12), 881-885, https://doi.org/10.1038/ngeo1635
Bellerby, Richard G J; Schulz, Kai Georg; Riebesell, Ulf; Neill, Craig; Nondal, G; Heegaard, E; Johannessen, Truls; Brown, K R (2008): Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experiment. Biogeosciences, 5(6), 1517-1527, https://doi.org/10.5194/bg-5-1517-2008
Beniash, Elia; Ivanina, Anna; Lieb, Nicholas S; Kurochkin, Ilya; Sokolova, Inna A (2010): Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Marine Ecology Progress Series, 419, 95-108, https://doi.org/10.3354/meps08841
Bibby, Ruth; Cleall-Harding, Polly; Rundle, Simon; Widdicombe, Stephen; Spicer, John I (2007): Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biology Letters, 3(6), 699-701, https://doi.org/10.1098/rsbl.2007.0457
Bibby, Ruth; Widdicombe, Stephen; Parry, Helen E; Spicer, John I; Pipe, R (2008): Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquatic Biology, 2(1), 97-74, https://doi.org/10.3354/ab00037
Biermann, Antje; Engel, Anja (2010): Effect of CO2 on the properties and sinking velocity of aggregates of the coccolithophore Emiliania huxleyi. Biogeosciences, 7(3), 1017-1029, https://doi.org/10.5194/bg-7-1017-2010
Biswas, Haimanti; Cros, Alexander; Yadav, Kamana; Ramana, V Venkata; Prasad, V Rajendra; Archaryya, Tamoghna; Babu, P V Raghunadh (2011): The response of a natural phytoplankton community from the Godavari River Estuary to increasing CO2 concentration during the pre-monsoon period. Journal of Experimental Marine Biology and Ecology, 407(2), 284-293, https://doi.org/10.1016/j.jembe.2011.06.027
Bögner, Desislava; Bickmeyer, Ulf; Köhler, Angela (2014): CO2-induced fertilization impairment in Strongylocentrotus droebachiensis collected in the Arctic. Helgoland Marine Research, 68(2), 341-356, https://doi.org/10.1007/s10152-014-0394-3
Borchard, Corinna; Borges, Alberto Vieira; Händel, Nicole; Engel, Anja (2011): Biogeochemical response of Emiliania huxleyi (PML B92/11) to elevated CO2 and temperature under phosphorous limitation: A chemostat study. Journal of Experimental Marine Biology and Ecology, 410, 61-71, https://doi.org/10.1016/j.jembe.2011.10.004
Borchard, Corinna; Engel, Anja (2012): Organic matter exudation by Emiliania huxleyi under simulated future ocean conditions. Biogeosciences, 9(8), 3405-3423, https://doi.org/10.5194/bg-9-3405-2012
Boucher, Guy; Clavier, Jacques; Garrigue, Claire (1994): Oxygen and carbon dioxide fluxes at the water-sediment interface of a tropical lagoon. Marine Ecology Progress Series, 107, 185-193, https://doi.org/10.3354/meps107185
Brading, Patrick; Warner, Mark E; Davey, Philip; Smith, David J; Achterberg, Eric Pieter; Suggett, David J (2011): Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnology and Oceanography, 56(3), 927-938, https://doi.org/10.4319/lo.2011.56.3.0927
Braeckman, Ulrike; Van Colen, Carl; Guilini, Katja; Van Gansbeke, D; Soetaert, Karline; Vincx, Magda; Vanaverbeke, Jan; Vopel, Kay (2014): Empirical Evidence Reveals Seasonally Dependent Reduction in Nitrification in Coastal Sediments Subjected to Near Future Ocean Acidification. PLoS ONE, 9(10), e108153, https://doi.org/10.1371/journal.pone.0108153.s002
Bramanti, Lorenzo; Movilla, Juancho; Guron, Maricel; Calvo, Eva; Gori, Andrea; Dominguez-Cariò, Carlos; Grinyó, Jordi; Lopez-Sanz, Angel; Martinez-Quintana, Angela; Pelejero, Carles; Ziveri, Patrizia; Rossi, Sergio (2013): Detrimental effects of ocean acidification on the economically important Mediterranean red coral (Corallium rubrum). Global Change Biology, 19(6), 1897-1908, https://doi.org/10.1111/gcb.12171
Bray, Laura; Pancucci-Papadopulou, M A; Hall-Spencer, Jason M (2014): Sea urchin response to rising pCO2 shows ocean acidification may fundamentally alter the chemistry of marine skeletons. Mediterranean Marine Science, 15(3), 510-519, https://doi.org/10.12681/mms.579
Bresolin de Souza, Karine; Jutfelt, Fredrik; Kling, Peter; Förlin, Lars; Sturve, Joachim; Hofmann, Gretchen E (2014): Effects of Increased CO2 on Fish Gill and Plasma Proteome. PLoS ONE, 9(7), e102901, https://doi.org/10.1371/journal.pone.0102901
Bressan, M; Chinellato, A; Munari, M; Matozzo, V; Manci, A; Marceta, T; Finos, L; Moro, I; Pastore, P; Badocco, D; Marin, Maria Gabriella (2014): Does seawater acidification affect survival, growth and shell integrity in bivalve juveniles? Marine Environmental Research, 99, 136-148, https://doi.org/10.1016/j.marenvres.2014.04.009
Brussaard, Corina P D; Noordeloos, A A M; Witte, Hannelore; Collenteur, M C J; Schulz, Kai Georg; Ludwig, Andrea; Riebesell, Ulf (2013): Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences, 10(2), 719-731, https://doi.org/10.5194/bg-10-719-2013
Büdenbender, Jan; Riebesell, Ulf; Form, Armin (2011): Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Marine Ecology Progress Series, 441, 79-87, https://doi.org/10.3354/meps09405
Burdett, H L; Carruthers, M; Donohue, P J C; Wicks, L C; Hennige, Sebastian J; Roberts, J Murray; Kamenos, N A (2014): Effects of high temperature and CO2 on intracellular DMSP in the cold-water coral Lophelia pertusa. Marine Biology, 161(7), 1499-1506, https://doi.org/10.1007/s00227-014-2435-5
Burkhardt, Steffen; Riebesell, Ulf; Zondervan, Ingrid (1999): Stable carbon isotope fractionation by marine phytoplankton in response to daylength, growth rate, and CO2 availability. Marine Ecology Progress Series, 194, 31-41, https://doi.org/10.3354/meps184031
Campbell, Justin E; Fourqurean, James W (2013): Effects of in situ CO2 enrichment on the structural and chemical characteristics of the seagrass Thalassia testudinum. Marine Biology, 160(6), 1465-1475, https://doi.org/10.1007/s00227-013-2199-3
Campbell, Justin E; Fourqurean, James W (2014): Ocean acidification outweighs nutrient effects in structuring seagrass epiphyte communities. Journal of Ecology, 102(3), 730-737, https://doi.org/10.1111/1365-2745.12233
Carey, Nicholas; Dupont, Sam; Lundve, Bengt; Sigwart, Julia D (2014): One size fits all: stability of metabolic scaling under warming and ocean acidification in echinoderms. Marine Biology, 161(9), 2131-2142, https://doi.org/10.1007/s00227-014-2493-8
Carey, Nicholas; Sigwart, Julia D (2014): Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change. Biology Letters, 10(8), 20140408-20140408, https://doi.org/10.1098/rsbl.2014.0408
Challener, Roberta C; McClintock, James B; Makowsky, Robert (2013): Effects of reduced carbonate saturation state on early development in the common edible sea urchin Lytechinus variegatus: implications for land-based aquaculture. Journal of Applied Aquaculture, 25(2), 154-175, https://doi.org/10.1080/10454438.2013.791911
Challener, Roberta C; Watts, Stephen A; McClintock, James B (2014): Effects of hypercapnia on aspects of feeding, nutrition, and growth in the edible sea urchin Lytechinus variegatus held in culture. Marine and Freshwater Behaviour and Physiology, 47(1), 41-62, https://doi.org/10.1080/10236244.2013.875273
Chan, B S Vera; Li, Chaoyi; Lane, Ackley Charles; Wang, Yanchun; Lu, Xingwen; Shih, Kaimin; Zhang, Tong; Thiyagarajan, Vengatesen (2012): CO2-Driven Ocean Acidification Alters and Weakens Integrity of the Calcareous Tubes Produced by the Serpulid Tubeworm, Hydroides elegans. PLoS ONE, 7(8), e42718, https://doi.org/10.1371/journal.pone.0042718
Chan, B S Vera; Thiyagarajan, Vengatesen; Lu, Xingwen; Zhang, Tong; Shih, Kaimin (2013): Temperature Dependent Effects of Elevated CO2 on Shell Composition and Mechanical Properties of Hydroides elegans: Insights from a Multiple Stressor Experiment. PLoS ONE, 8(11), e78945, https://doi.org/10.1371/journal.pone.0078945
Chan, Kit Yu Karen; Grünbaum, Daniel; Arnberg, Maj; Thorndyke, Mike; Dupont, Sam (2012): Ocean acidification induces budding in larval sea urchins. Marine Biology, 160(8), 2129-2135, https://doi.org/10.1007/s00227-012-2103-6
Chan, Kit Yu Karen; Grünbaum, Daniel; O'Donnell, Michael J (2011): Effects of ocean-acidification-induced morphological changes on larval swimming and feeding. Journal of Experimental Biology, 214(22), 3857-3867, https://doi.org/10.1242/jeb.054809
Charalampopoulou, Anastasia; Poulton, Alex J; Tyrrell, Toby; Lucas, Mike (2011): Irradiance and pH affect coccolithophore community composition on a transect between the North Sea and the Arctic Ocean. Marine Ecology Progress Series, 431, 25-43, https://doi.org/10.3354/meps09140
Chauvin, Anne; Denis, Vianney; Cuet, Pascale (2011): Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs, 30(4), 911-923, https://doi.org/10.1007/s00338-011-0786-7
Checkley, David M; Dickson, Andrew G; Takahashi, Motomitsu; Radich, J Adam; Eisenkolb, Nadine; Asch, Rebecca (2009): Elevated CO2 enhances otolith growth in young fish. Science, 324(5935), 1683, https://doi.org/10.1126/science.1169806
Christen, Nadja; Calosi, Piero; McNeill, C L; Widdicombe, Stephen (2012): Structural and functional vulnerability to elevated pCO2 in marine benthic communities. Marine Biology, 160(8), 2113-2128, https://doi.org/10.1007/s00227-012-2097-0
Clark, Darren; Brown, Ian; Rees, Andrew; Somerfield, Paul J; Miller, P I (2014): The influence of ocean acidification on nitrogen regeneration and nitrous oxide production in the northwest European shelf sea. Biogeosciences, 11(18), 4985-5005, https://doi.org/10.5194/bg-11-4985-2014
Clavier, Jacques; Boucher, Guy; Garrigue, Claire (1994): Benthic respiratory and photosynthetic quotients in a tropical lagoon. Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie, 317, 937-942, hdl:10013/epic.34198.d001
Clements, Jeff C; Hunt, Heather L (2014): Influence of sediment acidification and water flow on sediment acceptance and dispersal of juvenile soft-shell clams (Mya arenaria L.). Journal of Experimental Marine Biology and Ecology, 453, 62-69, https://doi.org/10.1016/j.jembe.2014.01.002
Collard, Marie; Catarino, Ana Isabel; Bonnet, Stéphanie; Flammang, Patrick; Dubois, Philippe (2013): Effects of CO2-induced ocean acidification on physiological and mechanical properties of the starfish Asterias rubens. Journal of Experimental Marine Biology and Ecology, 446, 355-362, https://doi.org/10.1016/j.jembe.2013.06.003
Collard, Marie; De Ridder, Chantal; David, Bruno; Dehairs, Frank; Dubois, Philippe (2014): Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification? Global Change Biology, https://doi.org/10.1111/gcb.12735
Collard, Marie; Dery, Aurélie; Dehairs, Frank; Dubois, Philippe (2014): Euechinoidea and Cidaroidea respond differently to ocean acidification. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 174, 45-55, https://doi.org/10.1016/j.cbpa.2014.04.011
Collard, Marie; Eeckhaut, Igor; Dehairs, Frank; Dubois, Philippe (2014): Acid–base physiology response to ocean acidification of two ecologically and economically important holothuroids from contrasting habitats, Holothuria scabra and Holothuria parva. Environmental Science and Pollution Research, 21(23), 13602-13614, https://doi.org/10.1007/s11356-014-3259-z
Collard, Marie; Laitat, Kim; Moulin, Laure; Catarino, Ana Isabel; Grosjean, Philippe; Dubois, Philippe (2013): Buffer capacity of the coelomic fluid in echinoderms. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 166(1), 199-206, https://doi.org/10.1016/j.cbpa.2013.06.002
Comeau, Steeve; Alliouane, Samir; Gattuso, Jean-Pierre (2012): Effects of ocean acidification on overwintering juvenile Arctic pteropods Limacina helicina. Marine Ecology Progress Series, 456, 279-284, https://doi.org/10.3354/meps09696
Comeau, Steeve; Carpenter, Robert C; Edmunds, Peter J (2012): Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proceedings of the Royal Society B-Biological Sciences, 280(1753), https://doi.org/10.1098/rspb.2012.2374
Comeau, Steeve; Carpenter, Robert C; Edmunds, Peter J (2013): Effects of feeding and light intensity on the response of the coral Porites rus to ocean acidification. Marine Biology, 160(5), 1127-1134, https://doi.org/10.1007/s00227-012-2165-5
Comeau, Steeve; Carpenter, Robert C; Nojiri, Yukihiro; Putnam, H M; Sakai, Kazuhiko; Edmunds, Peter J (2014): Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification. Proceedings of the Royal Society B-Biological Sciences, 281(1790), 20141339-20141339, https://doi.org/10.1098/rspb.2014.1339
Comeau, Steeve; Edmunds, Peter J; Spindel, N B; Carpenter, Robert C (2013): The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnology and Oceanography, 58(1), 388-398, https://doi.org/10.4319/lo.2013.58.1.0388
Comeau, Steeve; Edmunds, Peter J; Spindel, N B; Carpenter, Robert C (2014): Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations. Limnology and Oceanography, 59(3), 1081-1091, https://doi.org/10.4319/lo.2014.59.3.1081
Comeau, Steeve; Gorsky, G; Alliouane, Samir; Gattuso, Jean-Pierre (2010): Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less. Marine Biology, 157(10), 2341-2345, https://doi.org/10.1007/s00227-010-1493-6
Comeau, Steeve; Gorsky, G; Jeffree, Ross; Teyssié, Jean-Louis; Gattuso, Jean-Pierre (2009): Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences, 6(9), 1877-1882, https://doi.org/10.5194/bg-6-1877-2009
Comeau, Steeve; Jeffree, Ross; Teyssié, Jean-Louis; Gattuso, Jean-Pierre (2010): Response of the Arctic pteropod Limacina helicina to projected future environmental conditions. PLoS ONE, 5(6), e11362, https://doi.org/10.1371/journal.pone.0011362
Connell, Sean D; Russell, Bayden D (2010): The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proceedings of the Royal Society B-Biological Sciences, 277(1686), 1409-1415, https://doi.org/10.1098/rspb.2009.2069
Cornwall, Christopher Edward; Boyd, Philip W; McGraw, Christina M; Hepburn, Christopher D; Pilditch, Conrad A; Morris, Jaz N; Smith, Abigail M; Hurd, Catriona L (2014): Diffusion Boundary Layers Ameliorate the Negative Effects of Ocean Acidification on the Temperate Coralline Macroalga Arthrocardia corymbosa. PLoS ONE, 9(5), e97235, https://doi.org/10.1371/journal.pone.0097235
Cornwall, Christopher Edward; Hepburn, Christopher D; McGraw, Christina M; Currie, Kim I; Pilditch, Conrad A; Hunter, Keith A; Boyd, Philip W; Hurd, Catriona L (2013): Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proceedings of the Royal Society B-Biological Sciences, 280(1772), 20132201-20132201, https://doi.org/10.1098/rspb.2013.2201
Cornwall, Christopher Edward; Hepburn, Christopher D; Pilditch, Conrad A; Hurd, Catriona L (2013): Concentration boundary layers around complex assemblages of macroalgae: Implications for the effects of ocean acidification on understory coralline algae. Limnology and Oceanography, 58(1), 121-130, https://doi.org/10.4319/lo.2013.58.1.0121
Cornwall, Christopher Edward; Hepburn, Christopher D; Pritchard, Daniel; Currie, Kim I; McGraw, Christina M; Hunter, Keith A; Hurd, Catriona L (2012): Carbon-use strategies in macroalgae: Differential responses to lowered pH and implications for ocean acidification. Journal of Phycology, 48(1), 137-144, https://doi.org/10.1111/j.1529-8817.2011.01085.x
Courtney, T; Westfield, Isaac T; Ries, Justin B (2013): CO2-induced ocean acidification impairs calcification in the tropical urchin Echinometra viridis. Journal of Experimental Marine Biology and Ecology, 440, 169-175, https://doi.org/10.1016/j.jembe.2012.11.013
Couturier, Christine S; Stecyk, Jonathan A W; Rummer, Jodie L; Munday, Philip L; Nilsson, Göran E (2013): Species-specific effects of near-future CO2 on the respiratory performance of two tropical prey fish and their predator. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 166(3), 482-489, https://doi.org/10.1016/j.cbpa.2013.07.025
Crawley, Alicia; Kline, David I; Dunn, Simon; Anthony, Kenneth R N; Dove, Sophie (2010): The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Global Change Biology, 16(2), 851-863, https://doi.org/10.1111/j.1365-2486.2009.01943.x
Crim, Ryan N; Sunday, Jennifer M; Harley, Christopher D G (2011): Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana). Journal of Experimental Marine Biology and Ecology, 400(1-2), 272-277, https://doi.org/10.1016/j.jembe.2011.02.002
Cripps, Gemma; Lindeque, Penelope K; Flynn, Kevin J (2014): Have we been underestimating the effects of ocean acidification in zooplankton? Global Change Biology, 20(11), 3377-3385, https://doi.org/10.1111/gcb.12582
Cripps, Gemma; Lindeque, Penelope K; Flynn, Kevin J (2014): Parental exposure to elevated pCO2 influences the reproductive success of copepods. Journal of Plankton Research, 36(5), 1165-1174, https://doi.org/10.1093/plankt/fbu052
Cripps, Gemma; Widdicombe, Stephen; Spicer, John I; Findlay, Helen S (2013): Biological impacts of enhanced alkalinity in Carcinus maenas. Marine Pollution Bulletin, 71(1-2), 190-198, https://doi.org/10.1016/j.marpolbul.2013.03.015
Cripps, Ingrid L; Munday, Philip L; McCormick, Mark I (2011): Ocean acidification affects prey detection by a predatory reef fish. PLoS ONE, 6(7), e22736, https://doi.org/10.1371/journal.pone.0022736
Crook, Elizabeth Derse; Cohen, Anne L; Rebolledo-Vieyra, Mario; Hernandez, Laura; Paytan, Adina (2013): Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proceedings of the National Academy of Sciences, 110(27), 11044-11049, https://doi.org/10.1073/pnas.1301589110
Crook, Elizabeth Derse; Cooper, H; Potts, Donald C; Lambert, T; Paytan, Adina (2013): Impacts of food availability and pCO2 on planulation, juvenile survival, and calcification of the azooxanthellate scleractinian coral Balanophyllia elegans. Biogeosciences, 10(11), 7599-7608, https://doi.org/10.5194/bg-10-7599-2013
Cumbo, Vivian R; Edmunds, Peter J; Wall, Christopher B; Fan, Tung-Yung (2013): Brooded coral larvae differ in their response to high temperature and elevated pCO2 depending on the day of release. Marine Biology, 160(11), 2903-2917, https://doi.org/10.1007/s00227-013-2280-y
Cumbo, Vivian R; Fan, Tung-Yung; Edmunds, Peter J (2013): Effects of exposure duration on the response of Pocillopora damicornis larvae to elevated temperature and high pCO2. Journal of Experimental Marine Biology and Ecology, 439, 100-107, https://doi.org/10.1016/j.jembe.2012.10.019
Cyronak, Tyler; Santos, Isaac R; Eyre, Bradley D (2013): Permeable coral reef sediment dissolution driven by elevated pCO2 and pore water advection. Geophysical Research Letters, 40(18), 4876–4881, https://doi.org/10.1002/grl.50948
Czerny, Jan; Barcelos e Ramos, Joana; Riebesell, Ulf (2009): Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigena. Biogeosciences, 6(9), 1865-1875, https://doi.org/10.5194/bg-6-1865-2009
Czerny, Jan; Schulz, Kai Georg; Boxhammer, Tim; Bellerby, Richard G J; Büdenbender, Jan; Engel, Anja; Krug, Sebastian; Ludwig, Andrea; Nachtigall, Kerstin; Nondal, G; Niehoff, Barbara; Silyakova, Anna; Riebesell, Ulf (2013): Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study – an elemental mass balance approach. Biogeosciences, 10(5), 3109-3125, https://doi.org/10.5194/bg-10-3109-2013
Czerny, Jan; Schulz, Kai Georg; Krug, Sebastian; Ludwig, Andrea; Riebesell, Ulf (2013): Technical Note: The determination of enclosed water volume in large flexible-wall mesocosms "KOSMOS". Biogeosciences, 10(3), 1937-1941, https://doi.org/10.5194/bg-10-1937-2013
Czerny, Jan; Schulz, Kai Georg; Ludwig, Andrea; Riebesell, Ulf (2013): Technical Note: A simple method for air–sea gas exchange measurements in mesocosms and its application in carbon budgeting. Biogeosciences, 10(3), 1379-1390, https://doi.org/10.5194/bg-10-1379-2013
de Bodt, Caroline; Van Oostende, Nicolas; Harlay, Jérôme; Sabbe, Koen; Chou, Lei (2010): Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere size. Biogeosciences, 7(5), 1401-1412, https://doi.org/10.5194/bg-7-1401-2010
de Kluijver, Anna; Soetaert, Karline; Czerny, Jan; Schulz, Kai Georg; Boxhammer, Tim; Riebesell, Ulf; Middelburg, Jack J (2013): A 13C labelling study on carbon fluxes in Arctic plankton communities under elevated CO2 levels. Biogeosciences, 10(3), 1425-1440, https://doi.org/10.5194/bg-10-1425-2013
de Putron, Samantha J; McCorkle, Daniel C; Cohen, Anne L; Dillon, A B (2011): The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals. Coral Reefs, 30(2), 321-328, https://doi.org/10.1007/s00338-010-0697-z
Delille, Bruno; Harlay, Jérôme; Zondervan, Ingrid; Jacquet, Stéphan; Chou, Lei; Wollast, Roland; Bellerby, Richard G J; Frankignoulle, Michel; Borges, Alberto Vieira; Riebesell, Ulf; Gattuso, Jean-Pierre (2005): Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochemical Cycles, 19, GB2023, https://doi.org/10.1029/2004GB002318
Diaz-Pulido, Guillermo; Gouezo, Marine; Tilbrook, Bronte; Dove, Sophie; Anthony, Kenneth R N (2011): High CO2 enhances the competitive strength of seaweeds over corals. Ecology Letters, 14(2), 156-162, https://doi.org/10.1111/j.1461-0248.2010.01565.x
Dineshram, R; Thiyagarajan, Vengatesen; Lane, Ackley Charles; Yu, Ziniu; Shu, Xiao; Leung, Priscilla TY (2013): Elevated CO2 alters larval proteome and its phosphorylation status in the commercial oyster, Crassostrea hongkongensis. Marine Biology, 160(8), 2189-2205, https://doi.org/10.1007/s00227-013-2176-x
Dineshram, R; Wong, Kevin K W; Shu, Xiao; Yu, Ziniu; Qian, Pei Yuan; Thiyagarajan, Vengatesen (2012): Analysis of Pacific oyster larval proteome and its response to high-CO2. Marine Pollution Bulletin, 64(10), 2160-2167, https://doi.org/10.1016/j.marpolbul.2012.07.043
Dissard, Delphine; Nehrke, Gernot; Reichart, Gert-Jan; Bijma, Jelle (2010): Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: results from culturing experiments with Ammonia tepida. Biogeosciences, 7(1), 81-93, https://doi.org/10.5194/bg-7-81-2010
Dorey, Narimane; Lançon, Pauline; Thorndyke, Mike; Dupont, Sam (2013): Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Global Change Biology, 19(11), 3355-3367, https://doi.org/10.1111/gcb.12276
Dorey, Narimane; Melzner, Frank; Martin, Sophie; Oberhänsli, F; Teyssié, Jean-Louis; Bustamante, Paco; Gattuso, Jean-Pierre; Lacoue-Labarthe, Thomas (2012): Ocean acidification and temperature rise: effects on calcification during early development of the cuttlefish Sepia officinalis. Marine Biology, 160(8), 2007-2022, https://doi.org/10.1007/s00227-012-2059-6
Doropoulos, Christopher; Diaz-Pulido, Guillermo (2013): High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae. Marine Ecology Progress Series, 475, 93-99, https://doi.org/10.3354/meps10096
Doropoulos, Christopher; Ward, Selina; Marshell, Alyssa; Diaz-Pulido, Guillermo; Mumby, Peter John (2012): Interactions among chronic and acute impacts on coral recruits: the importance of size-escape thresholds. Ecology, 93(10), 2131-2138, https://doi.org/10.1890/12-0495.1
Drenkard, E J; Cohen, Anne L; McCorkle, Daniel C; de Putron, Samantha J; Starczak, V R; Zicht, A E (2013): Calcification by juvenile corals under heterotrophy and elevated CO2. Coral Reefs, 32(3), 727-735, https://doi.org/10.1007/s00338-013-1021-5
Dueñas-Bohórquez, Adriana; Raitzsch, Markus; de Nooijer, Lennart Jan; Reichart, Gert-Jan (2011): Independent impacts of calcium and carbonate ion concentration on Mg and Sr incorporation in cultured benthic foraminifera. Marine Micropaleontology, 81(3-4), 122-130, https://doi.org/10.1016/j.marmicro.2011.08.002
Dufault, Aaron M; Cumbo, Vivian R; Fan, Tung-Yung; Edmunds, Peter J (2012): Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruits. Proceedings of the Royal Society B-Biological Sciences, 279(1740), 2951-2958, https://doi.org/10.1098/rspb.2011.2545
Dupont, Sam; Dorey, Narimane; Stumpp, Meike; Melzner, Frank; Thorndyke, Mike (2013): Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Marine Biology, 160(8), 1835-1843, https://doi.org/10.1007/s00227-012-1921-x
Dupont, Sam; Havenhand, Jonathan N; Thorndyke, William; Peck, Loyd S; Thorndyke, Mike (2008): Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Marine Ecology Progress Series, 373, 285-295, https://doi.org/10.3354/meps07800
Dupont, Sam; Lundve, Bengt; Thorndyke, Mike (2010): Near Future Ocean Acidification Increases Growth Rate of the Lecithotrophic Larvae and Juveniles of the Sea Star Crossaster papposus. Journal of Experimental Zoology Part B-Molecular and Developmental Evolution, 314B(5), 382-389, https://doi.org/10.1002/jez.b.21342
Dupont, Sam; Moya, Aurélie; Bailly, Xavier (2012): Stable photosymbiotic relationship under CO2-induced acidification in the acoel worm Symsagittifera roscoffensis. PLoS ONE, 7(1), e29568, https://doi.org/10.1371/journal.pone.0029568
Eagle, R A; Eiler, J M; Tripati, Aradhna K; Ries, Justin B; Freitas, P S; Hiebenthal, Claas; Wanamaker, Alan D; Taviani, Marco; Elliot, Mary; Marenssi, Sergio; Nakamura, K; Ramirez, P; Roy, K (2013): The influence of temperature and seawater carbonate saturation state on 13C–18O bond ordering in bivalve mollusks. Biogeosciences, 10(7), 4591-4606, https://doi.org/10.5194/bg-10-4591-2013
Edmunds, Peter J (2011): Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnology and Oceanography, 56(6), 2402-2410, https://doi.org/10.4319/lo.2011.56.6.2402
Edmunds, Peter J (2012): Effect of pCO2 on the growth, respiration, and photophysiology of massive Porites spp. in Moorea, French Polynesia. Marine Biology, 159(10), 2149-2160, https://doi.org/10.1007/s00227-012-2001-y
Edmunds, Peter J; Brown, Darren; Moriarty, Vincent (2012): Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Global Change Biology, 18(7), 2173-2183, https://doi.org/10.1111/j.1365-2486.2012.02695.x
Edmunds, Peter J; Cumbo, Vivian R; Fan, Tung-Yung (2013): Metabolic costs of larval settlement and metamorphosis in the coral Seriatopora caliendrum under ambient and elevated pCO2. Journal of Experimental Marine Biology and Ecology, 443, 33-38, https://doi.org/10.1016/j.jembe.2013.02.032
Egge, Jorun K; Thingstad, Tron Frede; Larsen, Aud; Engel, Anja; Wohlers, J; Bellerby, Richard G J; Riebesell, Ulf (2009): Primary production during nutrient-induced blooms at elevated CO2 concentrations. Biogeosciences, 6(5), 877-885, https://doi.org/10.5194/bg-6-877-2009
Egilsdottir, Hronn; Noisette, Fanny; Noël, Laure M L J; Ólafsson, Jón; Martin, Sophie (2012): Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata. Marine Biology, 160(8), 2103-2112, https://doi.org/10.1007/s00227-012-2090-7
Eichner, Meri; Kranz, Sven A; Rost, Björn (2014): Combined effects of different CO2 levels and N sources on the diazotrophic cyanobacterium Trichodesmium. Physiologia Plantarum, 152(2), 316-330, https://doi.org/10.1111/ppl.12172
Eichner, Meri; Rost, Björn; Kranz, Sven A (2014): Diversity of ocean acidification effects on marine N2 fixers. Journal of Experimental Marine Biology and Ecology, 457, 199-207, https://doi.org/10.1016/j.jembe.2014.04.015
Ellis, Robert P; Bersey, Jess; Rundle, Simon; Hall-Spencer, Jason M; Spicer, John I (2009): Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail ,Littorina obtusata. Aquatic Biology, 5(1), 41-48, https://doi.org/10.3354/ab00118
Ellis, Robert P; Spicer, John I; Byrne, Jonathan J; Sommer, Ulf; Viant, Mark R; White, Daniel; Widdicombe, Steve (2014): 1H NMR Metabolomics Reveals Contrasting Response by Male and Female Mussels Exposed to Reduced Seawater pH, Increased Temperature, and a Pathogen. Environmental Science & Technology, 48(12), 7044-7052, https://doi.org/10.1021/es501601w
Endo, H; Yoshimura, T; Kataoka, Takafumi; Suzuki, Koji (2013): Effects of CO2 and iron availability on phytoplankton and eubacterial community compositions in the northwest subarctic Pacific. Journal of Experimental Marine Biology and Ecology, 439, 160-175, https://doi.org/10.1016/j.jembe.2012.11.003
Endres, Sonja; Unger, Juliane; Wannicke, Nicola; Nausch, Monika; Voss, Maren; Engel, Anja (2013): Response of Nodularia spumigena to pCO2; Part 2: Exudation and extracellular enzyme activities. Biogeosciences, 10(1), 567-582, https://doi.org/10.5194/bg-10-567-2013
Engel, Anja (2002): Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton. Journal of Plankton Research, 24(1), 49-53, https://doi.org/10.1093/plankt/24.1.49
Engel, Anja; Delille, Bruno; Jacquet, Stéphan; Riebesell, Ulf; Rochelle-Newall, Emma; Terbrüggen, Anja; Zondervan, Ingrid (2004): Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experiment. Aquatic Microbial Ecology, 34(1), 93-104, https://doi.org/10.3354/ame034093
Engel, Anja; Schulz, Kai Georg; Riebesell, Ulf; Bellerby, Richard G J; Delille, Bruno; Schartau, Markus (2008): Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II). Biogeosciences, 5(2), 509-521, https://doi.org/10.5194/bg-5-509-2008
Engel, Anja; Zondervan, Ingrid; Aerts, Katrien; Beaufort, Luc; Benthien, Albert; Chou, Lei; Delille, Bruno; Gattuso, Jean-Pierre; Harlay, Jérôme; Heemann, Christel; Hoffmann, Linn; Jacquet, Stéphan; Nejstgaard, Jens Christian; Pizay, Marie-Dominique; Rochelle-Newall, Emma; Schneider, Uta; Terbrüggen, Anja; Riebesell, Ulf (2005): Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnology and Oceanography, 50(2), 493-504, https://doi.org/10.4319/lo.2005.50.2.0493
Enochs, I C; Manzello, Derek P; Carlton, R; Schopmeyer, S; van Hooidonk, Ruben; Lirman, D (2014): Effects of light and elevated pCO2 on the growth and photochemical efficiency of Acropora cervicornis. Coral Reefs, 33(2), 477-485, https://doi.org/10.1007/s00338-014-1132-7
Fabricius, Katharina Elisabeth; Langdon, Chris; Uthicke, Sven; Humphrey, Craig; Noonan, Sam; De'ath, Glenn; Okazaki, Remy; Muehllehner, Nancy; Glas, Martin S; Lough, Janice M (2011): Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change, 1(3), 165-169, https://doi.org/10.1038/nclimate1122
Fehsenfeld, Sandra; Weihrauch, Dirk (2013): Differential acid–base regulation in various gills of the green crab Carcinus maenas: Effects of elevated environmental pCO2. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 164(1), 54-65, https://doi.org/10.1016/j.cbpa.2012.09.016
Fernández, Pamela A; Hurd, Catriona L; Roleda, Michael Y (2014): Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH. Journal of Phycology, 50(6), 998-1008, https://doi.org/10.1111/jpy.12247
Fernández-Reiriz, Ma José; Range, P; Alvarez-Salgado, Xose Anton; Espinosa, Joaquin; Labarta, Uxio (2012): Tolerance of juvenile Mytilus galloprovincialis to experimental seawater acidification. Marine Ecology Progress Series, 454, 65-74, https://doi.org/10.3354/meps09660
Findlay, Helen S; Kendall, Michael A; Spicer, John I; Widdicombe, Stephen (2010): Post-larval development of two intertidal barnacles at elevated CO2 and temperature. Marine Biology, 157(4), 725-735, https://doi.org/10.1007/s00227-009-1356-1
Findlay, Helen S; Kendall, Michael A; Spicer, John I; Widdicombe, Stephen (2010): Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. Estuarine, Coastal and Shelf Science, 88(4), 675-682, https://doi.org/10.1016/j.ecss.2009.11.036
Fiorini, Sarah; Gattuso, Jean-Pierre; van Rijiswijk, Pieter; Middelburg, Jack J (2010): Coccolithophores lipid and carbon isotope composition and their variability related to changes in seawater carbonate chemistry. Journal of Experimental Marine Biology and Ecology, 394(1-2), 74-85, https://doi.org/10.1016/j.jembe.2010.07.020
Fiorini, Sarah; Middelburg, Jack J; Gattuso, Jean-Pierre (2011): Effects of elevated CO2 partial pressure and temperature on the coccolithophore Syracosphaera pulchra. Aquatic Microbial Ecology, 64(3), 221-232, https://doi.org/10.3354/ame01520
Fiorini, Sarah; Middelburg, Jack J; Gattuso, Jean-Pierre (2011): Testing the effects of elevated pCO2 on coccolithophores (Prymnesiophyceae): comparison between haploid and diploid life stages. Journal of Phycology, 47(6), 1281–1291, https://doi.org/10.1111/j.1529-8817.2011.01080.x
Fitzer, Susan C; Caldwell, Gary S; Close, Andrew J; Clare, Anthony S; Upstill-Goddard, Robert C; Bentley, Matthew G (2012): Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. Journal of Experimental Marine Biology and Ecology, 418-419, 30-36, https://doi.org/10.1016/j.jembe.2012.03.009
Fitzer, Susan C; Cusack, Maggie; Phoenix, Vernon R; Kamenos, N A (2014): Ocean acidification reduces the crystallographic control in juvenile mussel shells. Journal of Structural Biology, 188(1), 39-45, https://doi.org/10.1016/j.jsb.2014.08.007
Fitzer, Susan C; Phoenix, Vernon R; Cusack, Maggie; Kamenos, N A (2014): Ocean acidification impacts mussel control on biomineralisation. Scientific Reports, 4, 6218, https://doi.org/10.1038/srep06218
Form, Armin; Riebesell, Ulf (2011): Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Global Change Biology, 18(3), 843-853, https://doi.org/10.1111/j.1365-2486.2011.02583.x
Forsgren, Elisabet; Dupont, Sam; Jutfelt, Fredrik; Amundsen, Trond (2013): Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecology and Evolution, 3(11), 3637-3646, https://doi.org/10.1002/ece3.709
Franke, Andrea; Clemmesen, Catriona (2011): Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.). Biogeosciences, 8(12), 3697-3707, https://doi.org/10.5194/bg-8-3697-2011
Frieder, Christina A; Gonzalez, Jennifer P; Levin, Lisa A (2014): Uranium in Larval Shells as a barometer of Molluscan Ocean Acidification Exposure. Environmental Science & Technology, 48(11), 6401-6408, https://doi.org/10.1021/es500514j
Frommel, Andrea Y; Maneja, Rommel H; Lowe, David J; Malzahn, Arne; Geffen, Audrey J; Folkvord, Arild; Piatkowski, Uwe; Reusch, Thorsten B H; Clemmesen, Catriona (2012): Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nature Climate Change, 2, 42-46, https://doi.org/10.1038/nclimate1324
Frommel, Andrea Y; Schubert, Alexander; Piatkowski, Uwe; Clemmesen, Catriona (2013): Egg and early larval stages of Baltic cod, Gadus morhua, are robust to high levels of ocean acidification. Marine Biology, 160(8), 1825-1834, https://doi.org/10.1007/s00227-011-1876-3
Frommel, Andrea Y; Stiebens, V; Clemmesen, Catriona; Havenhand, Jonathan N (2010): Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua). Biogeosciences, 7(12), 3915-3919, https://doi.org/10.5194/bg-7-3915-2010
Gao, Kunshan; Ruan, Zuoxi; Villafañe, Virginia E; Gattuso, Jean-Pierre; Helbling, E Walter (2009): Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnology and Oceanography, 54(6), 1855-1862, https://doi.org/10.4319/lo.2009.54.6.1855
Gao, Kunshan; Xu, Juntian; Gao, Guang; Li, Yahe; Hutchins, David A; Huang, Bangqin; Wang, Lei; Zheng, Ying; Jin, Peng; Cai, Xiaoni; Häder, Donat-Peter; Li, Wei; Xu, Kai; Liu, Nana; Riebesell, Ulf (2012): Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nature Climate Change, 2, 519–523, https://doi.org/10.1038/nclimate1507
Gao, Kunshan; Zheng, Y (2010): Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Global Change Biology, 16(8), 2388-2398, https://doi.org/10.1111/j.1365-2486.2009.02113.x
Garcia, Nathan S; Fu, Feixue; Breene, Cynthia L; Yu, Elizabeth K; Bernhardt, Peter W; Mulholland, Margaret R; Hutchins, David A (2013): Combined effects of CO2 and light on large and small isolates of the unicellular N2-fixing cyanobacterium Crocosphaera watsonii from the western tropical Atlantic Ocean. European Journal of Phycology, 48(1), 128-139, https://doi.org/10.1080/09670262.2013.773383
Garcia, Nathan S; Fu, Feixue; Hutchins, David A (2013): Colimitation of the unicellular photosynthetic diazotroph Crocosphaera watsonii by phosphorus, light, and carbon dioxide. Limnology and Oceanography, 58(4), 1501–1512, https://doi.org/10.4319/lo.2013.58.4.1501
Gattuso, Jean-Pierre; Frankignoulle, Michel; Bourge, I; Romaine, S; Buddemeier, Robert W (1998): Effect of calcium carbonate saturation of seawater on coral calcification. Global and Planetary Change, 18, 37-46, https://doi.org/10.1016/S0921-8181(98)00035-6
Gattuso, Jean-Pierre; Payri, Claude E; Pichon, Michel; Delesalle, Bruno; Frankignoulle, Michel (1997): Primary production, calcification, and air-sea CO2 fluxes of a macroalgal-dominated coral reef community (Moorea, French Polynesia). Journal of Phycology, 33(5), 729-738, https://doi.org/10.1111/j.0022-3646.1997.00729.x
Gattuso, Jean-Pierre; Pichon, Michel; Delesalle, Bruno; Canon, C; Frankignoulle, Michel (1996): Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Marine Ecology Progress Series, 145, 109-121, https://doi.org/10.3354/meps145109
Gazeau, Frédéric; Gattuso, Jean-Pierre; Dawber, Caroline F; Pronker, A E; Peene, F; Peene, J; Heip, Carlo H R; Middelburg, Jack J (2010): Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences, 7(7), 2051-2060, https://doi.org/10.5194/bg-7-2051-2010
Gazeau, Frédéric; Gattuso, Jean-Pierre; Greaves, Mervyn; Elderfield, Henry; Peene, J; Heip, Carlo H R; Middelburg, Jack J (2011): Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas). PLoS ONE, 6(8), e23010, https://doi.org/10.1371/journal.pone.0023010
Gazeau, Frédéric; Quiblier, Christophe; Jansen, Jeroen M; Gattuso, Jean-Pierre; Middelburg, Jack J; Heip, Carlo H R (2007): Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters, 34, https://doi.org/10.1029/2006GL028554
Gazeau, Frédéric; Van Rijswijk, P; Pozzato, L; Middelburg, Jack J (2014): Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean. PLoS ONE, 9(4), e94068, https://doi.org/10.1371/journal.pone.0094068
Gibbin, Emma M; Davy, Simon K (2014): The photo-physiological response of a model cnidarian–dinoflagellate symbiosis to CO2-induced acidification at the cellular level. Journal of Experimental Marine Biology and Ecology, 457, 1-7, https://doi.org/10.1016/j.jembe.2014.03.015
Gibbin, Emma M; Putnam, H M; Davy, Simon K; Gates, Ruth D (2014): Intracellular pH and its response to CO2-driven seawater acidification in symbiotic versus non-symbiotic coral cells. Journal of Experimental Biology, 217(11), 1963-1969, https://doi.org/10.1242/jeb.099549
Glas, Martin S; Fabricius, Katharina Elisabeth; de Beer, Dirk; Uthicke, Sven; Gilbert, Jack Anthony (2012): The O2, pH and Ca2+ Microenvironment of Benthic Foraminifera in a High CO2 World. PLoS ONE, 7(11), e50010, https://doi.org/10.1371/journal.pone.0050010
Godinot, Claire; Houlbrèque, Fanny; Grover, Renaud; Ferrier-Pagès, Christine (2011): Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE, 6(9), e25024, https://doi.org/10.1371/journal.pone.0025024
Goffredo, Stefano; Prada, Fiorella; Caroselli, Erik; Capaccioni, B; Zaccanti, Francesco; Pasquini, Luca; Fantazzini, Paola; Fermani, Simona; Reggi, Michela; Levy, Oren; Fabricius, Katharina Elisabeth; Dubinsky, Zvy; Falini, Giuseppe (2014): Biomineralization control related to population density under ocean acidification. Nature Climate Change, 4(7), 593-597, https://doi.org/10.1038/nclimate2241
Goodwin, Claire; Rodolfo-Metalpa, Riccardo; Picton, Bernard; Hall-Spencer, Jason M (2014): Effects of ocean acidification on sponge communities. Marine Ecology, 35, 41-49, https://doi.org/10.1111/maec.12093
Green, Leon; Jutfelt, Fredrik (2014): Elevated carbon dioxide alters the plasma composition and behaviour of a shark. Biology Letters, 10(9), 20140538-20140538, https://doi.org/10.1098/rsbl.2014.0538
Grossart, Hans-Peter; Allgaier, Martin; Passow, Uta; Riebesell, Ulf (2006): Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplankton. Limnology and Oceanography, 51(1), 1-11, https://doi.org/10.4319/lo.2006.51.1.0001
Guan, WanChun; Gao, Kunshan (2010): Enhanced calcification ameliorates the negative effects of UV radiation on photosynthesis in the calcifying phytoplankter Emiliania huxleyi. Chinese Science Bulletin, 55(7), 588-593, https://doi.org/10.1007/s11434-010-0042-5
Gutow, Lars; Rahman, Mohammed Mofizur; Bartl, Kevin; Saborowski, Reinhard; Bartsch, Inka; Wiencke, Christian (2014): Ocean acidification affects growth but not nutritional quality of the seaweed Fucus vesiculosus (Phaeophyceae, Fucales). Journal of Experimental Marine Biology and Ecology, 453, 84-90, https://doi.org/10.1016/j.jembe.2014.01.005
Gutowska, Magdalena A; Melzner, Frank (2009): Abiotic conditions in cephalopod (Sepia officinalis) eggs: embryonic development at low pH and high pCO2. Marine Biology, 156(3), 515-519, https://doi.org/10.1007/s00227-008-1096-7
Gutowska, Magdalena A; Melzner, Frank; Langenbuch, M; Bock, C; Claireaux, Guy; Pörtner, Hans-Otto (2010): Acid–base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. Journal of Comparative Physiology B-Biochemical Systemic and Environmentalphysiology, 180(3), 323-335, https://doi.org/10.1007/s00360-009-0412-y
Gutowska, Magdalena A; Pörtner, Hans-Otto; Melzner, Frank (2008): Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2. Marine Ecology Progress Series, 373, 303-309, https://doi.org/10.3354/meps07782
Hahn, Sabine; Rodolfo-Metalpa, Riccardo; Griesshaber, Erika; Schmahl, Wolfgang W; Buhl, Dieter; Hall-Spencer, Jason M; Baggini, Cecilia; Fehr, Karl T; Immenhauser, Adrian (2012): Marine bivalve shell geochemistry and ultrastructure from modern low pH environments: environmental effect versus experimental bias. Biogeosciences, 9, 1897-1914, https://doi.org/10.5194/bg-9-1897-2012
Hamilton, Trevor James; Holcombe, Adam; Tresguerres, Martin (2013): CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning. Proceedings of the Royal Society B-Biological Sciences, 281(1775), 20132509, https://doi.org/10.1098/rspb.2013.2509
Hans, Stephanie; Fehsenfeld, Sandra; Treberg, Jason R; Weihrauch, Dirk (2014): Acid–base regulation in the Dungeness crab (Metacarcinus magister). Marine Biology, 161(5), 1179-1193, https://doi.org/10.1007/s00227-014-2409-7
Hansen, Per Juel; Lundholm, Nina; Rost, Björn (2007): Growth limitation in marine red-tide dinoflagellates: effects of pH versus inorganic carbon availability. Marine Ecology Progress Series, 334, 63-71, https://doi.org/10.3354/meps334063
Harms, Lars; Frickenhaus, Stephan; Schiffer, Melanie; Mark, Felix Christopher; Storch, Daniela; Held, Christoph; Pörtner, Hans-Otto; Lucassen, Magnus (2014): Gene expression profiling in gills of the great spider crab Hyas araneus in response to ocean acidification and warming. BMC Genomics, BMC Genomics, 15(1), 789, https://doi.org/10.1186/1471-2164-15-789
Hata, Hiroshi; Kudo, Setsuko; Yamano, Hiroya; Kurano, Norihide; Kayanne, Hajime (2002): Organic carbon flux in Shiraho coral reef (Ishigaki Island, Japan). Marine Ecology Progress Series, 232, 129-140, https://doi.org/10.3354/meps232129
Hauton, C; Tyrrell, Toby; Williams, J (2009): The subtle effects of sea water acidification on the amphipod Gammarus locusta. Biogeosciences, 6(8), 1479-1489, https://doi.org/10.5194/bg-6-1479-2009
Havenhand, Jonathan N; Schlegel, Peter (2009): Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences, 6(12), 3009-3015, https://doi.org/10.5194/bg-6-3009-2009
Haynert, Kristin; Schönfeld, Joachim (2014): Impact of changing carbonate chemistry, temperature, and salinity on growth and test degradation of the benthic foraminifer Ammonia aomoriensis. Journal of Foraminiferal Research, 44(2), 76-89, https://doi.org/10.2113/gsjfr.44.2.76
Haynert, Kristin; Schönfeld, Joachim; Polovodova Asteman, Irina; Thomsen, Jörn (2012): The benthic foraminiferal community in a naturally CO2-rich coastal habitat of the southwestern Baltic Sea. Biogeosciences, 9(11), 4421-4440, https://doi.org/10.5194/bg-9-4421-2012
Haynert, Kristin; Schönfeld, Joachim; Riebesell, Ulf; Polovodova Asteman, Irina (2011): Biometry and dissolution features of the benthic foraminifer Ammonia aomoriensis at high pCO2. Marine Ecology Progress Series, 432, 53-67, https://doi.org/10.3354/meps09138
Haynert, Kristin; Schönfeld, Joachim; Schiebel, Ralf; Wilson, Brent; Thomsen, Jörn (2014): Response of benthic foraminifera to ocean acidification in their natural sediment environment: a long-term culturing experiment. Biogeosciences, 11(6), 1581-1597, https://doi.org/10.5194/bg-11-1581-2014
Hazan, Yael; Wangensteen, Owen S; Fine, Maoz (2014): Tough as a rock-boring urchin: adult Echinometra sp. EE from the Red Sea show high resistance to ocean acidification over long-term exposures. Marine Biology, 161(11), 2531-2545, https://doi.org/10.1007/s00227-014-2525-4
Heinemann, Agnes; Fietzke, Jan; Melzner, Frank; Böhm, Florian; Thomsen, Jörn; Garbe-Schönberg, Dieter; Eisenhauer, Anton (2012): Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: Acid-base status, trace elements and d11B. Geochemistry, Geophysics, Geosystems, 13, Q01005, https://doi.org/10.1029/2011GC003790
Hendriks, Iris; Olsen, Ylva; Ramajo, L; Basso, L; Steckbauer, Alexandra; Moore, T S; Howard, J; Duarte, Carlos Manuel (2014): Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences, 11(2), 333-346, https://doi.org/10.5194/bg-11-333-2014
Hennige, Sebastian; Wicks, L C; Kamenos, N A; Bakker, Dorothee C E; Findlay, Helen S; Dumousseaud, Cynthia; Roberts, J Murray (2014): Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 99, 27-35, https://doi.org/10.1016/j.dsr2.2013.07.005
Hernroth, Bodil; Baden, Susanne; Thorndyke, Mike; Dupont, Sam (2011): Immune suppression of the echinoderm Asterias rubens (L.) following long-term ocean acidification. Aquatic Toxicology, 103(3-4), 222-224, https://doi.org/10.1016/j.aquatox.2011.03.001
Hiebenthal, Claas; Philipp, Eva E R; Eisenhauer, Anton; Wahl, Martin (2012): Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.). Marine Biology, 160(8), 2073-2087, https://doi.org/10.1007/s00227-012-2080-9
Hikami, Mana; Ushie, Hiroyuki; Irie, Takahiro; Fujita, Kazuhiko; Kuroyanagi, Azumi; Sakai, Kazuhiko; Nojiri, Yukihiro; Suzuki, Atsushi; Kawahata, Hodaka (2011): Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbionts. Geophysical Research Letters, 38, L19601, https://doi.org/10.1029/2011GL048501
Hildebrandt, Nicole; Niehoff, Barbara; Sartoris, Franz-Josef (2014): Long-term effects of elevated CO2 and temperature on the Arctic calanoid copepods Calanus glacialis and C. hyperboreus. Marine Pollution Bulletin, 80(1-2), 59-70, https://doi.org/10.1016/j.marpolbul.2014.01.050
Hofmann, Laurie C; Heiden, Jasmin; Bischof, Kai; Teichberg, Mirta (2013): Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia (L.) J.V. Lamouroux to low pH. Planta, 239(1), 231-242, https://doi.org/10.1007/s00425-013-1982-1
Hofmann, Laurie C; Straub, Susanne M; Bischof, Kai (2012): Competition between calcifying and noncalcifying temperate marine macroalgae under elevated CO2 levels. Marine Ecology Progress Series, 464, 89-105, https://doi.org/10.3354/meps09892
Hofmann, Laurie C; Straub, Susanne M; Bischof, Kai (2013): Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis. Journal of Experimental Botany, 64(4), 899-908, https://doi.org/10.1093/jxb/ers369
Hofmann, Laurie C; Yildiz, Gamse; Hanelt, D; Bischof, Kai (2011): Physiological responses of the calcifying rhodophyte, Corallina officinalis (L.), to future CO2 levels. Marine Biology, 159(4), 783-792, https://doi.org/10.1007/s00227-011-1854-9
Holcomb, Michael; Cohen, Anne L; McCorkle, Daniel C (2012): An investigation of the calcification response of the scleractinian coral Astrangia poculata to elevated pCO2 and the effects of nutrients, zooxanthellae and gender. Biogeosciences, 9(1), 29-39, https://doi.org/10.5194/bg-9-29-2012
Holcomb, Michael; McCorkle, Daniel C; Cohen, Anne L (2010): Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786). Journal of Experimental Marine Biology and Ecology, 386(1-2), 27-33, https://doi.org/10.1016/j.jembe.2010.02.007
Hoogstraten, Astrid; Peters, M; Timmermans, Klaas R; de Baar, Hein J W (2012): Combined effects of inorganic carbon and light on Phaeocystis globosa Scherffel (Prymnesiophyceae). Biogeosciences, 9(5), 1885-1896, https://doi.org/10.5194/bg-9-1885-2012
Hoogstraten, Astrid; Timmermans, Klaas R; de Baar, Hein J W (2012): Morphological and physiological effects in Proboscia alata (bacillariophyceae) grown under different light and Co2 conditions of the modern Southern Ocean. Journal of Phycology, 48(3), 559-568, https://doi.org/10.1111/j.1529-8817.2012.01148.x
Hopkins, Frances E; Kimmance, S A; Stephens, J A; Bellerby, Richard G J; Brussaard, Corina P D; Czerny, Jan; Schulz, Kai Georg; Archer, S D (2013): Response of halocarbons to ocean acidification in the Arctic. Biogeosciences, 10(4), 2331-2345, https://doi.org/10.5194/bg-10-2331-2013
Hopkinson, Brian A; Xu, Yan; Shi, Dalin; McGinn, Patrick J; Morel, Francois M M (2010): The effect of CO2 on the photosynthetic physiology of phytoplankton in the Gulf of Alaska. Limnology and Oceanography, 55(5), 2011-2024, https://doi.org/10.4319/lo.2010.55.5.2011
Hoppe, Clara Jule Marie; Hassler, Christel S; Payne, Christopher D; Tortell, Philippe Daniel; Rost, Björn; Trimborn, Scarlett (2013): Iron limitation modulates ocean acidification effects in Southern Ocean phytoplankton communities. PLoS ONE, 8(11), e79890, https://doi.org/10.1371/journal.pone.0079890
Hoppe, Clara Jule Marie; Langer, Gerald; Rost, Björn (2011): Emiliania huxleyi shows identical responses to elevated pCO2 in TA and DIC manipulations. Journal of Experimental Marine Biology and Ecology, 406(1-2), 54-62, https://doi.org/10.1016/j.jembe.2011.06.008
Horigome, Mariana Tatsumi; Ziveri, Patrizia; Grelaud, Michaël; Baumann, Karl-Heinz; Marino, Gianluca; Mortyn, P G (2014): Environmental controls on the Emiliania huxleyi calcite mass. Biogeosciences, 11(8), 2295-2308, https://doi.org/10.5194/bg-11-2295-2014
Horwitz, Rael; Borell, Esther M; Fine, Maoz; Shaked, Yeala (2014): Trace element profiles of the sea anemone Anemonia viridis living nearby a natural CO2 vent. PeerJ, 2, e538, https://doi.org/10.7717/peerj.538
Hu, Marian Y; Tseng, Yung-Che; Stumpp, Meike; Gutowska, Magdalena A; Kiko, Rainer; Lucassen, Magnus; Melzner, Frank (2011): Elevated seawater pCO2 differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis. American Journal of Physiology, 300(5), R1100-R1114, https://doi.org/10.1152/ajpregu.00653.2010
Hüning, Anne K; Melzner, Frank; Thomsen, Jörn; Gutowska, Magdalena A; Krämer, Lars; Frickenhaus, Stephan; Rosenstiel, Philip; Pörtner, Hans-Otto; Philipp, Eva E R; Lucassen, Magnus (2013): Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Marine Biology, 160(8), 1845-1861, https://doi.org/10.1007/s00227-012-1930-9
Ihnken, Sven; Roberts, Simon; Beardall, John (2011): Differential responses of growth and photosynthesis in the marine diatom Chaetoceros muelleri to CO2 and light availability. Phycologia, 50(2), 182-193, https://doi.org/10.2216/10-11.1
Inoue, Mayuri; Suwa, Ryota; Suzuki, Atsushi; Sakai, Kazuhiko; Kawahata, Hodaka (2011): Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps. Geophysical Research Letters, 38, L12809, https://doi.org/10.1029/2011GL047786
Inoue, Shihori; Kayanne, Hajime; Yamamoto, Shoji; Kurihara, Haruko (2013): Spatial community shift from hard to soft corals in acidified water. Nature Climate Change, 3(7), 683-687, https://doi.org/10.1038/nclimate1855
Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M (2014): Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum, 150(2), 321-338, https://doi.org/10.1111/ppl.12096
James, Rebecca K; Hepburn, Christopher D; Cornwall, Christopher Edward; McGraw, Christina M; Hurd, Catriona L (2014): Growth response of an early successional assemblage of coralline algae and benthic diatoms to ocean acidification. Marine Biology, 161(7), 1687-1696, https://doi.org/10.1007/s00227-014-2453-3
Jin, Peng; Gao, Kunshan; Villafañe, Virginia E; Campbell, Douglas A; Helbling, E Walter (2013): Ocean Acidification Alters the Photosynthetic Responses of a Coccolithophorid to Fluctuating Ultraviolet and Visible Radiation. Plant Physiology, 162(4), 2084-2094, https://doi.org/10.1104/pp.113.219543
Johnson, Maggie Dorothy; Carpenter, Robert C (2012): Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing. Journal of Experimental Marine Biology and Ecology, 434-435, 94-101, https://doi.org/10.1016/j.jembe.2012.08.005
Johnson, Maggie Dorothy; Moriarty, Vincent; Carpenter, Robert C (2014): Acclimatization of the Crustose Coralline Alga Porolithon onkodes to Variable pCO2. PLoS ONE, 9(2), e87678, https://doi.org/10.1371/journal.pone.0087678
Johnson, Maggie Dorothy; Price, Nichole N; Smith, Jennifer E (2014): Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. PeerJ, 2, e411, https://doi.org/10.7717/peerj.411
Johnson, Vivienne R; Brownlee, Colin; Rickaby, Rosalind E M; Graziano, M; Milazzo, Marco; Hall-Spencer, Jason M (2013): Responses of marine benthic microalgae to elevated CO2. Marine Biology, 160(8), 1813-1824, https://doi.org/10.1007/s00227-011-1840-2
Johnson, Vivienne R; Russell, Bayden D; Fabricius, Katharina Elisabeth; Brownlee, Colin; Hall-Spencer, Jason M (2012): Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Global Change Biology, 18(9), 2792-2803, https://doi.org/10.1111/j.1365-2486.2012.02716.x
Jokiel, Paul L; Jury, Christopher P; Rodgers, Ku'ulei (2014): Coral-algae metabolism and diurnal changes in the CO2-carbonate systemof bulk sea water. PeerJ, 2, e378, https://doi.org/10.7717/peerj.378
Jokiel, Paul L; Rodgers, Ku'ulei; Kuffner, Ilsa B; Andersson, Andreas J; Cox, E F; Mackenzie, Fred T (2008): Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs, 27(3), 473-483, https://doi.org/10.1007/s00338-008-0380-9
Jones, Bethan M; Iglesias-Rodriguez, Debora; Skipp, Paul J; Edwards, Richard J; Greaves, Mervyn; Young, Jeremy; Elderfield, Henry; O'Connor, C David (2013): Responses of the Emiliania huxleyi Proteome to Ocean Acidification. PLoS ONE, 8(4), e61868, https://doi.org/10.1371/journal.pone.0061868
Jury, Christopher P; Whitehead, Robert F; Szmant, A M (2010): Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Global Change Biology, 16(5), 1632-1644, https://doi.org/10.1111/j.1365-2486.2009.02057.x
Kamya, Pamela Z; Dworjanyn, Symon A; Hardy, Natasha; Mos, Benjamin; Uthicke, Sven; Byrne, Maria (2014): Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci| in a warmer-high CO2 ocean. Global Change Biology, 20(11), 3365-3376, https://doi.org/10.1111/gcb.12530
Kaniewska, Paulina; Campbell, Paul R; Kline, David I; Rodriguez-Lanetty, Mauricio; Miller, David J; Dove, Sophie; Hoegh-Guldberg, Ove (2012): Major Cellular and Physiological Impacts of Ocean Acidification on a Reef Building Coral. PLoS ONE, 7(4), e34659, https://doi.org/10.1371/journal.pone.0034659.s005
Kaplan, Maxwell B; Mooney, T Aran; McCorkle, Daniel C; Cohen, Anne L (2013): Adverse Effects of Ocean Acidification on Early Development of Squid (Doryteuthis pealeii). PLoS ONE, 8(5), e63714, https://doi.org/10.1371/journal.pone.0063714.t001
Karlberg, Maria; Wulff, Angela (2012): Impact of temperature and species interaction on filamentous cyanobacteria may be more important than salinity and increased pCO2 levels. Marine Biology, 160(8), 2063-2072, https://doi.org/10.1007/s00227-012-2078-3
Karuza, Ana; Celussi, Mauro; Cibic, Tamara; Del Negro, Paola; De Vittor, Cinzia (2012): Virioplankton and bacterioplankton in a shallow CO2-dominated hydrothermal vent (Panarea Island, Tyrrhenian Sea). Estuarine, Coastal and Shelf Science, 97, 10-18, https://doi.org/10.1016/j.ecss.2011.10.027
Kato, A; Hikami, Mana; Kumagai, Naoki H; Suzuki, Atsushi; Nojiri, Yukihiro; Sakai, Kazuhiko (2014): Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samples. Marine Environmental Research, 94, 1-6, https://doi.org/10.1016/j.marenvres.2013.10.010
Kawaguchi, So; Ishida, Akio; King, Rob; Raymond, Ben; Waller, N; Constable, A; Nicol, Steven; Wakita, M; Ishimatsu, Atsushi (2013): Risk maps for Antarctic krill under projected Southern Ocean acidification. Nature Climate Change, 3(9), 843-847, https://doi.org/10.1038/nclimate1937
Kayanne, Hajime; Hata, Hiroshi; Kudo, Setsuko; Yamano, Hiroya; Watanabe, Atsushi; Ikeda, Yutaka; Nozaki, Ken; Kato, Ken; Negishi, Akira; Saito, Hiroshi (2005): Seasonal and bleaching-induced changes in coral reef metabolism and CO2 flux. Global Biogeochemical Cycles, 19, GB3015, https://doi.org/10.1029/2004GB002400
Kerfahi, Dorsaf; Hall-Spencer, Jason M; Tripathi, Binu M; Milazzo, Marco; Lee, Junghoon; Adams, Jonathan M (2014): Shallow Water Marine Sediment Bacterial Community Shifts Along a Natural CO2 Gradient in the Mediterranean Sea Off Vulcano, Italy. Microbial Ecology, 67(4), 819-828, https://doi.org/10.1007/s00248-014-0368-7
Keul, Nina; Langer, Gerald; de Nooijer, Lennart Jan; Bijma, Jelle (2013): Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration. Biogeosciences, 10(10), 6185-6198, https://doi.org/10.5194/bg-10-6185-2013
Keul, Nina; Langer, Gerald; de Nooijer, Lennart Jan; Nehrke, Gernot; Reichart, Gert-Jan; Bijma, Jelle (2013): Incorporation of uranium in benthic foraminiferal calcite reflects seawater carbonate ion concentration. Geochemistry, Geophysics, Geosystems, 14(1), 102-111, https://doi.org/10.1029/2012GC004330
Kim, Hyewon; Spivack, Arthur J; Menden-Deuer, Susanne (2013): pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: Implications for bloom formation in an acidified ocean. Harmful Algae, 26, 1-11, https://doi.org/10.1016/j.hal.2013.03.004
Kim, Ja-Myung; Lee, Kitack; Shin, Kyoungsoon; Kang, Jung-Hoon; Lee, Hyun-Woo; Kim, Miok; Jang, Pung-Guk; Jang, Min-Chul (2006): The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. Limnology and Oceanography, 51(4), 1629-1636, https://doi.org/10.4319/lo.2006.51.4.1629
Kim, Ju Hyoung; Kim, Kwang Young; Kang, Eun Ju; Lee, Kitack; Kim, Ja-Myung; Park, K T; Shin, Kyoungsoon; Hyun, B; Jeong, Hae Jin (2013): Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean. Biogeosciences, 10(11), 7525-7535, https://doi.org/10.5194/bg-10-7525-2013
Kim, Keunyong; Kim, Kwang Young; Kim, Ju Hyoung; Kang, Eun Ju; Jeong, Hae Jin; Lee, Kitack (2013): Synergistic effects of elevated carbon dioxide and sodium hypochlorite on survival and impairment of three phytoplankton species. ALGAE, 28(2), 173-183, https://doi.org/10.4490/algae.2013.28.2.173
King, Andrew L; Sañudo-Wilhelmy, Sergio A; Leblanc, Karine; Hutchins, David A; Fu, Feixue (2011): CO2 and vitamin B12 interactions determine bioactive trace metal requirements of a subarctic Pacific diatom. The ISME Journal, 5(8), 1388-1396, https://doi.org/10.1038/ismej.2010.211
Kisakürek, B; Eisenhauer, Anton; Böhm, Florian; Hathorne, Ed C; Erez, Jonathan (2011): Controls on calcium isotope fractionation in cultured planktonic foraminifera, Globigerinoides ruber and Globigerinella siphonifera. Geochimica et Cosmochimica Acta, 75(2), 427-443, https://doi.org/10.1016/j.gca.2010.10.015
Kita, Jun; Kikkawa, Takashi; Asai, Takamasa; Ishimatsu, Atsushi (2013): Effects of elevated pCO2 on reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonica. Marine Pollution Bulletin, 73(2), 402-408, https://doi.org/10.1016/j.marpolbul.2013.06.026
Ko, W K Ginger; Chan, B S Vera; Dineshram, R; Choi, K S Dennis; Li, J Adela; Yu, Ziniu; Thiyagarajan, Vengatesen (2013): Larval and Post-Larval Stages of Pacific Oyster (Crassostrea gigas) Are Resistant to Elevated CO2. PLoS ONE, 8(5), e64147, https://doi.org/10.1371/journal.pone.0064147.t001
Ko, W K Ginger; Dineshram, R; Campanati, Camilla; Chan, B S Vera; Havenhand, Jonathan N; Thiyagarajan, Vengatesen (2014): Interactive Effects of Ocean Acidification, Elevated Temperature, and Reduced Salinity on Early-Life Stages of the Pacific Oyster. Environmental Science & Technology, 48(17), 10079-10088, https://doi.org/10.1021/es501611u
Kottmeier, Dorothee; Rokitta, Sebastian D; Tortell, Philippe Daniel; Rost, Björn (2014): Strong shift from HCO3- to CO2 uptake in Emiliania huxleyi with acidification: new approach unravels acclimation versus short-term pH effects. Photosynthesis Research, 121(2-3), 265-275, https://doi.org/10.1007/s11120-014-9984-9
Kranz, Sven A; Levitan, Orly; Richter, Klaus-Uwe; Prasil, O; Beran-Frank, Ilana; Rost, Björn (2010): Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: Physiological responses. Plant Physiology, 154, 334-345, https://doi.org/10.1104/pp.110.159145
Kranz, Sven A; Sültemeyer, Dieter; Richter, Klaus-Uwe; Rost, Björn (2009): Carbon acquisition by Trichodesmium: the effect of pCO2 and diurnal changes. Limnology and Oceanography, 54(2), 548-559, https://doi.org/10.4319/lo.2009.54.2.0548
Kranz, Sven A; Wolf-Gladrow, Dieter A; Nehrke, Gernot; Langer, Gerald; Rost, Björn (2010): Calcium carbonate precipitation induced by the growth of the marine cyanobacteria Trichodesmium. Limnology and Oceanography, 55(6), 2563-2569, https://doi.org/10.4319/lo.2010.55.6.2563
Krause, Evamaria; Wichels, Antje; Erler, Rene; Gerdts, Gunnar (2013): Study on the effects of near-future ocean acidification on marine yeasts: a microcosm approach. Helgoland Marine Research, 67(4), 607-621, https://doi.org/10.1007/s10152-013-0348-1
Krause, Evamaria; Wichels, Antje; Giménez, Luis; Gerdts, Gunnar (2013): Marine fungi may benefit from ocean acidification. Aquatic Microbial Ecology, 69(1), 59-67, https://doi.org/10.3354/ame01622
Kremp, Anke; Godhe, Anna; Egardt, Jenny; Dupont, Sam; Suikkanen, Sanna; Casabianca, Silvia; Penna, Antonella (2012): Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecology and Evolution, 2(6), 1195-1207, https://doi.org/10.1002/ece3.245
Krief, Shani; Hendy, Erica J; Fine, M; Yam, Ruth; Meibom, Anders; Foster, Gavin L; Shemesh, Aldo (2010): Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochimica et Cosmochimica Acta, 74, 4988–5001, https://doi.org/10.1016/j.gca.2010.05.023
Kroeker, Kristy J; Micheli, Florenza; Gambi, Maria Cristina; Martz, Todd R (2011): Divergent ecosystem responses within a benthic marine community to ocean acidification. Proceedings of the National Academy of Sciences of the United States of America, 108(35), 14515-14520, https://doi.org/10.1073/pnas.1107789108
Krug, Sebastian; Schulz, Kai Georg; Riebesell, Ulf (2011): Effects of changes in carbonate chemistry speciation on Coccolithus braarudii: a discussion of coccolithophorid sensitivities. Biogeosciences, 8(3), 771-777, https://doi.org/10.5194/bg-8-771-2011
Kuffner, Ilsa B; Andersson, Andreas J; Jokiel, Paul L; Rodgers, Ku'ulei; Mackenzie, Fred T (2007): Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience, 1(2), 114-117, https://doi.org/10.1038/ngeo100
Kurihara, Haruko; Kato, Shoji; Ishimatsu, Atsushi (2007): Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquatic Biology, 1(1), 91-98, https://doi.org/10.3354/ab00009
Kurihara, Haruko; Shirayama, Y (2004): Effects of increased atmospheric CO2 on sea urchin early development. Marine Ecology Progress Series, 274, 161-196, https://doi.org/10.3354/meps274161
Lacoue-Labarthe, Thomas; Martin, Sophie; Oberhänsli, F; Teyssié, Jean-Louis; Markich, S; Ross, J; Bustamante, Paco (2009): Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish,Sepia officinalis. Biogeosciences, 6(11), 2561-2673, https://doi.org/10.5194/bg-6-2561-2009
Lacoue-Labarthe, Thomas; Reveillac, E; Oberhänsli, F; Teyssié, Jean-Louis; Jeffree, Ross; Gattuso, Jean-Pierre (2011): Effects of ocean acidification on trace element accumulation in the early-life stages of squid Loligo vulgaris. Aquatic Toxicology, 105(1-2), 166-176, https://doi.org/10.1016/j.aquatox.2011.05.021
Langdon, Chris; Atkinson, M J (2005): Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. Journal of Geophysical Research: Oceans, 110, C09S07, https://doi.org/10.1029/2004JC002576
Langdon, Chris; Broecker, Wallace S; Hammond, Douglas E; Glenn, Edward; Fitzsimmons, Kevin; Nelson, Steven G; Peng, Tsung-Hung; Hajdas, Irka; Bonani, Georges (2003): Effect of elevated CO2 on the community metabolism of an experimental coral reef. Global Biogeochemical Cycles, 17(1), 1011, https://doi.org/10.1029/2002GB001941
Langdon, Chris; Takahashi, Taro; Sweeney, Colm; Chipman, D W; Goddard, J G; Marubini, Francesca; Aceves, Heather; Barnett, Heidi; Atkinson, M J (2000): Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochemical Cycles, 14(4), 639-354, https://doi.org/10.1029/1999GB001195
Langer, Gerald; Bode, Maya (2011): CO2 mediation of adverse effects of seawater acidification in Calcidiscus leptoporus. Geochemistry, Geophysics, Geosystems, 12(5), Q05001, https://doi.org/10.1029/2010GC003393
Langer, Gerald; Geisen, Markus; Baumann, Karl-Heinz; Kläs, Jessica; Riebesell, Ulf; Thoms, Silke; Young, Jeremy (2006): Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochemistry, Geophysics, Geosystems, 7, Q09006, https://doi.org/10.1029/2005GC001227
Langer, Gerald; Nehrke, Gernot; Probert, Ian; Ly, J; Ziveri, Patrizia (2009): Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences, 6(11), 2637-2646, https://doi.org/10.5194/bg-6-2637-2009
Langer, Gerald; Oetjen, Kerstin; Brenneis, Tina (2012): Calcification of Calcidiscus leptoporus under nitrogen and phosphorus limitation. Journal of Experimental Marine Biology and Ecology, 413, 131-137, https://doi.org/10.1016/j.jembe.2011.11.028
Langer, Gerald; Probert, Ian; Nehrke, Gernot; Ziveri, Patrizia (2011): The morphological response of Emiliania huxleyi to seawater carbonate chemistry changes: an inter-strain comparison. Journal of Nannoplankton Research, 32(1), 29-34, hdl:10013/epic.37875.d001
Lannig, Gisela; Eilers, Silke; Pörtner, Hans-Otto; Sokolova, Inna A; Bock, Christian (2010): Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas—Changes in metabolic pathways and thermal response. Marine Drugs, 8(8), 2318-2339, https://doi.org/10.3390/md8082318
Larsen, L B; Larsen, Aud; Thyrhaug, Runar; Bratbak, Gunnar; Sandaa, Ruth-Anne (2008): Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO2 levels. Biogeosciences, 5(2), 523-533, https://doi.org/10.5194/bg-5-523-2008
Laurent, Julien; Venn, Alexander A; Tambutté, Eric; Ganot, Philippe; Allemand, Denis; Tambutté, Sylvie (2014): Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis. FEBS Journal, 281(3), 683-695, https://doi.org/10.1111/febs.12614
Laverock, Bonnie; Kitidis, Vassilis; Tait, Karen; Gilbert, Jack Anthony; Osborn, A M; Widdicombe, Stephen (2013): Bioturbation determines the response of benthic ammonia-oxidizing microorganisms to ocean acidification. Philosophical Transactions of the Royal Society B-Biological Sciences, 368(1627), 20120441-20120441, https://doi.org/10.1098/rstb.2012.0441
LaVigne, M; Hill, Tessa M; Sanford, E; Gaylord, B; Russell, Ann D; Lenz, E A; Hosfelt, J D; Young, M K (2013): The elemental composition of purple sea urchin (Strongylocentrotus purpuratus) calcite and potential effects of pCO2 during early life stages. Biogeosciences, 10(6), 3465-3477, https://doi.org/10.5194/bg-10-3465-2013
Leclercq, Nicolas; Gattuso, Jean-Pierre; Jaubert, Jean (2000): CO2 partial pressure controls the calcification rate of a coral community. Global Change Biology, 6(3), 329-334, https://doi.org/10.1046/j.1365-2486.2000.00315.x
Leclercq, Nicolas; Gattuso, Jean-Pierre; Jaubert, Jean (2002): Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnology and Oceanography, 47(2), 558-564, https://doi.org/10.4319/lo.2002.47.2.0558
Lefebvre, Staphane C; Benner, Ina; Stillman, Jonathon H; Parker, Alexander E; Drake, Michelle K; Rossignol, Pascale E; Okimura, Kristine M; Komada, Tomoko; Capenter, Edward J (2012): Nitrogen source and pCO2 synergistically affect carbon allocation, growth and morphology of the coccolithophore Emiliania huxleyi: potential implications of ocean acidification for the carbon cycle. Global Change Biology, 18(2), 493-503, https://doi.org/10.1111/j.1365-2486.2011.02575.x
Leu, Eva; Daase, M; Schulz, Kai Georg; Stuhr, Annegret; Riebesell, Ulf (2013): Effect of ocean acidification on the fatty acid composition of a natural plankton community. Biogeosciences, 10(2), 1143-1153, https://doi.org/10.5194/bg-10-1143-2013
Levitan, Orly; Kranz, Sven A; Spungin, D; Prasil, O; Rost, Björn; Beran-Frank, Ilana (2010): Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: A mechanistic view. Plant Physiology, 154, 346-356, https://doi.org/10.1104/pp.110.159285
Lewis, Ceri N; Brown, Kristina A; Edwards, Laura A; Cooper, Glenn; Findlay, Helen S (2013): Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proceedings of the National Academy of Sciences, 110(51), E4960-E4967, https://doi.org/10.1073/pnas.1315162110
Li, Gang; Campbell, Douglas A (2013): Rising CO2 Interacts with Growth Light and Growth Rate to Alter Photosystem II Photoinactivation of the Coastal Diatom Thalassiosira pseudonana. PLoS ONE, 8(1), e55562, https://doi.org/10.1371/journal.pone.0055562.t001
Li, Jiaqi; Jiang, Zengjie; Zhang, Jihong; Mao, Yuze; Bian, Dapeng; Fang, Jianguang (2014): The potential of ocean acidification on suppressing larval development in the Pacific oyster Crassostrea gigas and blood cockle Arca inflata Reeve. Chinese Journal of Oceanology and Limnology, 32(6), 1307-1313, https://doi.org/10.1007/s00343-014-3317-x
Li, Jiaqi; Jiang, Zengjie; Zhang, Jihong; Qiu, Jian-Wen; Du, Meirong; Bian, Dapeng; Fang, Jianguang (2013): Detrimental effects of reduced seawater pH on the early development of the Pacific abalone. Marine Pollution Bulletin, 74(1), 320-324, https://doi.org/10.1016/j.marpolbul.2013.06.035
Li, Wei; Gao, Kunshan (2012): A marine secondary producer respires and feeds more in a high CO2 ocean. Marine Pollution Bulletin, 64(4), 699-703, https://doi.org/10.1016/j.marpolbul.2012.01.033
Li, Wei; Gao, Kunshan; Beardall, John (2012): Interactive Effects of Ocean Acidification and Nitrogen-Limitation on the Diatom Phaeodactylum tricornutum. PLoS ONE, 7(12), e51590, https://doi.org/10.1371/journal.pone.0051590
Li, Yahe; Gao, Kunshan; Villafañe, Virginia E; Helbling, E Walter (2012): Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutum. Biogeosciences, 9(10), 3931-3942, https://doi.org/10.5194/bg-9-3931-2012
Li, Yahe; Xu, Juntian; Gao, Kunshan (2014): Light-Modulated Responses of Growth and Photosynthetic Performance to Ocean Acidification in the Model Diatom Phaeodactylum tricornutum. PLoS ONE, 9(5), e96173, https://doi.org/10.1371/journal.pone.0096173
Lischka, Silke; Büdenbender, Jan; Boxhammer, Tim; Riebesell, Ulf (2011): Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences, 8(4), 919-932, https://doi.org/10.5194/bg-8-919-2011
Lischka, Silke; Riebesell, Ulf (2012): Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. Global Change Biology, 18(12), 3517-3528, https://doi.org/10.1111/gcb.12020
Liu, Yuting; Xu, Juntian; Gao, Kunshan (2012): CO2-driven seawater acidification increases photochemical stress in a green alga. Phycologia, 51(5), 562-566, https://doi.org/10.2216/11-65.1
Lohbeck, Kai T; Riebesell, Ulf; Collins, Sinéad; Reusch, Thorsten B H (2013): Functional genetic divergence in high CO2 adapted Emiliania Huxleyi populations. Evolution, 67(7), 1892-1900, https://doi.org/10.1111/j.1558-5646.2012.01812.x
Lohbeck, Kai T; Riebesell, Ulf; Reusch, Thorsten B H (2012): Adaptive evolution of a key phytoplankton species to ocean acidification. Nature Geoscience, 5(5), 346-351, https://doi.org/10.1038/ngeo1441
Lohbeck, Kai T; Riebesell, Ulf; Reusch, Thorsten B H (2014): Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification. Proceedings of the Royal Society B-Biological Sciences, 281(1786), 20140003-20140003, https://doi.org/10.1098/rspb.2014.0003
Lombard, Fabien; da Rocha, R E; Bijma, Jelle; Gattuso, Jean-Pierre (2010): Effect of carbonate ion concentration and irradiance on calcification in planktonic foraminifera. Biogeosciences, 7(1), 247-255, https://doi.org/10.5194/bg-7-247-2010
Lombardi, Chiara; Rodolfo-Metalpa, Riccardo; Cocito, Silvia; Gambi, Maria Cristina; Taylor, Paul D (2011): Structural and geochemical alterations in the Mg calcite bryozoan Myriapora truncata under elevated seawater pCO2 simulating ocean acidification. Marine Ecology-An Evolutionary Perspective, 32(2), 211-221, https://doi.org/10.1111/j.1439-0485.2010.00426.x
Løvdal, T; Eichner, Christiane; Grossart, Hans-Peter; Carbonnel, Vincent; Chou, Lei; Martin-Jézéquel, Véronique; Thingstad, Tron Frede (2008): Competition for inorganic and organic forms of nitrogen and phosphorous between phytoplankton and bacteria during an Emiliania huxleyi spring bloom. Biogeosciences, 5(2), 371-383, https://doi.org/10.5194/bg-5-371-2008
MacGilchrist, G A; Shi, T; Tyrrell, Toby; Richier, Sophie; Moore, C M; Dumousseaud, Cynthia; Achterberg, Eric Pieter (2014): Effect of enhanced pCO2 levels on the production of dissolved organic carbon and transparent exopolymer particles in short-term bioassay experiments. Biogeosciences, 11(13), 3695-3706, https://doi.org/10.5194/bg-11-3695-2014
Maier, Cornelia; Bils, F; Weinbauer, Markus G; Watremez, P; Peck, M A; Gattuso, Jean-Pierre (2013): Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century. Biogeosciences, 10(8), 5671-5680, https://doi.org/10.5194/bg-10-5671-2013
Maier, Cornelia; Hegeman, Jan; Weinbauer, Markus G; Gattuso, Jean-Pierre (2009): Calcification of the cold-water coral Lophelia pertusa under ambient and reduced pH. Biogeosciences, 6(8), 1671-1680, https://doi.org/10.5194/bg-6-1671-2009
Maier, Cornelia; Schubert, Alexander; Berzunza Sánchez, Maria M; Weinbauer, Markus G; Watremez, Pierre; Gattuso, Jean-Pierre (2013): End of the Century pCO2 Levels Do Not Impact Calcification in Mediterranean Cold-Water Corals. PLoS ONE, 8(4), e62655, https://doi.org/10.1371/journal.pone.0062655
Maier, Cornelia; Watremez, P; Taviani, Marco; Weinbauer, Markus G; Gattuso, Jean-Pierre (2012): Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proceedings of the Royal Society B-Biological Sciences, 279(1734), 1716-1723, https://doi.org/10.1098/rspb.2011.1763
Manno, Clara; Morata, Nathalie; Bellerby, Richard G J (2012): Effect of ocean acidification and temperature increase on the planktonic foraminifer Neogloboquadrina pachyderma (sinistral). Polar Biology, 35(9), 1311-1319, https://doi.org/10.1007/s00300-012-1174-7
Manno, Clara; Morata, Nathalie; Primicerio, Raul (2012): Limacina retroversa's response to combined effects of ocean acidification and sea water freshening. Estuarine, Coastal and Shelf Science, 113, 163-171, https://doi.org/10.1016/j.ecss.2012.07.019
Marchant, Hannah K; Calosi, Piero; Spicer, John I (2010): Short-term exposure to hypercapnia does not compromise feeding, acid–base balance or respiration of Patella vulgata but surprisingly is accompanied by radula damage. Journal of the Marine Biological Association of the United Kingdom, 90(7), 1379-1384, https://doi.org/10.1017/S0025315410000457
Martin, Sophie; Cohu, Stéphanie; Vignot, Céline; Zimmerman, Guillaume; Gattuso, Jean-Pierre (2013): One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecology and Evolution, 3(3), 676-693, https://doi.org/10.1002/ece3.475
Martin, Sophie; Richier, Sophie; Pedrotti, Maria Luiza; Dupont, Sam; Castejon, Charlotte; Gerakis, Yannis; Kerros, Marie-Emmanuelle; Oberhänsli, F; Teyssié, Jean-Louis; Jeffree, Ross; Gattuso, Jean-Pierre (2011): Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. Journal of Experimental Biology, 214(8), 1357-1368, https://doi.org/10.1242/jeb.051169
Martin, Sophie; Thouzeau, Gérard; Richard, M; Chauvaud, Laurent; Jean, Frédéric; Clavier, Jacques (2007): Benthic community respiration in areas impacted by the invasive mollusk Crepidula fornicata. Marine Ecology Progress Series, 347, 51-60, https://doi.org/10.3354/meps07000
Marubini, Francesca; Ferrier-Pagès, Christine; Cuif, Jean-Pierre (2003): Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proceedings of the Royal Society B-Biological Sciences, 270(1511), 179-184, https://doi.org/10.1098/rspb.2002.2212
Marubini, Francesca; Ferrier-Pagès, Christine; Furla, Paola; Allemand, Denis (2008): Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanism. Coral Reefs, 27(3), 491-499, https://doi.org/10.1007/s00338-008-0375-6
Maugendre, Laure; Gattuso, Jean-Pierre; Louis, Justine; de Kluijver, Anna; Marro, Sophie; Soetaert, Karline; Gazeau, Frédéric (2014): Effect of ocean warming and acidification on a plankton community in the NW Mediterranean Sea. ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsu161
McCarthy, Avery; Rogers, Susan P; Duffy, Stephen J; Campbell, Douglas A (2012): Elevated carbon dioxide differentially alters the photophysiology of Thalassiosira pseudonana (Bacillariophyceae) and Emiliania huxleyi (Haptophyta). Journal of Phycology, 48(3), 635-646, https://doi.org/10.1111/j.1529-8817.2012.01171.x
McClintock, James B; Angus, Robert A; Mcdonald, Michelle R; Amsler, Charles D; Catledge, Shane A; Vohra, Yogesh K (2009): Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification. Antarctic Science, 21(5), 449-456, https://doi.org/10.1017/S0954102009990198
McConville, Kristian; Halsband, Claudia; Fileman, Elaine S; Somerfield, Paul J; Findlay, Helen S; Spicer, John I (2013): Effects of elevated CO2 on the reproduction of two calanoid copepods. Marine Pollution Bulletin, 73(2), 428-434, https://doi.org/10.1016/j.marpolbul.2013.02.010
McMahon, Ashly; Santos, Isaac R; Cyronak, Tyler; Eyre, Bradley D (2013): Hysteresis between coral reef calcification and the seawater aragonite saturation state. Geophysical Research Letters, 40(17), 4675-4679, https://doi.org/10.1002/grl.50802
McMinn, Andrew; Müller, Marius N; Martin, Andrew; Ryan, Ken G (2014): The Response of Antarctic Sea Ice Algae to Changes in pH and CO2. PLoS ONE, 9(1), e86984, https://doi.org/10.1371/journal.pone.0086984
Melatunan, Sedercor; Calosi, Piero; Rundle, Simon; Moody, A John; Widdicombe, Stephen (2011): Exposure to elevated temperature and pCO2 reduces respiration rate and energy status in the periwinkle Littorina littorea. Physiological and Biochemical Zoology, 84(6), 583-594, https://doi.org/10.1086/662680
Melzner, Frank; Stange, Paul; Trübenbach, Katja; Thomsen, Jörn; Casties, Isabel; Panknin, Ulrike; Gorb, Stanislav N; Gutowska, Magdalena A (2011): Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE, 6(9), e24223, https://doi.org/10.1371/journal.pone.0024223
Michaelidis, Basile; Ouzounis, Christos; Paleras, Andreas; Pörtner, Hans-Otto (2005): Effects of long-term moderate hypercapnia on acid–base balance and growth rate in marine mussels Mytilus galloprovincialis. Marine Ecology Progress Series, 293, 109-118, https://doi.org/10.3354/meps293109
Milazzo, Marco; Rodolfo-Metalpa, Riccardo; Chan, B S Vera; Fine, Maoz; Alessi, Cinzia; Thiyagarajan, Vengatesen; Hall-Spencer, Jason M; Chemello, Renato (2014): Ocean acidification impairs vermetid reef recruitment. Scientific Reports, 4, https://doi.org/10.1038/srep04189
Miller, Garielle M; Kroon, F J; Metcalfe, Sarah; Munday, Philip L (2014): Temperature is the evil twin: Effects of increased temperature and ocean acidification on reproduction in a reef fish. Ecological Applications, 25, 603-620, https://doi.org/10.1890/14-0559.1
Miller, Garielle M; Watson, Sue-Ann; Donelson, Jennifer M; McCormick, Mark I; Munday, Philip L (2012): Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Climate Change, 2(12), 858-861, https://doi.org/10.1038/nclimate1599
Miller, Garielle M; Watson, Sue-Ann; McCormick, Mark I; Munday, Philip L (2013): Increased CO2 stimulates reproduction in a coral reef fish. Global Change Biology, 19(10), 3037-3045, https://doi.org/10.1111/gcb.12259
Milligan, Allen J; Varela, Diana E; Brzezinski, Mark A; Morel, Francois M M (2004): Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO2. Limnology and Oceanography, 49(2), 322-329, https://doi.org/10.4319/lo.2004.49.2.0322
Motegi, Chiaki; Tanaka, Tsuneo; Piontek, Judith; Brussaard, Corina P D; Gattuso, Jean-Pierre; Weinbauer, Markus G (2013): Effect of CO2 enrichment on bacterial metabolism in an Arctic fjord. Biogeosciences, 10(5), 3285-3296, https://doi.org/10.5194/bg-10-3285-2013
Moulin, Laure; Catarino, Ana Isabel; Claessens, Thomas; Dubois, Philippe (2011): Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Marine Pollution Bulletin, 62(1), 48-54, https://doi.org/10.1016/j.marpolbul.2010.09.012
Moulin, Laure; Grosjean, Philippe; Leblud, Julien; Batigny, Antoine; Dubois, Philippe (2014): Impact of elevated pCO2 on acid–base regulation of the sea urchin Echinometra mathaei and its relation to resistance to ocean acidification: A study in mesocosms. Journal of Experimental Marine Biology and Ecology, 457, 97-104, https://doi.org/10.1016/j.jembe.2014.04.007
Movilla, Juancho; Calvo, Eva; Pelejero, Carles; Coma, Rafel; Serrano, Eduard; Fernández-Vallejo, Pilar; Ribes, Marta (2012): Calcification reduction and recovery in native and non-native Mediterranean corals in response to ocean acidification. Journal of Experimental Marine Biology and Ecology, 438, 144-153, https://doi.org/10.1016/j.jembe.2012.09.014
Movilla, Juancho; Gori, Andrea; Calvo, Eva; Orejas, Covadonga; Lopez-Sanz, Angel; Domínguez-Carrió, Carlos; Grinyó, Jordi; Pelejero, Carles (2014): Resistance of Two Mediterranean Cold-Water Coral Species to Low-pH Conditions. Water, 6(1), 59-67, https://doi.org/10.3390/w6010059
Movilla, Juancho; Orejas, Covadonga; Calvo, Eva; Gori, Andrea; Lopez-Sanz, Angel; Grinyó, Jordi; Domínguez-Carrió, Carlos; Pelejero, Carles (2014): Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs, 33(3), 675-686, https://doi.org/10.1007/s00338-014-1159-9
Moya, Aurélie; Huisman, L; Ball, E E; Hayward, D C; Grasso, L C; Chua, C M; Woo, H N; Gattuso, Jean-Pierre; Forêt, S; Miller, David J (2012): Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Molecular Ecology, 21(10), 2440-2454, https://doi.org/10.1111/j.1365-294X.2012.05554.x
Müller, Marius N; Beaufort, Luc; Bernard, O; Pedrotti, Maria Luiza; Talec, A; Sciandra, Antoine (2012): Influence of CO2 and nitrogen limitation on the coccolith volume of Emiliania huxleyi (Haptophyta). Biogeosciences, 9(10), 4155-4167, https://doi.org/10.5194/bg-9-4155-2012
Müller, Marius N; Lebrato, Mario; Riebesell, Ulf; Barcelos e Ramos, Joana; Schulz, Kai Georg; Blanco-Ameijeiras, S; Sett, Scarlett; Eisenhauer, Anton; Stoll, Heather M (2014): Influence of temperature and CO2 on the strontium and magnesium composition of coccolithophore calcite. Biogeosciences, 11(4), 1065-1075, https://doi.org/10.5194/bg-11-1065-2014
Müller, Marius N; Schulz, Kai Georg; Riebesell, Ulf (2010): Effects of long-term high CO2 exposure on two species of coccolithophores. Biogeosciences, 7(3), 1109-1116, https://doi.org/10.5194/bg-7-1109-2010
Munday, Philip L; Crawley, Natalie E; Nilsson, Göran E (2009): Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishes. Marine Ecology Progress Series, 388, 235-242, https://doi.org/10.3354/meps08137
Munday, Philip L; Dixson, Danielle L; Donelson, Jennifer M; Jones, G P; Pratchett, M S; Devitsina, G V; Doving, K B (2009): Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1848-1852, https://doi.org/10.1073/pnas.0809996106
Munday, Philip L; Gagliano, Monica; Donelson, Jennifer M; Dixon, Danielle L; Thorrold, Simon R (2011): Ocean acidification does not affect the early life history development of a tropical marine fish. Marine Ecology Progress Series, 423, 211-221, https://doi.org/10.3354/meps08990
Munday, Philip L; Hernaman, V; Dixson, Danielle L; Thorrold, Simon R (2011): Effect of ocean acidification on otolith development in larvae of a tropical marine fish. Biogeosciences, 8(6), 1631-1641, https://doi.org/10.5194/bg-8-1631-2011
Munday, Philip L; McCormick, Mark I; Meekan, Mark; Dixson, Danielle L; Watson, Sue-Ann; Chivers, Douglas P; Ferrari, Maud C O (2012): Selective mortality associated with variation in CO2 tolerance in a marine fish. Ocean Acidification, 1, 1-5, https://doi.org/10.2478/oac-2012-0001
Munday, Philip L; Pratchett, M S; Dixson, Danielle L; Donelson, Jennifer M; Endo, Geoff G K; Reynolds, Adam D; Knuckey, Richard (2013): Elevated CO2 affects the behavior of an ecologically and economically important coral reef fish. Marine Biology, 160(8), 2137-2144, https://doi.org/10.1007/s00227-012-2111-6
Murray, Christopher S; Malvezzi, Alex; Gobler, Christopher J; Baumann, Hannes (2014): Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Marine Ecology Progress Series, 504, 1-11, https://doi.org/10.3354/meps10791
Nakamura, Masoko; Morita, Masaya; Kurihara, Haruko; Mitarai, Satoshi (2012): Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades. Biology Open, 1(2), 75-81, https://doi.org/10.1242/bio.2011036
Nakamura, Masoko; Ohki, Shun; Suzuki, Atsushi; Sakai, Kazuhiko (2011): Coral Larvae under Ocean Acidification: Survival, Metabolism, and Metamorphosis. PLoS ONE, 6(1), e14521, https://doi.org/10.1371/journal.pone.0014521
Nakamura, T; Nakamori, T (2009): Estimation of photosynthesis and calcification rates at a fringing reef by accounting for diurnal variations and the zonation of coral reef communities on reef flat and slope: a case study for the Shiraho reef, Ishigaki Island, southwest Japan. Coral Reefs, 28(1), 229-250, https://doi.org/10.1007/s00338-008-0454-8
Nash, Merinda C; Opdyke, Bradley N; Troitzsch, U; Russell, Bayden D; Adey, W H; Kato, A; Diaz-Pulido, Guillermo; Brent, C; Gardner, M; Prichard, J; Kline, David I (2012): Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nature Climate Change, 3(3), 268-272, https://doi.org/10.1038/nclimate1760
Navarro, Jorge M; Torres, Rodrigo; Acuña, Karin; Duarte, Cristian; Manríquez, Patricio H; Lardies, Marco A; Lagos, Nelson A; Vargas, Cristian A; Aguilera, Victor M (2013): Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere, 90(3), 1242-1248, https://doi.org/10.1016/j.chemosphere.2012.09.063
Niehoff, Barbara; Schmithüsen, Holger; Knüppel, Nadine; Daase, M; Czerny, Jan; Boxhammer, Tim (2013): Mesozooplankton community development at elevated CO2 concentrations: results from a mesocosm experiment in an Arctic fjord. Biogeosciences, 10(3), 1391-1406, https://doi.org/10.5194/bg-10-1391-2013
Nilsson, Göran E; Dixson, Danielle L; Domenici, Paolo; McCormick, Mark I; Sorensen, Christina; Watson, Sue-Ann; Munday, Philip L (2012): Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Climate Change, 2, 201-204, https://doi.org/10.1038/nclimate1352
Nisumaa, Anne-Marin; Pesant, Stephane; Bellerby, Richard G J; Delille, Bruno; Middelburg, Jack J; Orr, James C; Riebesell, Ulf; Tyrrell, Toby; Wolf-Gladrow, Dieter A; Gattuso, Jean-Pierre (2010): EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification. Earth System Science Data, 2(2), 167-175, https://doi.org/10.5194/essd-2-167-2010
Noisette, Fanny; Comtet, Thierry; Legrand, Erwann; Bordeyne, Francois; Davoult, Dominique; Martin, Sophie (2014): Does Encapsulation Protect Embryos from the Effects of Ocean Acidification? The Example of Crepidula fornicata. PLoS ONE, 9(3), e93021, https://doi.org/10.1371/journal.pone.0093021
Noisette, Fanny; Duong, Gwendoline; Six, Christophe; Davoult, Dominique; Martin, Sophie (2013): Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. Journal of Phycology, 49(4), 746-757, https://doi.org/10.1111/jpy.12085
Noisette, Fanny; Egilsdottir, Hronn; Davoult, Dominique; Martin, Sophie (2013): Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. Journal of Experimental Marine Biology and Ecology, 448, 179-187, https://doi.org/10.1016/j.jembe.2013.07.006
Nowicki, Jessica P; Miller, Garielle M; Munday, Philip L (2012): Interactive effects of elevated temperature and CO2 on foraging behavior of juvenile coral reef fish. Journal of Experimental Marine Biology and Ecology, 412, 46-51, https://doi.org/10.1016/j.jembe.2011.10.020
Ohde, Shigeru; Hossain, Mirza M Mozaffar (2004): Effect of CaCO3 (aragonite) saturation state of seawater on calcification of Porites coral. Geochemical Journal, 38(6), 613-621, https://doi.org/10.2343/geochemj.38.613
Okazaki, Remy; Swart, Peter K; Langdon, Chris (2013): Stress-tolerant corals of Florida Bay are vulnerable to ocean acidification. Coral Reefs, 32(3), 671-683, https://doi.org/10.1007/s00338-013-1015-3
Olischläger, Mark; Bartsch, Inka; Gutow, Lars; Wiencke, Christian (2012): Effects of ocean acidification on different life-cycle stages of the kelp Laminaria hyperborea (Phaeophyceae). Botanica Marina, 55(5), https://doi.org/10.1515/bot-2012-0163
Olischläger, Mark; Bartsch, Inka; Gutow, Lars; Wiencke, Christian (2013): Effects of ocean acidification on growth and physiology of Ulva lactuca (Chlorophyta) in a rockpool-scenario. Phycological Research, 61(3), 180-190, https://doi.org/10.1111/pre.12006
Olischläger, Mark; Wiencke, Christian (2013): Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta). Journal of Experimental Botany, 64(18), 5587-5597, https://doi.org/10.1093/jxb/ert329
Ordoñez, Alexandra; Doropoulos, Christopher; Diaz-Pulido, Guillermo (2014): Effects of ocean acidification on population dynamics and community structure of crustose coralline algae. Biological Bulletin, 226(3), 255-268, https://doi.org/10.1086/BBLv226n3p255
Padilla-Gamiño, Jacqueline L; Kelly, Morgan W; Evans, Tyler G; Hofmann, Gretchen E (2013): Temperature and CO2 additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus. Proceedings of the Royal Society B-Biological Sciences, 280(1759), 20130155-20130155, https://doi.org/10.1098/rspb.2013.0155
Pansch, Christian; Nasrolahi, Ali; Appelhans, Yasmin S; Wahl, Martin (2012): Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvisus. Journal of Experimental Marine Biology and Ecology, 420-421, 48-55, https://doi.org/10.1016/j.jembe.2012.03.023
Pansch, Christian; Nasrolahi, Ali; Appelhans, Yasmin S; Wahl, Martin (2012): Tolerance of juvenile barnacles (Amphibalanus improvisus) to warming and elevated pCO2. Marine Biology, 160(8), 2023-2035, https://doi.org/10.1007/s00227-012-2069-4
Pansch, Christian; Schaub, Matthias; Havenhand, Jonathan N; Wahl, Martin (2014): Habitat traits and food availability determine the response of marine invertebrates to ocean acidification. Global Change Biology, 20(3), 765-777, https://doi.org/10.1111/gcb.12478
Pansch, Christian; Schlegel, Peter; Havenhand, Jonathan N (2013): Larval development of the barnacle Amphibalanus improvisus responds variably but robustly to near-future ocean acidification. ICES Journal of Marine Science, 70(4), 805-811, https://doi.org/10.1093/icesjms/fst092
Park, K T; Lee, Kitack; Shin, Kyoungsoon; Yang, Eun Jin; Hyun, Bonggil; Kim, Ja-Myung; Noh, Jae Hoon; Kim, Miok; Kong, Bokyung; Choi, Dong Han; Choi, Su-Jin; Jang, Pung-Guk; Jeong, Hae Jin (2014): Direct Linkage between Dimethyl Sulfide Production and Microzooplankton Grazing, Resulting from Prey Composition Change under High Partial Pressure of Carbon Dioxide Conditions. Environmental Science & Technology, 48(9), 4750-4756, https://doi.org/10.1021/es403351h
Pascal, Pierre-Yves; Fleeger, J W; Galvez, Fernando; Carman, Kevin R (2010): The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods. Marine Pollution Bulletin, 60(12), 2201-2208, https://doi.org/10.1016/j.marpolbul.2010.08.018
Paulino, A I; Egge, Jorun K; Larsen, Aud (2008): Effects of increased atmospheric CO2 on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloom. Biogeosciences, 5(3), 739-748, https://doi.org/10.5194/bg-5-739-2008
Pettit, Laura Rachel; Hart, Malcom B; Medina-Sánchez, A N; Smart, Christopher W; Rodolfo-Metalpa, Riccardo; Hall-Spencer, Jason M; Prol-Ledesma, Rosa Maria (2013): Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico. Marine Pollution Bulletin, 73(2), 452-462, https://doi.org/10.1016/j.marpolbul.2013.02.011
Pimentel, Marta; Pegado, Maria; Repolho, Tiago; Rosa, Rui (2014): Impact of ocean acidification in the metabolism and swimming behavior of the dolphinfish (Coryphaena hippurus) early larvae. Marine Biology, 161(3), 725-729, https://doi.org/10.1007/s00227-013-2365-7
Piontek, Judith; Borchard, Corinna; Sperling, Martin; Schulz, Kai Georg; Riebesell, Ulf; Engel, Anja (2013): Response of bacterioplankton activity in an Arctic fjord system to elevated pCO2: results from a mesocosm perturbation study. Biogeosciences, 10(1), 297-314, https://doi.org/10.5194/bg-10-297-2013
Pistevos, Jennifer C A; Calosi, Piero; Widdicombe, Stephen; Bishop, John D D (2011): Will variation among genetic individuals influence species responses to global climate change? Oikos, 120(5), 675-689, https://doi.org/10.1111/j.1600-0706.2010.19470.x
Pope, E C; Ellis, Robert P; Scolamacchia, M; Scolding, J W S; Keay, A; Chingombe, P; Shields, R J; Wilcox, R; Speirs, Douglas C; Wilson, R W; Lewis, Ceri N; Flynn, Kevin J (2014): European sea bass, Dicentrarchus labrax, in a changing ocean. Biogeosciences, 11(9), 2519-2530, https://doi.org/10.5194/bg-11-2519-2014
Price, Nichole N; Hamilton, Scott L; Tootell, Jesse S; Smith, Jennifer E (2011): Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Marine Ecology Progress Series, 440, 67-78, https://doi.org/10.3354/meps09309
Raddatz, Jacek; Rüggeberg, Andres; Flögel, Sascha; Hathorne, Ed C; Liebetrau, Volker; Eisenhauer, Anton; Dullo, Wolf-Christian (2014): The influence of seawater pH on U / Ca ratios in the scleractinian cold-water coral Lophelia pertusa. Biogeosciences, 11(7), 1863-1871, https://doi.org/10.5194/bg-11-1863-2014
Ragazzola, Federica; Foster, Laura C; Form, Armin; Anderson, Phillip S L; Hansteen, Thor H; Fietzke, Jan (2012): Ocean acidification weakens the structural integrity of coralline algae. Global Change Biology, 18(9), 2804-2812, https://doi.org/10.1111/j.1365-2486.2012.02756.x
Ragazzola, Federica; Foster, Laura C; Form, Armin; Büscher, Janina; Hansteen, Thor H; Fietzke, Jan (2013): Phenotypic plasticity of coralline algae in a High CO2 world. Ecology and Evolution, 3, 3436-3446, https://doi.org/10.1002/ece3.723
Raitzsch, Markus; Dueñas-Bohórquez, Adriana; Reichart, Gert-Jan; de Nooijer, Lennart Jan; Bickert, Torsten (2010): Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated saturation state. Biogeosciences, 7(3), 869-881, https://doi.org/10.5194/bg-7-869-2010
Ramajo, L; Baltanás, Ángel; Torres, Rodrigo; Manríquez, Patricio H; Rodriguez-Navarro, Alejandro; Lagos, Nelson A (2013): Geographical variation in shell morphology of juvenile snails (Concholepas concholepas) along the physical–chemical gradient of the Chilean coast. Journal of the Marine Biological Association of the United Kingdom, 93(08), 2167-2176, https://doi.org/10.1017/S0025315413000891
Range, P; ChÌcharo, M A; Ben-Hamadou, R; Pilò, D; Matias, D; Joaquim, S; Oliveira, A P; ChÌcharo, L (2011): Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased pCO2 and reduced pH: Variable responses to ocean acidification at local scales? Journal of Experimental Marine Biology and Ecology, 396(2), 177-184, https://doi.org/10.1016/j.jembe.2010.10.020
Range, P; Martins, M; Cabral, S; Pilò, D; Ben-Hamadou, R; Teodósio, M A; Leitão, F; Drago, Teresa; Oliveira, A P; Matias, D; ChÌcharo, L (2014): Relative sensitivity of soft-bottom intertidal macrofauna to increased CO2 and experimental stress. Marine Ecology Progress Series, 509, 153-170, https://doi.org/10.3354/meps10861
Range, P; Pilò, D; Ben-Hamadou, R; ChÌcharo, M A; Matias, D; Joaquim, S; Oliveira, A P; ChÌcharo, L (2012): Seawater acidification by CO2 in a coastal lagoon environment: Effects on life history traits of juvenile mussels Mytilus galloprovincialis. Journal of Experimental Marine Biology and Ecology, 424-425, 89-98, https://doi.org/10.1016/j.jembe.2012.05.010
Ray, Jessica L; Töpper, Birte; An, Shu; Silyakova, Anna; Spindelböck, Joachim; Thyrhaug, Runar; DuBow, Michael S; Thingstad, Tron Frede; Sandaa, Ruth-Anne (2012): Effect of increased pCO2 on bacterial assemblage shifts in response to glucose addition in Fram Strait seawater mesocosms. FEMS Microbiology Ecology, 82(3), 713-723, https://doi.org/10.1111/j.1574-6941.2012.01443.x
Renegar, D Abigail; Riegl, Bernhard M (2005): Effect of nutrient enrichment and elevated CO2 partial pressure on growth rate of Atlantic scleractinian coral Acropora cervicornis. Marine Ecology Progress Series, 293, 69-76, https://doi.org/10.3354/meps293069
Reyes-Nivia, Catalina; Diaz-Pulido, Guillermo; Kline, David I; Hoegh-Guldberg, Ove; Dove, Sophie (2013): Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Global Change Biology, 19(6), 1919-1929, https://doi.org/10.1111/gcb.12158
Reymond, Claire E; Lloyd, Alicia; Kline, David I; Dove, Sophie; Pandolfi, John M (2013): Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Global Change Biology, 19(1), 291-302, https://doi.org/10.1111/gcb.12035
Reynaud, Stéphanie; Leclercq, Nicolas; Romaine-Lioud, Samantha; Ferrier-Pagès, Christine; Jaubert, Jean; Gattuso, Jean-Pierre (2003): Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biology, 9(11), 1660-1668, https://doi.org/10.1046/j.1365-2486.2003.00678.x
Richier, Sophie; Fiorini, Sarah; Kerros, Marie-Emmanuelle; von Dassow, Peter; Gattuso, Jean-Pierre (2011): Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO2: from physiology to molecular level. Marine Biology, 158(3), 551-560, https://doi.org/10.1007/s00227-010-1580-8
Rickaby, Rosalind E M; Henderiks, Jorijntje; Young, J N (2010): Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species. Climate of the Past, 6(6), 771-785, https://doi.org/10.5194/cp-6-771-2010
Riebesell, Ulf (2004): Effects of CO2 Enrichment on Marine Phytoplankton. Journal of Oceanography, 60(4), 719-729, https://doi.org/10.1007/s10872-004-5764-z
Riebesell, Ulf; Bellerby, Richard G J; Grossart, Hans-Peter; Thingstad, Tron Frede (2008): Mesocosm CO2 perturbation studies: from organism to community level. Biogeosciences, 5(4), 1157-1164, https://doi.org/10.5194/bg-5-1157-2008
Riebesell, Ulf; Czerny, Jan; von Bröckel, Klaus; Boxhammer, Tim; Büdenbender, Jan; Deckelnick, M; Fischer, Matthias; Hoffmann, Dietrich; Krug, Sebastian; Lentz, S J; Ludwig, Andrea; Muche, R; Schulz, Kai Georg (2013): Technical Note: A mobile sea-going mesocosm system – new opportunities for ocean change research. Biogeosciences, 10(3), 1835-1847, https://doi.org/10.5194/bg-10-1835-2013
Riebesell, Ulf; Revill, Andrew T; Holdsworth, Daniel G; Volkman, J K (2000): The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochimica et Cosmochimica Acta, 64(24), 4179-4192, https://doi.org/10.1016/S0016-7037(00)00474-9
Riebesell, Ulf; Zondervan, Ingrid; Rost, Björn; Tortell, Philippe Daniel; Zeebe, Richard E; Morel, Francois M M (2000): Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407, 364-367, https://doi.org/10.1038/35030078
Ries, Justin B (2011): A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochimica et Cosmochimica Acta, 75(14), 4053-4064, https://doi.org/10.1016/j.gca.2011.04.025
Ries, Justin B (2011): Skeletal mineralogy in a high-CO2 world. Journal of Experimental Marine Biology and Ecology, 403(1-2), 54-65, https://doi.org/10.1016/j.jembe.2011.04.006
Ries, Justin B; Cohen, Anne L; McCorkle, Daniel C (2009): Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology, 37(12), 1131-1134, https://doi.org/10.1130/G30210A.1
Ries, Justin B; Cohen, Anne L; McCorkle, Daniel C (2010): A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbuscula. Coral Reefs, 29(3), 661-674, https://doi.org/10.1007/s00338-010-0632-3
Rivest, Emily B; Hofmann, Gretchen E (2014): Responses of the Metabolism of the Larvae of Pocillopora damicornis to Ocean Acidification and Warming. PLoS ONE, 9(4), e96172, https://doi.org/10.1371/journal.pone.0096172
Rochelle-Newall, Emma; Delille, Bruno; Frankignoulle, Michel; Gattuso, Jean-Pierre; Jacquet, Stéphan; Riebesell, Ulf; Terbrüggen, Anja; Zondervan, Ingrid (2004): Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels. Marine Ecology Progress Series, 272, 25-31, https://doi.org/10.3354/meps272025
Rodolfo-Metalpa, Riccardo; Houlbrèque, Fanny; Tambutté, Eric; Boisson, Florence; Baggini, Cecilia; Patti, F P; Jeffree, Ross; Fine, M; Foggo, A; Gattuso, Jean-Pierre; Hall-Spencer, Jason M (2011): Coral and mollusc resistance to ocean acidification adversely affected by warming. Nature Climate Change, 1, 308-312, https://doi.org/10.1038/nclimate1200
Rodolfo-Metalpa, Riccardo; Lombardi, Chiara; Cocito, Silvia; Hall-Spencer, Jason M; Gambi, Christina (2010): Effects of ocean acidification and high temperatures on the bryozoanMyriapora truncata at natural CO2 vents, 2010. Marine Ecology, 31(3), 447-456, https://doi.org/10.1111/j.1439-0485.2009.00354.x
Rokitta, Sebastian D; John, Uwe; Rost, Björn (2012): Ocean Acidification Affects Redox-Balance and Ion-Homeostasis in the Life-Cycle Stages of Emiliania huxleyi. PLoS ONE, 7(12), e52212, https://doi.org/10.1371/journal.pone.0052212
Rokitta, Sebastian D; Rost, Björn (2012): Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyi. Limnology and Oceanography, 57(2), 607-618, https://doi.org/10.4319/lo.2012.57.2.0607
Roleda, Michael Y; Morris, Jaz N; McGraw, Christina M; Hurd, Catriona L (2011): Ocean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Global Change Biology, 18(3), 854-864, https://doi.org/10.1111/j.1365-2486.2011.02594.x
Rost, Björn; Zondervan, Ingrid; Riebesell, Ulf (2002): Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi. Limnology and Oceanography, 47(1), 120-128, https://doi.org/10.4319/lo.2002.47.1.0120
Roy, A S; Gibbons, S M; Schunck, Harald; Owens, S; Caporaso, J G; Sperling, Martin; Nissimov, J I; Romac, Sarah; Bittner, Lucie; Mühling, M; Riebesell, Ulf; LaRoche, Julie; Gilbert, Jack Anthony (2013): Ocean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosms. Biogeosciences, 10(1), 555-566, https://doi.org/10.5194/bg-10-555-2013
Russell, Ann D; Hönish, Bärbel; Spero, Howard J; Lea, David W (2004): Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochimica et Cosmochimica Acta, 68(21), 4347-4361, https://doi.org/10.1016/j.gca.2004.03.013
Russell, Bayden D; Thompson, Jo-Anne I; Falkenberg, Laura J; Connell, Sean D (2009): Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Global Change Biology, 15(9), 2153-2162, https://doi.org/10.1111/j.1365-2486.2009.01886.x
Saba, Grace K; Schofield, Oscar; Torres, Joseph J; Ombres, Erica H; Steinberg, Deborah K (2012): Increased Feeding and Nutrient Excretion of Adult Antarctic Krill, Euphausia superba, Exposed to Enhanced Carbon Dioxide (CO2). PLoS ONE, 7(12), e52224, https://doi.org/10.1371/journal.pone.0052224
Saderne, Vincent; Wahl, Martin (2013): Differential Responses of Calcifying and Non-Calcifying Epibionts of a Brown Macroalga to Present-Day and Future Upwelling pCO2. PLoS ONE, 8(7), e70455, https://doi.org/10.1371/journal.pone.0070455.t001
Sanders, Matthew Burton; Bean, Tim P; Hutchinson, Thomas H; Le Quesne, Will J F; Dupont, Sam (2013): Juvenile King Scallop, Pecten maximus, Is Potentially Tolerant to Low Levels of Ocean Acidification When Food Is Unrestricted. PLoS ONE, 8(9), e74118, https://doi.org/10.1371/journal.pone.0074118
Sarker, Mohammed Yusuf; Bartsch, Inka; Olischläger, Mark; Gutow, Lars; Wiencke, Christian (2013): Combined effects of CO2, temperature, irradiance and time on the physiological performance of Chondrus crispus (Rhodophyta). Botanica Marina, 56(1), 63-74, https://doi.org/10.1515/bot-2012-0143
Scanes, Elliot; Parker, Laura M; O'Connor, Wayne A; Ross, Pauline M (2014): Mixed Effects of Elevated pCO2 on Fertilisation, Larval and Juvenile Development and Adult Responses in the Mobile Subtidal Scallop Mimachlamys asperrima (Lamarck, 1819). PLoS ONE, 9(4), e93649, https://doi.org/10.1371/journal.pone.0093649
Schalkhausser, Burgel; Bock, Christian; Stemmer, Kristina; Brey, Thomas; Pörtner, Hans-Otto; Lannig, Gisela (2013): Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from Norway. Marine Biology, 160(8), 1995-2006, https://doi.org/10.1007/s00227-012-2057-8
Schaum, Elisa; Rost, Björn; Millar, Andrew J; Collins, Sinéad (2012): Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature Climate Change, 3(3), 298-302, https://doi.org/10.1038/nclimate1774
Schiffer, Melanie; Harms, Lars; Pörtner, Hans-Otto; Lucassen, Magnus; Mark, Felix Christopher; Storch, Daniela (2012): Tolerance of Hyas araneus zoea I larvae to elevated seawater PCO2 despite elevated metabolic costs. Marine Biology, 160(8), 1943-1953, https://doi.org/10.1007/s00227-012-2036-0
Schiffer, Melanie; Harms, Lars; Pörtner, Hans-Otto; Mark, Felix Christopher; Storch, Daniela (2014): Pre-hatching seawater pCO2 affects development and survival of zoea stages of Arctic spider crab Hyas araneus. Marine Ecology Progress Series, 501, 127-139, https://doi.org/10.3354/meps10687
Schlegel, Peter; Havenhand, Jonathan N; Gillings, Michael R; Williamson, Jane E (2012): Individual Variability in Reproductive Success Determines Winners and Losers under Ocean Acidification: A Case Study with Sea Urchins. PLoS ONE, 7(12), e53118, https://doi.org/10.1371/journal.pone.0053118.t005
Schlegel, Peter; Havenhand, Jonathan N; Obadia, Nicolas; Williamson, Jane E (2014): Sperm swimming in the polychaete Galeolaria caespitosa shows substantial inter-individual variability in response to future ocean acidification. Marine Pollution Bulletin, 78(1-2), 213-217, https://doi.org/10.1016/j.marpolbul.2013.10.040
Schlüter, Lothar; Lohbeck, Kai T; Gutowska, Magdalena A; Gröger, Joachim P; Riebesell, Ulf; Reusch, Thorsten B H (2014): Adaptation of a globally important coccolithophore to ocean warming and acidification. Nature Climate Change, https://doi.org/10.1038/NCLIMATE2379
Schneider, Kenneth; Erez, Jonathan (2006): The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnology and Oceanography, 51(3), 1284-1293, https://doi.org/10.4319/lo.2006.51.3.1284
Schoepf, Verena; Grottoli, Andréa G; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yujie; Matsui, Yohei; Baumann, Justin H (2013): Coral Energy Reserves and Calcification in a High-CO2 World at Two Temperatures. PLoS ONE, 8(10), e75049, https://doi.org/10.1371/journal.pone.0075049
Schram, Julie B; McClintock, James B; Angus, Robert A; Lawrence, John M (2011): Regenerative capacity and biochemical composition of the sea star Luidia clathrata (Say) (Echinodermata: Asteroidea) under conditions of near-future ocean acidification. Journal of Experimental Marine Biology and Ecology, 407(2), 266-274, https://doi.org/10.1016/j.jembe.2011.06.024
Schram, Julie B; Schoenrock, Kathryn M; McClintock, James B; Amsler, Charles D; Angus, Robert A (2014): Multiple stressor effects of near-future elevated seawater temperature and decreased pH on righting and escape behaviors of two common Antarctic gastropods. Journal of Experimental Marine Biology and Ecology, 457, 90-96, https://doi.org/10.1016/j.jembe.2014.04.005
Schulz, Kai Georg; Bellerby, Richard G J; Brussaard, Corina P D; Büdenbender, Jan; Czerny, Jan; Engel, Anja; Fischer, Matthias; Krug, Sebastian; Lischka, Silke; Koch-Klavsen, Stephanie; Ludwig, Andrea; Meyerhöfer, Michael; Nondal, G; Silyakova, Anna; Stuhr, Annegret; Riebesell, Ulf (2013): Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences, 10(1), 161-180, https://doi.org/10.5194/bg-10-161-2013
Schulz, Kai Georg; Riebesell, Ulf; Bellerby, Richard G J; Biswas, Haimanti; Meyerhöfer, Michael; Müller, Marius N; Egge, Jorun K; Nejstgaard, Jens Christian; Neill, Craig; Wohlers, J; Zöllner, Eckart (2008): Build-up and decline of organic matter during PeECE III. Biogeosciences, 5(3), 707-718, https://doi.org/10.5194/bg-5-707-2008
Sciandra, Antoine; Harlay, Jérôme; Lefèvre, Dominique; Lemee, R; Rimmelin, Peguy; Denis, Michel; Gattuso, Jean-Pierre (2003): Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation. Marine Ecology Progress Series, 261, 111-122, https://doi.org/10.3354/meps261111
Sett, Scarlett; Bach, Lennart Thomas; Schulz, Kai Georg; Koch-Klavsen, Signe; Lebrato, Mario; Riebesell, Ulf (2014): Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2. PLoS ONE, 9(2), e88308, https://doi.org/10.1371/journal.pone.0088308
Shamberger, K E F; Cohen, Anne L; Golbuu, Yimnang; McCorkle, Daniel C; Lentz, S J; Barkley, Hannah C (2014): Diverse coral communities in naturally acidified waters of a Western Pacific reef. Geophysical Research Letters, 41(2), 499-504, https://doi.org/10.1002/2013GL058489
Shamberger, K E F; Feely, Richard A; Sabine, Christopher L; Atkinson, M J; DeCarlo, E H; Mackenzie, Fred T; Drupp, P S; Butterfield, David A (2011): Calcification and organic production on a Hawaiian coral reef. Marine Chemistry, 127(1-4), 64-75, https://doi.org/10.1016/j.marchem.2011.08.003
Shi, Dalin; Kranz, Sven A; Kim, Ja-Myung; Morel, Francois M M (2012): Ocean acidification slows nitrogen fixation and growth in the dominant diazotroph Trichodesmium under low-iron conditions. Proceedings of the National Academy of Sciences, 109(45), E3094-E3100, https://doi.org/10.1073/pnas.1216012109
Sigwart, Julia D; Carey, Nicholas (2014): Grazing under experimental hypercapnia and elevated temperature does not affect the radula of a chiton (Mollusca, Polyplacophora, Lepidopleurida). Marine Environmental Research, 102, 73-77, https://doi.org/10.1016/j.marenvres.2014.05.004
Silverman, Jacob; Lazar, Boaz; Erez, Jonathan (2007): Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. Journal of Geophysical Research: Oceans, 112, C05004, https://doi.org/10.1029/2006JC003770
Silyakova, Anna; Bellerby, Richard G J; Schulz, Kai Georg; Czerny, Jan; Tanaka, Tsuneo; Nondal, G; Riebesell, Ulf; Engel, Anja; de Lange, Gert J; Ludvig, A (2013): Pelagic community production and carbon-nutrient stoichiometry under variable ocean acidification in an Arctic fjord. Biogeosciences, 10(7), 4847-4859, https://doi.org/10.5194/bg-10-4847-2013
Simpson, Stephen D; Munday, Philip L; Wittenrich, Matthew L; Manassa, Rachel; Dixon, Danielle L; Gagliano, Monica; Yan, Hong Y (2011): Ocean acidification erodes crucial auditory behaviour in a marine fish. Biology Letters, 7(6), 917-920, https://doi.org/10.1098/rsbl.2011.0293
Sinutok, Sutinee; Hill, R; Doblin, Martina A; Kühl, Michael; Ralph, Peter J (2012): Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs, 31(4), 1201-1213, https://doi.org/10.1007/s00338-012-0952-6
Sinutok, Sutinee; Hill, Ross; Doblin, Martina A; Wuhrer, Richard; Ralph, Peter J (2011): Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnology and Oceanography, 56(4), 1200-1212, https://doi.org/10.4319/lo.2011.56.4.1200
Small, Daniel; Calosi, Piero; White, Daniel; Spicer, John I; Widdicombe, Stephen (2010): Impact of medium-term exposure to CO2 enriched seawater on the physiological functions of the velvet swimming crab Necora puber. Aquatic Biology, 10(1), 11-21, https://doi.org/10.3354/ab00266
Smith, Helen Elizabeth Katie; Tyrrell, Toby; Charalampopoulou, Anastasia; Dumousseaud, Cynthia; Legge, Oliver J; Birchenough, Sarah; Pettit, Laura Rachel; Garley, Rebecca; Hartman, Sue E; Hartman, Mark C; Sagoo, Navjit; Daniels, Chris J; Achterberg, Eric Pieter; Hydes, D J (2012): Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of Biscay. Proceedings of the National Academy of Sciences, 109(23), 8845-8849, https://doi.org/10.1073/pnas.1117508109
Spady, Blake L; Watson, Sue-Ann; Chase, Tory J; Munday, Philip L (2014): Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus. Biology Open, 3(11), 1063-1070, https://doi.org/10.1242/bio.20149894
Sperfeld, Erik; Mangor‑Jensen, Anders; Dalpadado, Padmini (2014): Effect of increasing sea water pCO2 on the northern Atlantic krill species Nyctiphanes couchii. Marine Biology, 161(10), 2359-2370, https://doi.org/10.1007/s00227-014-2511-x
Spero, Howard J; Bijma, Jelle; Lea, David W; Bemis, E B (1997): Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390(6659), 497-500, https://doi.org/10.1038/37333
Spungin, D; Berman-Frank, I; Levitan, Orly (2014): Trichodesmium's strategies to alleviate phosphorus limitation in the future acidified oceans. Environmental Microbiology, 16(6), 1935-1947, https://doi.org/10.1111/1462-2920.12424
Stemmer, Kristina; Nehrke, Gernot; Brey, Thomas (2013): Elevated CO2 Levels do not Affect the Shell Structure of the Bivalve Arctica islandica from the Western Baltic. PLoS ONE, 8(7), e70106, https://doi.org/10.1371/journal.pone.0070106
Strobel, Anneli; Bennecke, Swaantje; Leo, Elettra; Mintenbeck, Katja; Pörtner, Hans-Otto; Mark, Felix Christopher (2012): Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2. Frontiers in Zoology, 9(1), 28, https://doi.org/10.1186/1742-9994-9-28
Strobel, Anneli; Leo, Elettra; Pörtner, Hans-Otto; Mark, Felix Christopher (2013): Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology, 166(1), 48-57, https://doi.org/10.1016/j.cbpb.2013.06.006
Stumpp, Meike; Dupont, Sam; Thorndyke, Mike; Melzner, Frank (2011): CO2 induced seawater acidification impacts sea urchin larval development II: Gene expression patterns in pluteus larvae. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 160(3), 320-330, https://doi.org/10.1016/j.cbpa.2011.06.023
Stumpp, Meike; Hu, Marian Y; Melzner, Frank; Gutowska, Magdalena A; Dorey, Narimane; Himmerkus, Nina; Holtmann, Wiebke C; Dupont, Sam; Thorndyke, Mike; Bleich, Markus (2012): Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification. Proceedings of the National Academy of Sciences, 109(44), 18192-18197, https://doi.org/10.1073/pnas.1209174109
Stumpp, Meike; Trübenbach, Katja; Brennecke, Dennis; Hu, Marian Y; Melzner, Frank (2012): Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aquatic Toxicology, 110-111, 194-207, https://doi.org/10.1016/j.aquatox.2011.12.020
Stumpp, Meike; Wren, J; Melzner, Frank; Thorndyke, Mike; Dupont, Sam (2011): CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 160(3), 331-340, https://doi.org/10.1016/j.cbpa.2011.06.022
Suffrian, K; Simonelli, P; Nejstgaard, Jens Christian; Putzeys, S; Carotenuto, Y; Antia, Avan N (2008): Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levels. Biogeosciences, 5(4), 1145-1156, https://doi.org/10.5194/bg-5-1145-2008
Suggett, David J; Dong, L F; Lawson, Tracy; Lawrenz, E; Torres, L; Smith, David J (2012): Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs, 32(2), 327-337, https://doi.org/10.1007/s00338-012-0996-7
Sugie, Koji; Yoshimura, T (2013): Effects of pCO2 and iron on the elemental composition and cell geometry of the marine diatom Pseudo-nitzschia pseudodelicatissima (Bacillariophyceae). Journal of Phycology, 49(3), 475-488, https://doi.org/10.1111/jpy.12054
Suwa, Ryota; Nakamura, Masoko; Morita, Masaya; Shimada, Kazuaki; Iguchi, Akira; Sakai, Kazuhiko; Suzuki, Atsushi (2009): Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora). Fisheries Science, 76(1), 93-99, https://doi.org/10.1007/s12562-009-0189-7
Suwa, Ryota; Nojiri, Yukihiro; Ono, Tsuneo; Shirayama, Y (2013): Effects of low pCO2 conditions on sea urchin larval size. Marine Ecology, 34(4), 443-450, https://doi.org/10.1111/maec.12044
Suzuki, A; Nakamori, T; Kayanne, Hajime (1995): The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sedimentary Geology, 99(3-4), 259-280, https://doi.org/10.1016/0037-0738(95)00048-D
Taddei, Dorothée; Bucas, G; Clavier, Jacques; Cuet, Pascale; Frouin, P (2007): Carbon fluxes at the water-sediment interface in Reunion Island fringing reef. Western Indian Ocean Journal of Marine Science, 6(2), 137-146, hdl:10013/epic.35511.d001
Tait, Karen; Laverock, Bonnie; Widdicombe, Stephen (2013): Response of an Arctic Sediment Nitrogen Cycling Community to Increased CO2. Estuaries and Coasts, 37(3), 724-735, https://doi.org/10.1007/s12237-013-9709-x
Talmage, Stephanie C; Gobler, Christopher J (2009): The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica). Limnology and Oceanography, 54(6), 2072-2080, https://doi.org/10.4319/lo.2009.54.6.2072
Talmage, Stephanie C; Gobler, Christopher J (2010): Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17246-17251, https://doi.org/10.1073/pnas.0913804107
Tanaka, Tsuneo; Alliouane, Samir; Bellerby, Richard G J; Czerny, Jan; de Kluijver, Anna; Riebesell, Ulf; Schulz, Kai Georg; Silyakova, Anna; Gattuso, Jean-Pierre (2013): Effect of increased pCO2 on the planktonic metabolic balance during a mesocosm experiment in an Arctic fjord. Biogeosciences, 10(1), 315-325, https://doi.org/10.5194/bg-10-315-2013
Tanaka, Tsuneo; Thingstad, Tron Frede; Løvdal, T; Grossart, Hans-Peter; Larsen, Aud; Allgaier, Martin; Meyerhöfer, Michael; Schulz, Kai Georg; Wohlers, J; Zöllner, Eckart; Riebesell, Ulf (2008): Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different pCO2 levels in a mesocosm study. Biogeosciences, 5(3), 669-678, https://doi.org/10.5194/bg-5-669-2008
Tanaka, Yasuaki; Iguchi, Akira; Nishida, Kozue; Inoue, Mayuri; Nakamura, Takashi; Suzuki, Atsushi; Sakai, Kazuhiko (2014): Nutrient availability affects the response of juvenile corals and the endosymbionts to ocean acidification. Limnology and Oceanography, 59(5), 1468-1476, https://doi.org/10.4319/lo.2014.59.5.1468
Tatters, Avery O; Fu, Feixue; Hutchins, David A (2012): High CO2 and Silicate Limitation Synergistically Increase the Toxicity of Pseudo-nitzschia fraudulenta. PLoS ONE, 7(2), e32116, https://doi.org/10.1371/journal.pone.0032116.g004
Tatters, Avery O; Roleda, Michael Y; Schnetzer, Astrid; Fu, Feixue; Hurd, Catriona L; Boyd, Philip W; Caron, David A; Lie, Alle Y A; Hoffmann, L J; Hutchins, David A (2013): Short- and long-term conditioning of a temperate marine diatom community to acidification and warming. Philosophical Transactions of the Royal Society B-Biological Sciences, 368(1627), 20120437-20120437, https://doi.org/10.1098/rstb.2012.0437
Tatters, Avery O; Schnetzer, Astrid; Fu, Feixue; Lie, Alle Y A; Caron, David A; Hutchins, David A (2013): Short- versus long-term responses to changing CO2 in a coastal dinoflagellate bloom: implications for interspecific competitive interactions and community structure. Evolution, 67(7), 1879-1891, https://doi.org/10.1111/evo.12029
Teira, Eva; Fernández, Ana; Alvarez-Salgado, Xose Anton; García-Martín, Enma Elena; Serret, Pablo; Sobrino, Cristina (2012): Response of two marine bacterial isolates to high CO2 concentration. Marine Ecology Progress Series, 453, 27-36, https://doi.org/10.3354/meps09644
Thiyagarajan, Vengatesen; Ko, W K Ginger (2012): Larval growth response of the Portuguese oyster (Crassostrea angulata) to multiple climate change stressors. Aquaculture, 370-371, 90-95, https://doi.org/10.1016/j.aquaculture.2012.09.025
Thomsen, Jörn; Casties, Isabel; Pansch, Christian; Körtzinger, Arne; Melzner, Frank (2013): Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Global Change Biology, 19(4), 1017-1027, https://doi.org/10.1111/gcb.12109
Thomsen, Jörn; Gutowska, Magdalena A; Saphörster, J; Heinemann, Agnes; Trübenbach, Katja; Fietzke, Jan; Hiebenthal, Claas; Eisenhauer, Anton; Körtzinger, Arne; Wahl, Martin; Melzner, Frank (2010): Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences, 7(11), 3879-3891, https://doi.org/10.5194/bg-7-3879-2010
Thomsen, Jörn; Melzner, Frank (2010): Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Marine Biology, 157(2), 2667-2676, https://doi.org/10.1007/s00227-010-1527-0
Timmins-Schiffman, Emma; Coffey, William D; Hua, Wilber; Nunn, Brook L; Dickinson, Gary H; Roberts, Steven B (2014): Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigas. PeerJ PrePrints, https://doi.org/10.7287/PEERJ.PREPRINTS.388V1
Timmins-Schiffman, Emma; O'Donnell, Michael J; Friedman, Carolyn S; Roberts, Steven B (2013): Elevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigas. Marine Biology, 160(8), 1973-1982, https://doi.org/10.1007/s00227-012-2055-x
Traganza, Eugene D (1967): Dynamics of the carbon dioxide system on the Great Bahama Bank. Bulletin of Marine Science, 17(2), 348-366, https://www.ingentaconnect.com/content/umrsmas/bullmar/1967/00000017/00000002/art00010
Tremblay, Pascale; Fine, M; Maguer, Jean-François; Grover, Renaud; Ferrier-Pagès, Christine (2013): Photosynthate translocation increases in response to low seawater pH in a coral–dinoflagellate symbiosis. Biogeosciences, 10(6), 3997-4007, https://doi.org/10.5194/bg-10-3997-2013
Tribollet, Aline; Godinot, Claire; Atkinson, M J; Langdon, Chris (2009): Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths. Global Biogeochemical Cycles, 23, GB3008, https://doi.org/10.1029/2008GB003286
Trimborn, Scarlett; Brenneis, Tina; Sweet, Elizabeth; Rost, Björn (2013): Sensitivity of Antarctic phytoplankton species to ocean acidification: Growth, carbon acquisition, and species interaction. Limnology and Oceanography, 58(3), 997-1007, https://doi.org/10.4319/lo.2013.58.3.0997
Trimborn, Scarlett; Thoms, Silke; Petrou, Katherina; Kranz, Sven A; Rost, Björn (2014): Photophysiological responses of Southern Ocean phytoplankton to changes in CO2 concentrations: Short-term versus acclimation effects. Journal of Experimental Marine Biology and Ecology, 451, 44-54, https://doi.org/10.1016/j.jembe.2013.11.001
Trimborn, Scarlett; Wolf-Gladrow, Dieter A; Richter, Klaus-Uwe; Rost, Björn (2009): The effect of pCO2 on carbon acquisition and intracellular assimilation in four marine diatoms. Journal of Experimental Marine Biology and Ecology, 376(1), 26-36, https://doi.org/10.1016/j.jembe.2009.05.017
Tunnicliffe, Verena; Davies, Kimberly T A; Butterfield, David A; Embley, Robert W; Rose, Jonathan M; Chadwick, William W Jr (2009): Survival of mussels in extremely acidic waters on a submarine volcano. Nature Geoscience, 2, 344-348, https://doi.org/10.1038/ngeo500
Tynan, Sarah; Opdyke, Bradley N (2011): Effects of lower surface ocean pH upon the stability of shallow water carbonate sediments. Science of the Total Environment, 409(6), 1082-1086, https://doi.org/10.1016/j.scitotenv.2010.12.007
Unger, Juliane; Endres, Sonja; Wannicke, Nicola; Engel, Anja; Voss, Maren; Nausch, Günther; Nausch, Monika (2013): Response of Nodularia spumigena to pCO2–Part 3: Turnover of phosphorus compounds. Biogeosciences, 10(3), 1483-1499, https://doi.org/10.5194/bg-10-1483-2013
Van de Waal, Dedmer B; Eberlein, Tim; John, Uwe; Wohlrab, Sylke; Rost, Björn (2014): Impact of elevated pCO2 on paralytic shellfish poisoning toxin content and composition in Alexandrium tamarense. Toxicon, 78, 58-67, https://doi.org/10.1016/j.toxicon.2013.11.011
Van de Waal, Dedmer B; John, Uwe; Ziveri, Patrizia; Reichart, Gert-Jan; Hoins, Mirja; Sluijs, Appy; Rost, Björn (2013): Ocean Acidification Reduces Growth and Calcification in a Marine Dinoflagellate. PLoS ONE, 8(6), e65987, https://doi.org/10.1371/journal.pone.0065987
Venn, Alexander A; Tambutté, Eric; Holcomb, Michael; Laurent, Julien; Allemand, Denis; Tambutté, Sylvie (2012): Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proceedings of the National Academy of Sciences, 110(5), 1634-1639, https://doi.org/10.1073/pnas.1216153110
Vihtakari, Mikko; Hendriks, Iris; Holding, Johnna; Renaud, Paul E; Duarte, Carlos Manuel; Havenhand, Jonathan N (2013): Effects of Ocean Acidification and Warming on Sperm Activity and Early Life Stages of the Mediterranean Mussel (Mytilus galloprovincialis). Water, 5(4), 1890-1915, https://doi.org/10.3390/w5041890
Vogt, Meike; Steinke, M; Turner, Suzanne M; Paulino, A I; Meyerhöfer, Michael; Riebesell, Ulf; Le Quéré, Corinne; Liss, Peter S (2008): Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experiment. Biogeosciences, 5(2), 407-419, https://doi.org/10.5194/bg-5-407-2008
Waldbusser, George G; Bergschneider, Heather; Green, Mark A (2010): Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp. Marine Ecology Progress Series, 417, 171-182, https://doi.org/10.3354/meps08809
Waldbusser, George G; Voigt, Erin P; Bergschneider, Heather; Green, Mark A; Newell, Roger I E (2011): Biocalcification in the Eastern Oyster (Crassostrea virginica) in Relation to Long-term Trends in Chesapeake Bay pH. Estuaries and Coasts, 34(2), 221-231, https://doi.org/10.1007/s12237-010-9307-0
Wall, Christopher B; Edmunds, Peter J (2013): In Situ Effects of Low pH and Elevated HCO3- on Juvenile Massive Porites spp. in Moorea, French Polynesia. Biological Bulletin, 225, 92–101, https://doi.org/10.1086/BBLv225n2p92
Wall, Christopher B; Fan, Tung-Yung; Edmunds, Peter J (2013): Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum. Coral Reefs, 33(1), 119-130, https://doi.org/10.1007/s00338-013-1085-2
Walther, Kathleen; Anger, Klaus; Pörtner, Hans-Otto (2010): Impact of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54° vs 79°N). Marine Ecology Progress Series, 417, 159-170, https://doi.org/10.3354/meps08807
Walther, Kathleen; Sartoris, Franz-Josef; Bock, C; Pörtner, Hans-Otto (2009): Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneus. Biogeosciences, 6(10), 2207-2215, https://doi.org/10.5194/bg-6-2207-2009
Walther, Kathleen; Sartoris, Franz-Josef; Pörtner, Hans-Otto (2011): Impacts of temperature and acidification on larval calcium incorporation of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Marine Biology, 158(9), 2043-2053, https://doi.org/10.1007/s00227-011-1711-x
Wangensteen, Owen S; Dupont, Sam; Casties, Isabel; Turon, Xavier; Palacín, Creu (2013): Some like it hot: Temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. Journal of Experimental Marine Biology and Ecology, 449, 304-311, https://doi.org/10.1016/j.jembe.2013.10.007
Wei, Lei; Wang, Qing; Wu, Huifeng; Ji, Chenglong; Zhao, Jianmin (2014): Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposure. Journal of Proteomics, 112, 83-94, https://doi.org/10.1016/j.jprot.2014.08.010
Widdicombe, Stephen; Beesley, A; Berge, J A; Dashfield, S L; McNeill, C L; Needham, H R; Øxnevad, S (2013): Impact of elevated levels of CO2 on animal mediated ecosystem function: The modification of sediment nutrient fluxes by burrowing urchins. Marine Pollution Bulletin, 73(2), 416-427, https://doi.org/10.1016/j.marpolbul.2012.11.008
Wijgerde, Tim; Silva, Catarina I F; Scherders, Vera; van Bleijswijk, Judith; Osinga, Ronald (2014): Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen. Biology Open, 3(6), 489-493, https://doi.org/10.1242/bio.20147922
Winans, Amanda K; Purcell, Jennifer E (2010): Effects of pH on asexual reproduction and statolith formation of the scyphozoan, Aurelia labiata. Hydrobiologia, 645, 39-52, https://doi.org/10.1007/s10750-010-0224-9
Wingenter, O W; Haase, Karsten M; Zeigler, M; Blake, DR; Rowland, F S; Sive, B C; Paulino, A I; Thyrhaug, Runar; Larsen, Aud; Schulz, Kai Georg; Meyerhöfer, Michael; Riebesell, Ulf (2007): Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: Potential climate impacts. Geophysical Research Letters, 34, L05710, https://doi.org/10.1029/2006GL028139
Wisshak, Max; Schönberg, Christine H L; Form, Armin; Freiwald, André (2012): Ocean acidification accelerates reef bioerosion. PLoS ONE, 7(9), e45124, https://doi.org/10.1371/journal.pone.0045124
Wisshak, Max; Schönberg, Christine H L; Form, Armin; Freiwald, André (2013): Effects of ocean acidification and global warming on reef bioerosion—lessons from a clionaid sponge. Aquatic Biology, 19(2), 111-127, https://doi.org/10.3354/ab00527
Wisshak, Max; Schönberg, Christine H L; Form, Armin; Freiwald, André (2014): Sponge bioerosion accelerated by ocean acidification across species and latitudes? Helgoland Marine Research, 68(2), 253-262, https://doi.org/10.1007/s10152-014-0385-4
Witt, Verena; Wild, Christian; Anthony, Kenneth R N; Diaz-Pulido, Guillermo; Uthicke, Sven (2011): Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier Reef. Environmental Microbiology, 13(11), 2976-2989, https://doi.org/10.1111/j.1462-2920.2011.02571.x
Wong, Kevin K W; Lane, Ackley Charles; Leung, Priscilla TY; Thlyagarajan, V (2011): Response of larval barnacle proteome to CO2-driven seawater acidification. Comparative Biochemistry and Physiology Part D: Genomics & Proteomics, 6(3), 310-321, https://doi.org/10.1016/j.cbd.2011.07.001
Wood, Hannah; Widdicombe, Stephen; Spicer, John I (2009): The influence of hypercapnia and the infaunal brittlestar Amphiura filiformis on sediment nutrient flux – will ocean acidification affect nutrient exchange? Biogeosciences, 6(10), 2015-2024, https://doi.org/10.5194/bg-6-2015-2009
Wright, John M; Parker, Laura M; O'Connor, Wayne A; Williams, Mark; Kube, Peter; Ross, Pauline M (2014): Populations of pacific oysters Crassostrea gigas respond variably to rlevated CO2 and predation by Morula marginalba. Biological Bulletin, 226, 269-281, https://doi.org/10.1086/BBLv226n3p269
Wu, Xiaojuan; Gao, Guang; Giordano, Mario; Gao, Kunshan (2012): Growth and photosynthesis of a diatom grown under elevated CO2 in the presence of solar UV radiation. Fundamental and Applied Limnology, 180(4), 279-290, https://doi.org/10.1127/1863-9135/2012/0299
Wu, YaPing; Gao, Kunshan (2010): Combined effects of solar UV radiation and CO2-induced seawater acidification on photosynthetic carbon fixation of phytoplankton assemblages in the South China Sea. Chinese Science Bulletin, 55(32), 3680-3686, https://doi.org/10.1007/s11434-010-4119-y
Wu, YaPing; Gao, Kunshan; Riebesell, Ulf (2010): CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences, 7(9), 2915-2923, https://doi.org/10.5194/bg-7-2915-2010
Xu, Juntian; Gao, Kunshan (2012): Future CO2-Induced Ocean Acidification Mediates the Physiological Performance of a Green Tide Alga. Plant Physiology, 160(4), 1762-1769, https://doi.org/10.1104/pp.112.206961
Xu, Kai; Fu, Feixue; Hutchins, David A (2014): Comparative responses of two dominant Antarctic phytoplankton taxa to interactions between ocean acidification, warming, irradiance, and iron availability. Limnology and Oceanography, 59(6), 1919-1931, https://doi.org/10.4319/lo.2014.59.6.1919
Xu, Kai; Gao, Kunshan (2012): Reduced Calcification Decreases Photoprotective Capability in the Coccolithophorid Emiliania huxleyi. Plant and Cell Physiology, 53(7), 1267-1274, https://doi.org/10.1093/pcp/pcs066
Xu, Kai; Gao, Kunshan; Villafañe, Virginia E; Heibling, E W (2011): Photosynthetic responses of Emiliania huxleyi to UV radiation and elevated temperature: roles of calcified coccoliths. Biogeosciences, 8(6), 1441-1452, https://doi.org/10.5194/bg-8-1441-2011
Yamamoto, Shoji; Kayanne, Hajime; Terai, Makoto; Watanabe, Atsushi; Kato, Ken; Negishi, Akira; Nozaki, Ken (2012): Threshold of carbonate saturation state determined by CO2 control experiment. Biogeosciences, 9(4), 1441-1450, https://doi.org/10.5194/bg-9-1441-2012
Yang, Gui yuan; Gao, Kunshan (2012): Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity. Marine Environmental Research, 79, 142-151, https://doi.org/10.1016/j.marenvres.2012.06.002
Yates, Kimberly Kaye; Halley, Roberet B (2006): CO3**2- concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosciences, 3, 357-369, https://doi.org/10.5194/bg-3-357-2006
Zervoudaki, Soultana; Frangoulis, Constantin; Giannoudi, Louisa; Krasakopoulou, Evangelia (2014): Effects of low pH and raised temperature on egg production, hatching and metabolic rates of a Mediterranean copepod species (Acartia clausi) under oligotrophic conditions. Mediterranean Marine Science, 15, 74-83, https://doi.org/10.12681/mms.553
Zhang, Haoyu; Cheung, S G; Shin, Paul K S (2014): The larvae of congeneric gastropods showed differential responses to the combined effects of ocean acidification, temperature and salinity. Marine Pollution Bulletin, 79(1-2), 39-46, https://doi.org/10.1016/j.marpolbul.2014.01.008
Zittier, Zora M C; Hirse, Timo; Pörtner, Hans-Otto (2013): The synergistic effects of increasing temperature and CO2 levels on activity capacity and acid–base balance in the spider crab, Hyas araneus. Marine Biology, 160(8), 2049-2062, https://doi.org/10.1007/s00227-012-2073-8
Ziveri, Patrizia; Passaro, Marcello; Incarbona, Alessandro; Milazzo, Marco; Rodolfo-Metalpa, Riccardo; Hall-Spencer, Jason M (2014): Decline in Coccolithophore Diversity and Impact on Coccolith Morphogenesis Along a Natural CO2 Gradient. Biological Bulletin, 226(3), 282-290, https://doi.org/10.1086/BBLv226n3p282
Zondervan, Ingrid; Rost, Björn; Riebesell, Ulf (2002): Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. Journal of Experimental Marine Biology and Ecology, 272(1), 55-70, https://doi.org/10.1016/S0022-0981(02)00037-0
Zondervan, Ingrid; Zeebe, Richard E; Rost, Björn; Riebesell, Ulf (2001): Decreasing Marine Biogenic Calcification: A Negative Feedback on Rising Atmospheric pCO2. Global Biogeochemical Cycles, 15(2), 507-516, https://doi.org/10.1029/2000GB001321
Source:
Source datasets of Yang et al. 2016 (A link to all 581 source datasets used in this study)
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
Persistent IdentifierPersistent IdentifierOcean Acidification International Coordination CentrePANGAEA doi of data supplement
Persistent IdentifierPersistent IdentifierOcean Acidification International Coordination Centreof article
TitleTitleOcean Acidification International Coordination Centreof article
CountryCountryOcean Acidification International Coordination CentreCountry/Region
Geographic name/localityLocalityOcean Acidification International Coordination Centre
Taxon/taxaTaxaOcean Acidification International Coordination Centre
Biological processBio procOcean Acidification International Coordination Centre
Experimental treatmentExp treatOcean Acidification International Coordination Centre
Numbern#Ocean Acidification International Coordination Centredata points
Size:
4644 data points

Data

Download dataset as tab-delimited text — use the following character encoding:


Persistent Identifier
(PANGAEA doi of data supplement)

Persistent Identifier
(of article)

Title
(of article)

Country
(Country/Region)

Locality

Taxa

Bio proc

Exp treat

n [#]
(data points)
doi:10.1594/PANGAEA.835319doi:10.1016/j.crvi.2013.07.003The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularisJapanCoralsphotosynthesis; physiology; respirationtemperature; carbon chemistry9400
doi:10.1594/PANGAEA.726961doi:10.1007/s00338-008-0392-5Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvaeUSANorth AtlanticCoralsgrowth; mortality; reproductioncarbon chemistry120
doi:10.1594/PANGAEA.831352doi:10.1002/ece3.333Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltiiPortugalNorth Atlanticphanerogamsgrowth; photosynthesis; physiology; otherprocesscarbon chemistry1766
doi:10.1594/PANGAEA.835712doi:10.1098/rspb.2013.2179Parental effects improve escape performance of juvenile reef fish in a high-CO2 worldAustraliaSouth PacificFishperformance; otherprocess; adaptation;carbon chemistry153
doi:10.1594/PANGAEA.830803doi:10.1371/journal.pone.0058520Elevated CO2 affects predator-prey interactions through altered performanceAustraliaSouth PacificFishperformancecarbon chemistry200
doi:10.1594/PANGAEA.770067doi:10.1016/j.epsl.2011.07.010Controls on boron incorporation in cultured tests of the planktic foraminifer Orbulina universaUSANorth Pacificprotistscalcificationcarbon chemistry430
doi:10.1594/PANGAEA.726955doi:10.5194/bg-5-1007-2008Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm studyGermanyAtlanticphytoplankton; prokaryotesgrowthcarbon chemistry11007
doi:10.1594/PANGAEA.830714doi:10.1073/pnas.1303797110Consumers mediate the effects of experimental ocean acidification and warming on primary producersSwedenNorth Atlanticprotists; algae; Brcommunitymorphology; primary productiontemperature; carbon chemistry1520
doi:10.1594/PANGAEA.833950doi:10.5194/bg-10-6161-2013Effect of increased CO2 level on early shell development in great scallop (Pecten maximus Lamarck) larvaeNorwayNorth AtlanticMolluskmorphology; reproduction; mortalitycarbon chemistry200
doi:10.1594/PANGAEA.727545doi:10.5194/bg-6-1811-2009Net loss of CaCO3 from a subtropical calcifying community due to seawater acidification: mesocosm-scale experimental evidenceUKNorth Pacificcorals; BRcommunitycalcification; dissolutioncarbon chemistry1086
doi:10.1594/PANGAEA.727540doi:10.3354/meps07639Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold water marine calcifiersUKcarbon chemistry9696
doi:10.1594/PANGAEA.761769doi:10.1016/j.jembe.2010.11.009A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicativePanamaNorth PacificCoralsreproduction; otherprocess; mortalitytemperature; carbon chemistry1881
doi:10.1594/PANGAEA.727744doi:10.1073/pnas.0804478105Ocean acidification causes bleaching and productivity loss in coral reef buildersAustraliaSouth Pacificalgae; corals; protistscalcification; primary production; respiration; otherprocesstemperature; carbon chemistry162
doi:10.1594/PANGAEA.726955doi:10.5194/bgd-5-1-2008Dissolution of coccolithophorid calcite by microzooplankton and copepod grazingGermanyNorth AtlanticPhytoplanktoncalcification; dissolutioncarbon chemistry11007
doi:10.1594/PANGAEA.833844doi:10.1016/j.marenvres.2014.05.008Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic ventGreeceMediterraneanphanerogamsabundance;otherprocess;photosynthesis; physiology; primary production; respirationcarbon chemistry300
doi:10.1594/PANGAEA.836847doi:10.3354/meps10884Juvenile sea stars exposed to acidification decrease feeding and growth with no acclimation potentialGermanyBalticEchinodermmorphology; physiology; mortality; performance; respiration; adaptation; otherprocesscarbon chemistry4215
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-1893-2013Contrasting responses of DMS and DMSP to ocean acidification in Arctic watersUKArcticBrcommunityotherprocess; community compositioncarbon chemistry35695
doi:10.1594/PANGAEA.829532doi:10.1371/journal.pone.0035107Ocean acidification and the loss of phenolic substances in marine plantsUSAMediterranean; North Atlanticphanerogamsperformance;carbon chemistry497
doi:10.1594/PANGAEA.778190doi:10.3354/ame01522Dynamics of extracellular enzyme activities in seawater under changed atmospheric pCO2: a mesocosm investigationUSANorth Atlanticprokaryotes; phytoplanktonotherprocess; community compositioncarbon chemistry664
doi:10.1594/PANGAEA.830737doi:10.1371/journal.pone.0061978Cascading effects of ocean acidification in a rocky subtidal communityItalyMediterraneanalgae; echinodermsmorphology; otherprocess; community composition;carbon chemistry3120
doi:10.1594/PANGAEA.833328doi:10.1016/j.marenvres.2013.08.005Effects of ocean acidification and diet on thickness and carbonate elemental composition of the test of juvenile sea urchinsItalyEchinodermmorphology; physiologynutrients; carbon chemistry3312
doi:10.1594/PANGAEA.830627doi:10.1111/nph.12225Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyiGermanyPhytoplanktonphotosynthesis; calcification; growthcarbon chemistry1165
doi:10.1594/PANGAEA.771288doi:10.4319/lo.2011.56.6.2040Distinguishing between the effects of ocean acidification and ocean carbonation in the coccolithophore Emiliania huxleyiGermanyPhytoplanktongrowth; primary production; calcification; morphologycarbon chemistry1396
doi:10.1594/PANGAEA.837970doi:10.1371/journal.pone.0106520Seasonality affects macroalgal community response to increases in pCO2UKMediterraneanalgae; BRcommunitycommunity composition; abundance; otherprocesscarbon chemistry36435
doi:10.1594/PANGAEA.716818doi:10.1029/2006GB002898Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer TrichodesmiumGermanyprokaryotesnitrogen fixation; growthcarbon chemistry414
doi:10.1594/PANGAEA.736022doi:10.5194/bg-7-177-2010Short-term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrationsGermanyPhytoplanktoncalcification; primary production; growth; morphology;carbon chemistry834
doi:10.1594/PANGAEA.836367doi:10.1371/journal.pone.0090749Effects of increasing seawater carbon dioxide concentrations on chain formation of the diatom Asterionellopsis glacialisPortugalPhytoplanktonmorphology; growthcarbon chemistry616
doi:10.1594/PANGAEA.838493doi:10.1021/es5015373Studying the effect of CO2-induced acidification on sediment toxicity using acute amphipod toxicity testSpaincrustaceanmortality; otherprocesscarbon chemistry1006
doi:10.1594/PANGAEA.819639doi:10.5194/bg-7-2509-2010Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidificationUKNorth AtlanticCoralscalcificationcarbon chemistry534
doi:10.1594/PANGAEA.773850doi:10.1038/nclimate1291Reduced early life growth and survival in a fish in direct response to increased carbon dioxideUSAFishmorphology; mortalitycarbon chemistry1887
doi:10.1594/PANGAEA.767576doi:10.1038/nature10295Sensitivity of coccolithophores to carbonate chemistry and ocean acidificationFranceNorth Atlantic; South Atlantic; Antarctic; Indian; North Pacific; South PacificPhytoplanktonmorphologycarbon chemistry16400
doi:10.1594/PANGAEA.763290doi:10.1080/15287394.2011.550460Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis)NorwayNorth Atlanticmollusks; crustaceansreproduction; morphology; performance; mortalitytemperature; carbon chemistry45835
doi:10.1594/PANGAEA.779926doi:10.1111/j.1365-2486.2012.02668.xDescription and quantification of pteropod shell dissolution: a sensitive bioindicator of ocean acidificationUKAntarcticzooplankton; mollusksdissolution; morphologycarbon chemistry188
doi:10.1594/PANGAEA.833075doi:10.1038/ngeo1635Extensive dissolution of live pteropods in the Southern OceanUKAntarcticzooplankton; mollusksdissolutioncarbon chemistry904
doi:10.1594/PANGAEA.726955doi:10.5194/bg-5-1517-2008Marine ecosystem community carbon and nutrient uptake stoichiometry under varying ocean acidification during the PeECE III experimentNorwayNorth AtlanticBrcommunityprimary production; calcificationnutrients; carbon chemistry11007
doi:10.1594/PANGAEA.767583doi:10.3354/meps08841Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginicaUSAMolluskmortality; growth; physiology; morphologycarbon chemistry2519
doi:10.1594/PANGAEA.716837doi:10.1098/rsbl.2007.0457Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littoreaUKNorth AtlanticMolluskphysiology; performancecarbon chemistry72
doi:10.1594/PANGAEA.718100doi:10.3354/ab00037Effects of ocean acidification on the immune response of the blue mussel Mytilus edulisUKNorth AtlanticMolluskphysiologycarbon chemistry6124
doi:10.1594/PANGAEA.778432doi:10.5194/bg-7-1017-2010Effect of CO2 on the properties and sinking velocity of aggregates of the coccolithophore Emiliania huxleyiGermanyPhytoplanktoncarbon chemistry246
doi:10.1594/PANGAEA.770068doi:10.1016/j.jembe.2011.06.027The response of a natural phytoplankton community from the Godavari River Estuary to increasing CO2 concentration during the pre-monsoon periodIndiaIndianBrcommunitygrowth; biogeochemistry; photosynthesis; otherprocess; community compositionnutrients; carbon chemistry351
doi:10.1594/PANGAEA.833621doi:10.1007/s10152-014-0394-3CO2-induced fertilization impairment in Strongylocentrotus droebachiensis collected in the ArcticGermanyEchinodermreproduction; morphologycarbon chemistry68836
doi:10.1594/PANGAEA.774802doi:10.1016/j.jembe.2011.10.004Biogeochemical response of Emiliania huxleyi (PML B92/11) to elevated CO2 and temperature under phosphorous limitation: a chemostat studyGermanyPhytoplanktongrowth; otherprocess; abundance; primary productiontemperature; carbon chemistry1068
doi:10.1594/PANGAEA.829883doi:10.5194/bg-9-3405-2012Organic matter exudation by Emiliania huxleyi under simulated future ocean conditionsGermanyPhytoplanktontemperature; carbon chemistry1269
doi:10.1594/PANGAEA.771293doi:10.4319/lo.2011.56.3.0927Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae)UKPhytoplanktongrowth; photosynthesis; respirationcarbon chemistry5700
doi:10.1594/PANGAEA.840479doi:10.1371/journal.pone.0108153Empirical evidence reveals seasonally dependent reduction in nitrification in coastal sediments subjected to near future ocean acidificationBelgiumNorth AtlanticBrcommunitycommunity composition; otherprocesscarbon chemistry3558
doi:10.1594/PANGAEA.830605doi:10.1111/gcb.12171Detrimental effects of ocean acidification on the economically important Mediterranean red coral (Corallium rubrum)USAMediterraneanCoralscalcification; morphology; physiologycarbon chemistry13721
doi:10.1594/PANGAEA.834210doi:10.12681/mms.579Sea urchin response to rising pCO2 shows ocean acidification may fundamentally alter the chemistry of marine skeletonsUKMediterraneanEchinodermotherprocess; abundance; morphologycarbon chemistry3851
doi:10.1594/PANGAEA.838003doi:10.1371/journal.pone.0102901Effects of increased CO2 on fish gill and plasma proteomeSwedenNorth AtlanticFishphysiologytemperature; carbon chemistry792
doi:10.1594/PANGAEA.836888doi:10.1016/j.marenvres.2014.04.009Does seawater acidification affect survival, growth and shell integrity in bivalve juveniles?ItalyMediterraneanMolluskmortality; morphologycarbon chemistry19511
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-719-2013Arctic microbial community dynamics influenced by elevated CO2 levelsThe NetherlandsArcticBRcommunity; phytoplankton; prokaryotesgrowth; otherprocess; community compositioncarbon chemistry35695
doi:10.1594/PANGAEA.834495doi:10.3354/meps09405Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2GermanyArcticAlgaecalcificationtemperature; light; carbon chemistry8948
doi:10.1594/PANGAEA.835430doi:10.1007/s00227-014-2435-5Effects of high temperature and CO2 on intracellular DMSP in the cold-water coral Lophelia pertusaUKNorth AtlanticCoralsotherprocesstemperature; carbon chemistry1114
doi:10.1594/PANGAEA.718103doi:10.3354/meps184031Stable carbon isotope fractionation by marine phytoplankton in response to daylength, growth rate, and CO2 availabilityGermanyPhytoplanktonphotosynthesis; growthcarbon chemistry480
doi:10.1594/PANGAEA.824407doi:10.1007/s00227-013-2199-3Effects of in situ CO2 enrichment on the structural and chemical characteristics of the seagrass Thalassia testudinumUSANorth Atlanticphanerogamsmorphology; physiologycarbon chemistry960
doi:10.1594/PANGAEA.834419doi:10.1111/1365-2745.12233Ocean acidification outweighs nutrient effects in structuring seagrass epiphyte communitiesUSANorth Atlanticphanerogams; algaeotherprocess; abundance; community compositionnutrients; carbon chemistry1776
doi:10.1594/PANGAEA.840649doi:10.1007/s00227-014-2493-8One size fits all: stability of metabolic scaling under warming and ocean acidification in echinodermsUKNorth AtlanticEchinodermmorphology; physiology;temperature; carbon chemistry12028
doi:10.1594/PANGAEA.838004doi:10.1098/rsbl.2014.0408Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate changeUKNorth PacificMolluskmorphology; physiology; respirationtemperature; carbon chemistry16523
doi:10.1594/PANGAEA.831100doi:10.1016/j.ecss.2012.07.019Limacina retroversa's response to combined effects of ocean acidification and sea water fresheningNorwayNorth Atlanticmollusks; zooplanktondissolution; morphology; performance; mortalitytemperature; salinity; carbon chemistry45643
doi:10.1594/PANGAEA.822160doi:10.1080/10454438.2013.791911Effects of reduced carbonate saturation state on early development in the common edible sea urchin Lytechinus variegatus: implications for land-based aquacultureUSAEchinodermmorphology; reproductioncarbon chemistry47361
doi:10.1594/PANGAEA.835643doi:10.1080/10236244.2013.875273Effects of hypercapnia on aspects of feeding, nutrition, and growth in the edible sea urchin Lytechinus variegatus held in cultureUSAEchinodermmorphology; otherprocess; physiologycarbon chemistry10697
doi:10.1594/PANGAEA.830736doi:10.1007/s00227-012-2103-6Ocean acidification induces budding in larval sea urchinsUSAEchinodermmorphology; reproduction;carbon chemistry2643
doi:10.1594/PANGAEA.771908doi:10.1242/jeb.054809Effects of ocean-acidification-induced morphological changes on larval swimming and feedingUSANorth AtlanticEchinodermmorphology; performance;carbon chemistry1080
doi:10.1594/PANGAEA.831209doi:10.1371/journal.pone.0042718CO2-driven ocean acidification alters and weakens integrity of the calcareous tubes produced by the serpulid tubeworm, Hydroides elegansChinaNorth Pacificannelidsmorphology; calcification;carbon chemistry741
doi:10.1594/PANGAEA.833115doi:10.1371/journal.pone.0078945Temperature dependent effects of elevated CO2 on shell composition and mechanical properties of Hydroides elegans: insights from a multiple stressor experimentChinaNorth Pacificannelidsmorphologysalinity; temperature; carbon chemistry748
doi:10.1594/PANGAEA.763990doi:10.3354/meps09140Irradiance and pH affect coccolithophore community composition on a transect between the North Sea and the Arctic OceanUKNorth Atlantic; ArcticPhytoplanktonotherprocess; community composition;carbon chemistry5467
doi:10.1594/PANGAEA.771570doi:10.1007/s00338-011-0786-7Is the response of coral calcification to seawater acidification related to nutrient loading?FranceIndianCoralscalcification; photosynthesisnutrients; carbon chemistry3287
doi:10.1594/PANGAEA.728723doi:10.1126/science.1169806Elevated CO2 enhances otolith growth in young fishUSAFishotherprocess;carbon chemistry4392
doi:10.1594/PANGAEA.823607doi:10.1007/s00227-012-2097-0Structural and functional vulnerability to elevated pCO2 in marine benthic communitiesUKNorth AtlanticBRcommunitycalcification; morphology; primary production; mortality; otherprocess; community composition; dissolutioncarbon chemistry6573
doi:10.1594/PANGAEA.837515doi:10.5194/bg-11-4985-2014The influence of ocean acidification on nitrogen regeneration and nitrous oxide production in the northwest European shelf seaUKNorth AtlanticBRcommunitycarbon chemistry12526
doi:10.1594/PANGAEA.833881doi:10.1016/j.jembe.2014.01.002Influence of sediment acidification and water flow on sediment acceptance and dispersal of juvenile soft-shell clams (Mya arenaria L.)CanadaNorth AtlanticMolluskreproductioncarbon chemistry800
doi:10.1594/PANGAEA.823583doi:10.1016/j.jembe.2013.06.003Effects of CO2-induced ocean acidification on physiological and mechanical properties of the starfish Asterias rubensBelgiumNorth AtlanticEchinodermphysiologycarbon chemistry49343
doi:10.1594/PANGAEA.839887doi:10.1111/gcb.12735Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?BelgiumAntarcticEchinodermphysiologycarbon chemistry2540
doi:10.1594/PANGAEA.835967doi:10.1016/j.cbpa.2014.04.011Euechinoidea and Cidaroidea respond differently to ocean acidificationBelgiumNorth AtlanticEchinodermperformance; physiologycarbon chemistry13257
doi:10.1594/PANGAEA.835969doi:10.1007/s11356-014-3259-zAcid-base physiology response to ocean acidification of two ecologically and economically important holothuroids from contrasting habitats, Holothuria scabra and Holothuria parvaBelgiumIndianEchinodermphysiology; respiration;carbon chemistry3186
doi:10.1594/PANGAEA.824706doi:10.1016/j.cbpa.2013.06.002Buffer capacity of the coelomic fluid in echinodermsBelgiumEchinodermphysiologynutrients; carbon chemistry6964
doi:10.1594/PANGAEA.830119doi:10.3354/meps09696Effects of ocean acidification on overwintering juvenile Arctic pteropods Limacina helicinaFranceArcticzooplankton; mollusksmortality; growth; dissolutioncarbon chemistry2156
doi:10.1594/PANGAEA.821467doi:10.1098/rspb.2012.2374Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonateUSASouth Pacificalgae; coralscalcificationcarbon chemistry11870
doi:10.1594/PANGAEA.829815doi:10.1007/s00227-012-2165-5Effects of feeding and light intensity on the response of the coral Porites rus to ocean acidificationUSASouth PacificCoralscalcification; morphology;nutrients; light; carbon chemistry6264
doi:10.1594/PANGAEA.832834doi:10.1098/rspb.2014.1339Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidificationUSANorth Pacific; South Pacificcorals; algae;calcificationcarbon chemistry8324
doi:10.1594/PANGAEA.833687doi:10.4319/lo.2013.58.1.0388The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping pointUSASouth Pacificcorals; algae;calcificationcarbon chemistry10357
doi:10.1594/PANGAEA.832584doi:10.4319/lo.2014.59.3.1081Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubationsUSASouth Pacificcorals; algae;calcificationcarbon chemistry20714
doi:10.1594/PANGAEA.733905doi:10.1007/s00227-010-1493-6Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-lessFranceMediterraneanmollusks; zooplanktongrowth; morphology; dissolution;carbon chemistry633
doi:10.1594/PANGAEA.726856doi:10.5194/bg-6-1877-2009Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina)FranceArcticzooplankton; molluskscalcification; growthcarbon chemistry154
doi:10.1594/PANGAEA.744720doi:10.1371/journal.pone.0011362Response of the Arctic pteropod Limacina helicina to projected future environmental conditionsFranceArcticzooplankton; mollusksrespiration; physiology; calcificationtemperature; carbon chemistry390
doi:10.1594/PANGAEA.758189doi:10.1098/rspb.2009.2069The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forestsAustraliaIndianAlgaegrowth;temperature; carbon chemistry84
doi:10.1594/PANGAEA.836665doi:10.1371/journal.pone.0097235Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosaNew ZealandSouth PacificAlgaecalcification; growth;photosynthesis; reproductioncarbon chemistry3500
doi:10.1594/PANGAEA.833265doi:10.1098/rspb.2013.2201Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidificationNew ZealandSouth PacificAlgaemorphology; photosynthesis; reproductioncarbon chemistry1763
doi:10.1594/PANGAEA.823580doi:10.4319/lo.2013.58.1.0121Concentration boundary layers around complex assemblages of macroalgae: implications for the effects of ocean acidification on understory coralline algaeNew ZealandSouth PacificAlgaelight; carbon chemistry7360
doi:10.1594/PANGAEA.775819doi:10.1111/j.1529-8817.2011.01085.xCarbon-use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidificationNew ZealandSouth PacificAlgaephotosynthesiscarbon chemistry480
doi:10.1594/PANGAEA.824707doi:10.1016/j.jembe.2012.11.013CO2-induced ocean acidification impairs calcification in the tropical urchin Echinometra viridisUSANorth AtlanticEchinodermcalcification; mortalitytemperature; carbon chemistry1204
doi:10.1594/PANGAEA.833354doi:10.1016/j.cbpa.2013.07.025Species-specific effects of near-future CO2 on the respiratory performance of two tropical prey fish and their predatorNorwaySouth PacificFishphysiology; respiration;carbon chemistry390
doi:10.1594/PANGAEA.755151doi:10.1111/j.1365-2486.2009.01943.xThe effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosaAustraliaSouth Pacificcorals; protistsphotosynthesis; respiration;carbon chemistry63
doi:10.1594/PANGAEA.771909doi:10.1016/j.jembe.2011.02.002Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana)CanadaNorth PacificMolluskmortality; morphology; reproductioncarbon chemistry76
doi:10.1594/PANGAEA.836732doi:10.1093/plankt/fbu052Parental exposure to elevated pCO2 influences the reproductive success of copepodsUKzooplankton; crustaceansreproductioncarbon chemistry14635
doi:10.1594/PANGAEA.836728doi:10.1111/gcb.12582Have we been underestimating the effects of ocean acidification in zooplankton?UKzooplankton; crustaceansmortality; reproductioncarbon chemistry8070
doi:10.1594/PANGAEA.829880doi:10.1016/j.marpolbul.2013.03.015Biological impacts of enhanced alkalinity in Carcinus maenasUKNorth Atlanticcrustaceanphysiologycarbon chemistry3593
doi:10.1594/PANGAEA.779705doi:10.1371/journal.pone.0022736Ocean acidification affects prey detection by a predatory reef fishAustraliaSouth PacificFishperformancecarbon chemistry156
doi:10.1594/PANGAEA.831619doi:10.1073/pnas.1301589110Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidificationUSANorth AtlanticCoralsotherprocess; adaptation; calcification; dissolution; growth; morphology;carbon chemistry479
doi:10.1594/PANGAEA.834142doi:10.5194/bg-10-7599-2013Impacts of food availability and pCO2 on planulation, juvenile survival, and calcification of the azooxanthellate scleractinian coral Balanophyllia elegansUSANorth PacificCoralscalcification; morphology; reproduction; mortalitynutrients; carbon chemistry20615
doi:10.1594/PANGAEA.831612doi:10.1007/s00227-013-2280-yBrooded coral larvae differ in their response to high temperature and elevated pCO2 depending on the day of releaseUSANorth PacificCoralsmortality; photosynthesis; physiology; respiration;temperature; carbon chemistry5960
doi:10.1594/PANGAEA.823582doi:10.1016/j.jembe.2012.10.019Effects of exposure duration on the response of Pocillopora damicornis larvae to elevated temperature and high pCO2USANorth PacificCoralsmortality; physiology; respiration;temperature; carbon chemistry5823
doi:10.1594/PANGAEA.833970doi:10.1002/grl.50948Permeable coral reef sediment dissolution driven by elevated CO2 and porewater advectionAustraliaSouth PacificCoralsdissolutioncarbon chemistry552
doi:10.1594/PANGAEA.726862doi:10.5194/bg-6-1865-2009Influence of elevated CO2 concentrations on cell division and nitrogen fixation rates in the bloom-forming cyanobacterium Nodularia spumigenaGermanyprokaryotesgrowth; nitrogen fixation; primary productioncarbon chemistry633
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-3109-2013Implications of elevated CO2 on pelagic carbon fluxes in an Arctic mesocosm study-an elemental mass balance approachGermanyArcticBrcommunitycarbon chemistry35695
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-1937-2013Technical Note: the determination of enclosed water volume in large flexible-wall mesocosmsGermanyArcticcarbon chemistry35695
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-1379-2013Technical note: a simple method for air-sea gas exchange measurements in mesocosms and its application in carbon budgetingGermanyArcticcarbon chemistry35695
doi:10.1594/PANGAEA.772696doi:10.5194/bg-7-1401-2010Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: study of the calcite production, the coccolith morphology and the coccosphere sizeBelgiumPhytoplanktonprimary production; calcification; growth; morphology;temperature; carbon chemistry480
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-1425-2013A 13C labelling study on carbon fluxes in Arctic plankton communities under elevated CO2 levelsThe NetherlandsArcticBRcommunity; phytoplankton; zooplanktongrowth;carbon chemistry35695
doi:10.1594/PANGAEA.770070doi:10.1007/s00338-010-0697-zThe impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic coralsUKNorth AtlanticCoralsmorphologycarbon chemistry480
doi:10.1594/PANGAEA.722837doi:10.1029/2004GB002318Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyiBelgiumNorth AtlanticBRcommunity; phytoplanktongrowth; primary production; calcification; respirationcarbon chemistry6535
doi:10.1594/PANGAEA.771295doi:10.1111/j.1461-0248.2010.01565.xHigh CO2 enhances the competitive strength of seaweeds over coralsAustraliaSouth Pacificalgae; coralsmortality; growth;carbon chemistry10488
doi:10.1594/PANGAEA.831445doi:10.1007/s00227-013-2176-xElevated CO2 alters larval proteome and its phosphorylation status in the commercial oyster, Crassostrea hongkongensisChinaNorth PacificMolluskcalcification; growth; physiologycarbon chemistry6308
doi:10.1594/PANGAEA.823757doi:10.1016/j.marpolbul.2012.07.043Analysis of Pacific oyster larval proteome and its response to high-CO2ChinaNorth Pacificcrustaceanphysiology;carbon chemistry1861
doi:10.1594/PANGAEA.733910doi:10.5194/bg-7-81-2010Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: results from culturing experiments with Ammonia tepidaGermanyprotistscalcification; morphologycarbon chemistry192
doi:10.1594/PANGAEA.825017doi:10.1111/gcb.12276Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pHSwedenNorth AtlanticEchinodermmorphology; growth; mortality; physiology; respiration; reproductioncarbon chemistry1309
doi:10.1594/PANGAEA.830713doi:10.1007/s00227-012-2059-6Ocean acidification and temperature rise: effects on calcification during early development of the cuttlefish Sepia officinalisMonacoMediterraneanMolluskcalcification; reproduction; morphology;temperature; carbon chemistry420
doi:10.1594/PANGAEA.823746doi:10.3354/meps10096High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algaeAustraliaSouth Pacificalgae; coralsmortality; reproductioncarbon chemistry1944
doi:10.1594/PANGAEA.839180doi:10.1890/12-0495.1Interactions among chronic and acute impacts on coral recruits: the importance of size-escape thresholdsAustraliaSouth PacificCoralsmorphology; mortality; otherprocesscarbon chemistry43790
doi:10.1594/PANGAEA.823545doi:10.1007/s00338-013-1021-5Calcification by juvenile corals under heterotrophy and elevated CO2USANorth AtlanticCoralsmorphology; physiology; otherprocessnutrients; carbon chemistry576
doi:10.1594/PANGAEA.770474doi:10.1016/j.marmicro.2011.08.002Independent impacts of calcium and carbonate ion concentration on Mg and Sr incorporation in cultured benthic foraminiferaThe NetherlandsNorth Atlanticprotistscalcification; morphology; mortality;carbon chemistry282
doi:10.1594/PANGAEA.830185doi:10.1098/rspb.2011.2545Effects of diurnally oscillating pCO2 on the calcification and survival of coral recruitsUSANorth PacificCoralscalcification; mortality; reproduction; calcification; morphologycarbon chemistry17148
doi:10.1594/PANGAEA.778150doi:10.1007/s00227-012-1921-xLong-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensisSwedenNorth AtlanticEchinodermreproduction; mortalitycarbon chemistry280
doi:10.1594/PANGAEA.758065doi:10.3354/meps07800Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilisSwedenNorth AtlanticEchinodermmorphology; growth; mortalitycarbon chemistry714
doi:10.1594/PANGAEA.757990doi:10.1002/jez.b.21342Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposusSwedenNorth AtlanticEchinodermgrowth; morphology; mortalitycarbon chemistry374
doi:10.1594/PANGAEA.774445doi:10.1371/journal.pone.0029568Stable photosymbiotic relationship under CO2-induced acidification in the acoel worm Symsagittifera roscoffensisSwedenNorth AtlanticXenacoelomorphamortality; growth; reproduction; otherprocess;carbon chemistry252
doi:10.1594/PANGAEA.831770doi:10.5194/bg-10-4591-2013The influence of temperature and seawater carbonate saturation state on 13C-18O bond ordering in bivalve mollusksUSAMolluskcalcification;carbon chemistry200
doi:10.1594/PANGAEA.772703doi:10.4319/lo.2011.56.6.2402Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites sppUSASouth PacificCoralscalcification; morphologytemperature; carbon chemistry2728
doi:10.1594/PANGAEA.820375doi:10.1007/s00227-012-2001-yEffect of pCO2 on the growth, respiration, and photophysiology of massive Porites spp. in Moorea, French PolynesiaUSASouth PacificCoralsmorphology; photosynthesis; physiology; respirationcarbon chemistry1160
doi:10.1594/PANGAEA.820312doi:10.1111/j.1365-2486.2012.02695.xInteractive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French PolynesiaUSASouth PacificCoralscalcification;temperature; carbon chemistry2080
doi:10.1594/PANGAEA.821644doi:10.1016/j.jembe.2013.02.032Metabolic costs of larval settlement and metamorphosis in the coral Seriatopora caliendrum under ambient and elevated pCO2USANorth PacificCoralsreproduction; morphologycarbon chemistry2089
doi:10.1594/PANGAEA.726955doi:10.5194/bg-6-877-2009Primary production during nutrient-induced blooms at elevated CO2 concentrationsNorwayNorth AtlanticBRcommunityprimary production; respiration; otherprocess; community compositioncarbon chemistry11007
doi:10.1594/PANGAEA.831938doi:10.1007/s00227-012-2090-7Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongataIcelandNorth AtlanticAlgaecalcification; physiology; primary production; respiration; morphology;carbon chemistry2968
doi:10.1594/PANGAEA.834556doi:10.1111/ppl.12172Combined effects of different CO levels and N sources on the diazotrophic cyanobacterium TrichodesmiumGermanyprokaryotesphotosynthesis; respiration; nitrogen fixation; primary productionnutrients; carbon chemistry1523
doi:10.1594/PANGAEA.834555doi:10.1016/j.jembe.2014.04.015Diversity of ocean acidification effects on marine N2 fixersGermanyprokaryotesgrowth;nitrogen fixation; primary productioncarbon chemistry241
doi:10.1594/PANGAEA.758631doi:10.3354/ab00118Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, Littorina obtusataUKMolluskreproduction; mortality; physiology; performance; morphologycarbon chemistry7359
doi:10.1594/PANGAEA.838938doi:10.1021/es501601w1H-NMR metabolomics reveals contrasting response by male and female mussels exposed to reduced seawater pH, increased temperature and a pathogenUKNorth AtlanticMolluskphysiologytemperature; carbon chemistry290
doi:10.1594/PANGAEA.820333doi:10.1016/j.jembe.2012.11.003Effects of CO2 and iron availability on phytoplankton and eubacterial community compositions in the northwest subarctic PacificJapanNorth Atlanticphytoplankton; prokaryotesotherprocess; community compositionnutrients; carbon chemistry1965
doi:10.1594/PANGAEA.829084doi:10.5194/bg-10-567-2013Response of Nodularia spumigena to pCO2-Part 2: Exudation and extracellular enzyme activitiesGermanyprokaryotesnitrogen fixationnutrients; carbon chemistry660
doi:10.1594/PANGAEA.717963doi:10.1093/plankt/24.1.49Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplanktonGermanyBaltic SeaPhytoplanktonprimary productioncarbon chemistry336
doi:10.1594/PANGAEA.722837doi:10.3354/ame034093Transparent exopolymer particles and dissolved organic carbon production by Emiliania huxleyi exposed to different CO2 concentrations: a mesocosm experimentGermanyNorth AtlanticPhytoplanktoncarbon chemistry6535
doi:10.1594/PANGAEA.723045doi:10.5194/bg-5-509-2008Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II)GermanyNorth AtlanticBrcommunitygrowth;otherprocess; community composition; abundancecarbon chemistry4748
doi:10.1594/PANGAEA.722837doi:10.4319/lo.2005.50.2.0493Testing the direct effect of CO2 concentration on a bloom the coccolithophorid Emiliania huxleyi in mesocosm experimentsGermanyNorth AtlanticBrcommunityprimary production; calcification; growth; otherprocess; community compositioncarbon chemistry6535
doi:10.1594/PANGAEA.834266doi:10.1007/s00338-014-1132-7Effects of light and elevated pCO2 on the growth and photochemical efficiency of Acropora cervicornisUSANorth AtlanticCoralsotherprocess; abundance; calcification; growth; morphology; photosynthesis;light; carbon chemistry112
doi:10.1594/PANGAEA.821559doi:10.1038/nclimate1122Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrationsAustraliaSouth Pacificcorals; algae;carbon chemistry760
doi:10.1594/PANGAEA.823109doi:10.1016/j.cbpa.2012.09.016Differential acid-base regulation in various gills of the green crab Carcinus maenas: effects of elevated environmental pCO2Canadacrustaceanphysiologycarbon chemistry3407
doi:10.1594/PANGAEA.825020doi:10.3354/meps09660Tolerance of juvenile Mytilus galloprovincialis to experimental seawater acidificationSpainNorth AtlanticMolluskphysiology; performance; respiration;otherprocesscarbon chemistry594
doi:10.1594/PANGAEA.839919doi:10.1111/jpy.12247Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp (Laminariales, Phaeophyceae) under variable pHNew ZealandAlgaephysiology; photosynthesiscarbon chemistry465
doi:10.1594/PANGAEA.758699doi:10.1007/s00227-009-1356-1Post-larval development of two intertidal barnacles at elevated CO2 and temperatureUKcrustaceangrowth; calcification; mortalitytemperature; carbon chemistry264
doi:10.1594/PANGAEA.737438doi:10.1016/j.ecss.2009.11.036Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distributionUKArcticcrustaceangrowth; calcificationtemperature; carbon chemistry2092
doi:10.1594/PANGAEA.733912doi:10.1016/j.jembe.2010.07.020Coccolithophores lipid and carbon isotope composition and their variability related to changes in seawater carbonate chemistryFrancePhytoplanktongrowth; physiologycarbon chemistry2240
doi:10.1594/PANGAEA.770055doi:10.3354/ame01520Effects of elevated CO2 partial pressure and temperature on the coccolithophore Syracosphaera pulchraFrancePhytoplanktongrowth; primary production; morphology; calcification; otherprocess; abundancetemperature; carbon chemistry1571
doi:10.1594/PANGAEA.773860doi:10.1111/j.1529-8817.2011.01080.xTesting the effects of elevated pCO2 on coccolithophores (Prymnesiophyceae): comparison between haploid and diploid life stagesFrancePhytoplanktonmorphology; calcification; primary productioncarbon chemistry492
doi:10.1594/PANGAEA.831728doi:10.1016/j.jembe.2012.03.009Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocationUKzooplankton; crustaceansreproduction; morphologycarbon chemistry30348
doi:10.1594/PANGAEA.838494doi:10.1016/j.jsb.2014.08.007Ocean acidification reduces the crystallographic control in juvenile mussel shellsUKNorth AtlanticMolluskmorphology; adaptation; otherprocess; dissolutioncarbon chemistry196
doi:10.1594/PANGAEA.837675doi:10.1038/srep06218Ocean acidification impacts mussel control on biomineralisationUKNorth AtlanticMolluskmorphology; physiologycarbon chemistry2516
doi:10.1594/PANGAEA.778439doi:10.1111/j.1365-2486.2011.02583.xAcclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusaGermanyNorth AtlanticCoralscalcificationcarbon chemistry787
doi:10.1594/PANGAEA.839190doi:10.1002/ece3.709Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fishNorwayNorth AtlanticFishperformance; reproductioncarbon chemistry5589
doi:10.1594/PANGAEA.774430doi:10.5194/bg-8-3697-2011Effect of ocean acidification on early life stages of Atlantic herring (Clupea harengus L.)GermanyBalticFishmorphology; reproduction; physiology; mortalitycarbon chemistry951
doi:10.1594/PANGAEA.836887doi:10.1021/es500514jUranium in larval shells as a barometer of molluscan ocean acidification exposureUSAMolluskmollusks; morphologycarbon chemistry16740
doi:10.1594/PANGAEA.778194doi:10.1029/2011GC003790Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: Acid-base status, trace elements and d11BGermanyBalticmollusksphysiology; calcificationcarbon chemistry531
doi:10.1594/PANGAEA.778466doi:10.1038/nclimate1324Severe tissue damage in Atlantic cod larvae under increasing ocean acidificationGermanyFishmorphology; physiology; otherprocesscarbon chemistry53332
doi:10.1594/PANGAEA.778456doi:10.1007/s00227-011-1876-3Egg and early larval stages of Baltic cod, Gadus morhua, are robust to high levels of ocean acidificationGermanyNorth AtlanticFishreproduction; mortality; morphologytemperature; carbon chemistry34676
doi:10.1594/PANGAEA.758632doi:10.5194/bg-7-3915-2010Effect of ocean acidification on marine fish sperm (Baltic cod: Gadus morhua)GermanyBalticFishreproductioncarbon chemistry4200
doi:10.1594/PANGAEA.819634doi:10.4319/lo.2009.54.6.1855Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyiChinaPhytoplanktoncalcification; photosynthesis; growth;morphology;light; carbon chemistry330
doi:10.1594/PANGAEA.821019doi:10.1038/nclimate1507Rising CO2 and increased light exposure synergistically reduce marine primary productivityChinaNorth PacificBRcommunityprimary production; growth;light; carbon chemistry17109
doi:10.1594/PANGAEA.733940doi:10.1111/j.1365-2486.2009.02113.xCombined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta)ChinaNorth PacificAlgaecalcification; primary production; growth; otherprocess;light; carbon chemistry496
doi:10.1594/PANGAEA.835394doi:10.4319/lo.2013.58.4.1501Colimitation of the unicellular photosynthetic diazotroph Crocosphaera watsonii by phosphorus, light, and carbon dioxideUSAprokaryotesgrowth; morphology; nitrogen fixation; primary production; otherprocess;nutrients; light; carbon chemistry6388
doi:10.1594/PANGAEA.835431doi:10.1080/09670262.2013.773383Combined effects of CO2 and light on large and small isolates of the unicellular N2-fixing cyanobacterium Crocosphaera watsonii from the western tropical Atlantic OceanUSAprokaryotes;growth; nitrogen fixation; photosynthesis;light; carbon chemistry1043
doi:10.1594/PANGAEA.761768doi:10.1016/S0921-8181(98)00035-6Effect of calcium carbonate saturation of seawater on coral calcificationMonacoCoralscalcificationcarbon chemistry510
doi:10.1594/PANGAEA.745072doi:10.5194/bg-7-2051-2010Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulisFranceMolluskreproduction; mortality; growth;morphologycarbon chemistry552
doi:10.1594/PANGAEA.769727doi:10.1371/journal.pone.0023010Effect of carbonate chemistry alteration on the early embryonic development of the Pacific oyster (Crassostrea gigas)FranceNorth AtlanticMolluskcalcification; morphology;carbon chemistry450
doi:10.1594/PANGAEA.718130doi:10.1029/2006GL028554Impact of elevated CO2 on shellfish calcificationThe NetherlandsNorth AtlanticMolluskcalcificationcarbon chemistry800
doi:10.1594/PANGAEA.834243doi:10.1371/journal.pone.0094068Impacts of ocean acidification on sediment processes in shallow waters of the Arctic OceanFranceArcticBRcommunity;dissolution; otherprocesscarbon chemistry11348
doi:10.1594/PANGAEA.835120doi:10.1016/j.jembe.2014.03.015The photo-physiological response of a model cnidarian-dinoflagellate symbiosis to CO2-induced acidification at the cellular levelNew ZealandCnidariaphotosynthesis; otherprocess; abundance; respiration; primary productioncarbon chemistry702
doi:10.1594/PANGAEA.837880doi:10.1242/jeb.099549Intracellular pH and its response to CO2-driven seawater acidification in symbiotic versus non-symbiotic coral cellsNew ZealandNorth Pacificcorals; protistsphysiology; photosynthesiscarbon chemistry3840
doi:10.1594/PANGAEA.833612doi:10.1371/journal.pone.0050010The O2, pH and Ca2+ microenvironment of benthic foraminifera in a high CO2 worldGermanyprotistsphotosynthesis; otherprocesscarbon chemistry22899
doi:10.1594/PANGAEA.771571doi:10.1371/journal.pone.0025024Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pHMonacocorals; protistsotherprocess; photosynthesistemperature; carbon chemistry10336
doi:10.1594/PANGAEA.837249doi:10.1038/NCLIMATE2241Biomineralization control related to population density under ocean acidificationItalyMediterraneanCorals,Mollusk,Algaecorals; mollusks; abundance; otherprocess; morphologycarbon chemistry15968
doi:10.1594/PANGAEA.833805doi:10.1111/maec.12093Effects of ocean acidification on sponge communitiesUKMediterraneanPorifera; BRcommunityotherprocess; community composition; morphologycarbon chemistry4817
doi:10.1594/PANGAEA.837325doi:10.1098/rsbl.2014.0538Elevated carbon dioxide alters the plasma composition and behaviour of a sharkSwedenFishphysiology; morphology; performance; respiration;carbon chemistry17041
doi:10.1594/PANGAEA.723045doi:10.4319/lo.2006.51.1.0001Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplanktonGermanyprokaryotes; phytoplanktongrowthcarbon chemistry4748
doi:10.1594/PANGAEA.758212doi:10.1007/s11434-010-0042-5Enhanced calcification ameliorates the negative effects of UV radiation on photosynthesis in the calcifying phytoplankter Emiliania huxleyiChinaPhytoplanktongrowth; otherprocesscarbon chemistry126
doi:10.1594/PANGAEA.835334doi:10.1016/j.jembe.2014.01.005Ocean acidification affects growth but not nutritional quality of the seaweed Fucus vesiculosus (Phaeophyceae, Fucales)Germanyalgae; crustaceans; Brcommunitygrowth; morphology; respiration; performance; otherprocess;temperature; carbon chemistry8024
doi:10.1594/PANGAEA.757991doi:10.1007/s00360-009-0412-yAcid-base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapniaGermanyMolluskphysiology;carbon chemistry1725
doi:10.1594/PANGAEA.737473doi:10.3354/meps07782Growth and calcification in the cephalopod Sepia officinalis under elevated seawater pCO2GermanyMolluskcalcification; growth; physiologycarbon chemistry5184
doi:10.1594/PANGAEA.758066doi:10.1007/s00227-008-1096-7Abiotic conditions in cephalopod (Sepia officinalis) eggs: embryonic development at low pH and high pCO2GermanyMolluskreproductioncarbon chemistry338
doi:10.1594/PANGAEA.831772doi:10.5194/bg-9-1897-2012Marine bivalve geochemistry and shell ultrastructure from modern low pH environmentsGermanyMediterranean; North AtlanticMolluskcalcification; morphologycarbon chemistry10106
doi:10.1594/PANGAEA.834309doi:10.1098/rspb.2013.2509CO2-induced ocean acidification increases anxiety in Rockfish via alteration of GABAA receptor functioning.USANorth PacificFishperformance;carbon chemistry466
doi:10.1594/PANGAEA.833716doi:10.1007/s00227-014-2409-7Acid-base regulation in the Dungeness crab (Metacarcinus magister)Canadacrustaceanphysiologycarbon chemistry9739
doi:10.1594/PANGAEA.837593doi:10.1186/1471-2164-15-789Gene expression profiling in gills of the great spider crab Hyas araneus in response to ocean acidification and warmingGermanycrustaceantemperature; carbon chemistry128871
doi:10.1594/PANGAEA.728727doi:10.5194/bg-6-1479-2009The subtle effects of sea water acidification on the amphipod Gammarus locustaUKcrustaceans; zooplanktongrowth; physiology; mortality;carbon chemistry444
doi:10.1594/PANGAEA.752267doi:10.5194/bg-6-3009-2009Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigasSwedenNorth AtlanticMolluskreproduction;carbon chemistry10886
doi:10.1594/PANGAEA.832994doi:10.2113/gsjfr.44.2.76Impact of changing carbonate chemistry, temperature, and salinity on growth and test degradation of the benthic foraminifer Ammonia aomoriensisGermanyBalticprotistsmorphology; dissolution; mortalitysalinity; temperature; carbon chemistry2538
doi:10.1594/PANGAEA.830063doi:10.5194/bg-9-4421-2012The benthic foraminiferal community in a naturally CO2-rich coastal habitat of the southwestern Baltic SeaGermanyBalticprotistsdissolutioncarbon chemistry9266
doi:10.1594/PANGAEA.829879doi:10.3354/meps09138Biometry and dissolution features of the benthic foraminiferal species Ammonia aomoriensis at high pCO2GermanyBalticprotistsgrowth; mortality; morphology; growthcarbon chemistry4713
doi:10.1594/PANGAEA.833014doi:10.5194/bg-11-1581-2014Response of benthic foraminifera to ocean acidification in their natural sediment environment: a long-term culturing experimentGermanyBRcommunity; protistsmorphology; mortality; reproduction; growthcarbon chemistry30268
doi:10.1594/PANGAEA.836918doi:10.1007/s00227-014-2525-4Tough as a rock-boring urchin: adult Echinometra sp. EE from the Red Sea show high resistance to ocean acidification over long-term exposuresIsraelRed SeaEchinodermmorphology; reproduction; dissolutioncarbon chemistry11374
doi:10.1594/PANGAEA.834083doi:10.5194/bg-11-333-2014Photosynthetic activity buffers ocean acidification in seagrass meadowsSpainphanerogamsphotosynthesis; morphologycarbon chemistry560
doi:10.1594/PANGAEA.820339doi:10.1016/j.dsr2.2013.07.005Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidificationUKNorth AtlanticCoralscalcification; physiology; respiration;carbon chemistry1107
doi:10.1594/PANGAEA.767584doi:10.1016/j.aquatox.2011.03.001Immune suppression of the echinoderm Asterias rubens (L.) following long-term ocean acidificationSwedenEchinodermphysiologycarbon chemistry551
doi:10.1594/PANGAEA.838936doi:10.1007/s00227-012-2080-9Effects of seawater pCO2 and temperature on shell growth, shell stability, condition and cellular stress of Western Baltic Sea Mytilus edulis (L.) and Arctica islandica (L.)GermanyBalticMolluskmorphology; mortality; performance; physiologytemperature; carbon chemistry3196
doi:10.1594/PANGAEA.771572doi:10.1029/2011GL048501Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbiontsJapanNorth Pacificprotistsmorphology;carbon chemistry520
doi:10.1594/PANGAEA.834091doi:10.1016/j.marpolbul.2014.01.050Long-term effects of elevated CO2 and temperature on the Arctic calanoid copepods Calanus glacialis and C. hyperboreusGermanyArcticzooplankton; crustaceansrespiration; morphology; mortality; reproduction;temperature; carbon chemistry51067
doi:10.1594/PANGAEA.839344doi:10.1007/s00425-013-1982-1Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia (L.) J.V. Lamouroux to low pHGermanyAlgaecalcification; physiologynutrients; carbon chemistry466
doi:10.1594/PANGAEA.830074doi:10.3354/meps09892Competition between calcifying and noncalcifying temperate marine macroalgae under elevated CO2 levelsGermanyNorth AtlanticAlgaecalcification; community composition; growth; photosynthesis; physiologycarbon chemistry63689
doi:10.1594/PANGAEA.830299doi:10.1093/jxb/ers369Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalisGermanyNorth AtlanticAlgaephysiology; calcification; otherprocesscarbon chemistry16955
doi:10.1594/PANGAEA.830128doi:10.1007/s00227-011-1854-9Physiological responses of the calcifying rhodophyte, Corallina officinalis (L.), to future CO2 levelsGermanyNorth AtlanticAlgaegrowth; morphology; photosynthesis; respiration;carbon chemistry13244
doi:10.1594/PANGAEA.775821doi:10.5194/bg-9-29-2012An investigation of the calcification response of the scleractinian coral Astrangia poculata to elevated pCO2 and the effects of nutrients, zooxanthellae and genderUSANorth AtlanticCoralscalcification; reproduction;temperature; nutrients; carbon chemistry17072
doi:10.1594/PANGAEA.754779doi:10.1016/j.jembe.2010.02.007Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786)USACoralscalcification; growthnutrients; carbon chemistry332
doi:10.1594/PANGAEA.810898doi:10.5194/bg-9-1885-2012Combined effects of inorganic carbon and light on Phaeocystis globosa Scherffel (Prymnesiophyceae)The NetherlandsPhytoplanktongrowthlight; carbon chemistry1829
doi:10.1594/PANGAEA.778472doi:10.1111/j.1529-8817.2012.01148.xMorphological and physiological effects in Proboscia alata (bacillariophyceae) grown under different light and CO2 conditions of the modern Southern OceanThe Netherlandsprokaryotesmorphology; physiology; growth;otherprocesslight; carbon chemistry304
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-2331-2013Response of halocarbons to ocean acidification in the ArcticUKArcticBRcommunity; phytoplanktoncarbon chemistry35695
doi:10.1594/PANGAEA.758071doi:10.4319/lo.2010.55.5.2011The effect of CO2 on the photosynthetic physiology of phytoplankton in the Gulf of AlaskaUSANorth PacificBRcommunitygrowth; primary production;otherprocess; abundance; community compositionnutrients; carbon chemistry1001
doi:10.1594/PANGAEA.836013doi:10.1371/journal.pone.0079890Iron limitation modulates ocean acidification effects on southern ocean phytoplankton communitiesGermanyAntarcticphytoplankton; BRcommunityotherprocess; community composition; photosynthesis; primary productionnutrients; carbon chemistry7300
doi:10.1594/PANGAEA.763842doi:10.1016/j.jembe.2011.06.008Emiliania huxleyi shows identical responses to elevated pCO2 in TA and DIC manipulationsGermanyPhytoplanktongrowth; calcification;carbon chemistry1638
doi:10.1594/PANGAEA.832340doi:10.5194/bg-11-2295-2014Environmental controls on the Emiliania huxleyi calcite massSpainPhytoplanktoncalcification;temperature; nutrients; carbon chemistry3410
doi:10.1594/PANGAEA.838925doi:10.7717/peerj.538Trace element profiles of the sea anemone living nearby a natural CO2 ventIsraelMediterraneanCnidaria; protistsotherprocess;metals; carbon chemistry2064
doi:10.1594/PANGAEA.774787doi:10.1152/ajpregu.00653.2010Elevated seawater pCO2 differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalisGermanyNorth AtlanticMolluskphysiology; molecular biologycarbon chemistry2979
doi:10.1594/PANGAEA.833670doi:10.1007/s00227-012-1930-9Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolismGermanyBalticMolluskcalcification; morphology; performance; physiology;carbon chemistry94083
doi:10.1594/PANGAEA.718841doi:10.1126/science.1154122Phytoplankton calcification in a high-CO2 worldUKNorth AtlanticPhytoplanktongrowth; calcification; primary production; morphologycarbon chemistry1237
doi:10.1594/PANGAEA.769749doi:10.2216/10-11.1Differential responses of growth and photosynthesis in the marine diatom Chaetoceros muelleri to CO2 and light availabilityAustraliaPhytoplanktongrowth; photosynthesislight; carbon chemistry981
doi:10.1594/PANGAEA.773863doi:10.1029/2011GL047786Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polypsJapanNorth PacificCoralsmorphology; calcificationcarbon chemistry710
doi:10.1594/PANGAEA.836787doi:10.1038/nclimate1855Spatial community shift from hard to soft corals in acidified waterJapanNorth PacificCoralscalcification; photosynthesis; community compositioncarbon chemistry3360
doi:10.1594/PANGAEA.836733doi:10.1111/ppl.12096Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system.SpainPhytoplanktonphysiologycarbon chemistry7443
doi:10.1594/PANGAEA.833741doi:10.1007/s00227-014-2453-3Growth response of an early successional assemblage of coralline algae and benthic diatoms to ocean acidificationNew ZealandSouth Pacificalgae; phytoplankton; BRcommunitymorphology; otherprocess; community composition; abundancecarbon chemistry620
doi:10.1594/PANGAEA.830526doi:10.1104/pp.113.219543Ocean acidification alters the photosynthetic responses of a coccolithophorid to fluctuating UV and visible radiationChinaPhytoplanktonphytoplankton; photosynthesislight; carbon chemistry138064
doi:10.1594/PANGAEA.830802doi:10.1016/j.jembe.2012.08.005Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazingUSANorth PacificAlgae;echinodermscalcification;otherprocesstemperature; carbon chemistry290
doi:10.1594/PANGAEA.835310doi:10.1371/journal.pone.0087678Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2USASouth PacificAlgaeotherprocess; adaptation; respiration; primary production; calcificationcarbon chemistry264
doi:10.1594/PANGAEA.838995doi:10.7717/peerj.411Contrasting effects of ocean acidification on tropical fleshy and calcareous algaeUSANorth PacificAlgaecalcification; dissolution; morphology; photosynthesis;carbon chemistry2271
doi:10.1594/PANGAEA.773790doi:10.1007/s00227-011-1840-2Responses of marine benthic microalgae to elevated CO2UKMediterraneanAlgaeotherprocess; abundance; photosynthesis; morphology;carbon chemistry1104
doi:10.1594/PANGAEA.823111doi:10.1111/j.1365-2486.2012.02716.xTemperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradientsUKMediterranean; South Pacificalgae; echinodermsmorphology; photosynthesiscarbon chemistry28736
doi:10.1594/PANGAEA.763898doi:10.1007/s00338-008-0380-9Ocean acidification and calcifying reef organisms: a mesocosm investigationUSANorth Pacificcorals; algae;calcificationcarbon chemistry306
doi:10.1594/PANGAEA.839068doi:10.7717/peerj.378Coral-algae metabolism and diurnal changes in the CO2-carbonate system of bulk sea waterUSANorth PacificBRcommunity; corals; algaecalcification; dissolution; physiologycarbon chemistry2091
doi:10.1594/PANGAEA.833162doi:10.1371/journal.pone.0061868Responses of the Emiliania huxleyi proteome to ocean acidificationUKPhytoplanktoncalcification; growth; physiology; otherprocess; adaptationcarbon chemistry7994
doi:10.1594/PANGAEA.729055doi:10.1111/j.1365-2486.2009.02057.xEffects of variations in carbonate chemistry on the calcification rates of Madracis mirabilis (Duchassaing 1861): bicarbonate concentrations best predict calcification ratesUSACoralscalcificationcarbon chemistry880
doi:10.1594/PANGAEA.833403doi:10.1111/gcb.12530Larvae of the coral eating crown-of-thorns starfish, Acanthaster planci in a warmer-high CO2 oceanAustraliaSouth PacificEchinodermreproduction; morphologytemperature; carbon chemistry693
doi:10.1594/PANGAEA.831180doi:10.1371/journal.pone.0034659Major cellular and physiological impacts of ocean acidification on a reef building coralAustraliaSouth PacificCoralsphotosynthesis; physiology; respiration; physiology; otherprocesscarbon chemistry19866
doi:10.1594/PANGAEA.830716doi:10.1371/journal.pone.0063714Adverse effects of ocean acidification on early development of squid (Doryteuthis pealeii)UKNorth AtlanticMolluskmorphology; reproduction;carbon chemistry12394
doi:10.1594/PANGAEA.829881doi:10.1007/s00227-012-2078-3Impact of temperature and species interaction on filamentous cyanobacteria may be more important than salinity and increased pCO2 levelsSwedenBalticprokaryotesphotosynthesis; morphologytemperature; carbon chemistry1930
doi:10.1594/PANGAEA.778196doi:10.1016/j.ecss.2011.10.027Virioplankton and bacterioplankton in a shallow CO2-dominated hydrothermal vent (Panarea Island, Tyrrhenian Sea)ItalyMediterraneanprokaryotes; virusotherprocess; community composition; abundancecarbon chemistry4444
doi:10.1594/PANGAEA.833973doi:10.1016/j.marenvres.2013.10.010Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samplesJapanPacificAlgaemorphologycarbon chemistry4980
doi:10.1594/PANGAEA.826460doi:10.1038/nclimate1937Risk maps for Antarctic krill under projected Southern Ocean acidificationAustraliaAntarcticzooplankton; crustaceansreproductioncarbon chemistry9576
doi:10.1594/PANGAEA.836216doi:10.1007/s00248-014-0368-7Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, ItalyKoreaMediterraneanprokaryotes; BRcommunitycommunity compositioncarbon chemistry2688
doi:10.1594/PANGAEA.821209doi:10.5194/bg-10-6185-2013Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentrationGermanyprotistsgrowth; morphologycarbon chemistry4897
doi:10.1594/PANGAEA.821210doi:10.1029/2012GC004330Incorporation of uranium in benthic foraminiferal calcite reflects seawater carbonate ion concentrationGermanycarbon chemistry184
doi:10.1594/PANGAEA.830804doi:10.1016/j.hal.2013.03.004pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: implications for bloom formation in an acidified oceanUSAPhytoplanktonperformancecarbon chemistry1389
doi:10.1594/PANGAEA.833260doi:10.5194/bg-10-7525-2013Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal oceanKoreaNorth PacificPhytoplanktonmorphology; photosynthesis; primary productiontemperature; carbon chemistry45219
doi:10.1594/PANGAEA.718850doi:10.4319/lo.2006.51.4.1629The effect of seawater CO2 concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experimentKoreaNorth PacificBRcommunity;growth; otherprocess; abundance; community compositioncarbon chemistry849
doi:10.1594/PANGAEA.824065doi:10.4490/algae.2013.28.2.173Synergistic effects of elevated carbon dioxide and sodium hypochlorite on survival and impairment of three phytoplankton speciesKoreaPhytoplanktonphotosynthesis; mortalitytoxicants; carbon chemistry44868
doi:10.1594/PANGAEA.835475doi:10.1038/ismej.2010.211CO2 and vitamin B12 interactions determine bioactive trace metal requirements of a subarctic Pacific diatomUSAPhytoplanktongrowth; primary production; otherprocess;nutrients; carbon chemistry270
doi:10.1594/PANGAEA.763297doi:10.1016/j.gca.2010.10.015Controls on calcium isotope fractionation in cultured planktic foraminifera, Globigerinoides ruber and Globigerinella siphoniferaGermanyRed Seaprotistscalcificationsalinity; temperature; carbon chemistry906
doi:10.1594/PANGAEA.825107doi:10.1016/j.marpolbul.2013.06.026Effects of elevated pCO2 on reproductive properties of the benthic copepod Tigriopus japonicus and gastropod Babylonia japonicaJapanSouth Pacificcrustaceans; zooplankton; mollusksmortality; reproductioncarbon chemistry1960
doi:10.1594/PANGAEA.836948doi:10.1021/es501611uInteractive effects of ocean acidification, elevated temperature and reduced salinity on early-life stages of the Pacific oysterChinaNorth PacificMolluskphysiology; morphologysalinity; temperature; carbon chemistry1563
doi:10.1594/PANGAEA.830882doi:10.1371/journal.pone.0064147Larval and post-larval stages of Pacific oyster (Crassostrea gigas) are resistant to elevated CO2ChinaMolluskcalcification; respiration; mortality; morphologycarbon chemistry9573
doi:10.1594/PANGAEA.836912doi:10.1007/s11120-014-9984-9Strong shift from HCO to CO uptake in Emiliania huxleyi with acidification: new approach unravels acclimation versus short-term pH effectsGermanyPhytoplanktongrowth; primary production; morphology; otherprocess; adaptation; photosynthesis; calcificationcarbon chemistry548
doi:10.1594/PANGAEA.777430doi:10.1104/pp.110.159145Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: physiological responsesGermanyprokaryotesnitrogen fixation; growth; photosynthesis;otherprocess; adaptationlight; carbon chemistry1788
doi:10.1594/PANGAEA.736024doi:10.4319/lo.2009.54.2.0548Carbon acquisition by Trichodesmium: the effect of pCO2 and diurnal changesGermanyprokaryotesgrowth;photosynthesis; nitrogen fixation;temperature; light; carbon chemistry96
doi:10.1594/PANGAEA.777419doi:10.4319/lo.2010.55.6.2563Calcium carbonate precipitation induced by the growth of the marine cyanobacteria TrichodesmiumGermanyprokaryotescarbon chemistry2017
doi:10.1594/PANGAEA.831668doi:10.1007/s10152-013-0348-1Study on the effects of near-future ocean acidification on marine yeasts: a microcosm approachGermanyNorth Atlanticotherprocess; community composition;carbon chemistry2700
doi:10.1594/PANGAEA.831726doi:10.3354/ame01622Marine fungi may benefit from ocean acidificationGermanyNorth Atlanticotherprocess; abundance; community composition;carbon chemistry8997
doi:10.1594/PANGAEA.823376doi:10.1002/ece3.245Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditionsFinlandMediterranean; North Atlantic; BalticPhytoplanktonphytoplankton; growthtemperature; carbon chemistry6716
doi:10.1594/PANGAEA.754785doi:10.1016/j.gca.2010.05.023Physiological and isotopic responses of scleractinian corals to ocean acidificationIsraelcorals; protistsmortality; calcification; growth; otherprocess; primary productioncarbon chemistry258
doi:10.1594/PANGAEA.777433doi:10.1073/pnas.1107789108Divergent ecosystem responses within a benthic marine community to ocean acidificationUSAMediterraneanBRcommunity; mollusks; crustaceans; annelidsotherprocess; abundance; community composition; morphologycarbon chemistry1056
doi:10.1594/PANGAEA.762350doi:10.5194/bg-8-771-2011Effects of changes in carbonate chemistry speciation on Coccolithus braarudii: a discussion of coccolithophorid sensitivitiesGermanyPhytoplanktoncalcification; primary production; growthcarbon chemistry930
doi:10.1594/PANGAEA.819628doi:10.1038/ngeo100Decreased abundance of crustose coralline algae due to ocean acidificationUSANorth PacificAlgaegrowth; reproductioncarbon chemistry318
doi:10.1594/PANGAEA.721193doi:10.3354/ab00009Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigasJapanNorth PacificMolluskmorphologycarbon chemistry2170
doi:10.1594/PANGAEA.721138doi:10.3354/meps274161Effects of increased atmospheric CO2 on sea urchin early developmentJapanNorth PacificEchinodermreproduction; morphologycarbon chemistry1023
doi:10.1594/PANGAEA.736519doi:10.5194/bg-6-2561-2009Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalisFranceMolluskreproduction; otherprocesstemperature; carbon chemistry4149
doi:10.1594/PANGAEA.763988doi:10.1016/j.aquatox.2011.05.021Effects of ocean acidification on trace element accumulation in the early-life stages of squid Loligo vulgarisFranceMolluskotherprocesscarbon chemistry13027
doi:10.1594/PANGAEA.721194doi:10.1029/2004JC002576Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichmentUSANorth PacificCoralsphotosynthesis; calcificationcarbon chemistry180
doi:10.1594/PANGAEA.721740doi:10.1029/2002GB001941Effect of elevated CO2 on the community metabolism of an experimental coral reefUSABRcommunityprimary production; respiration; calcification; dissolutioncarbon chemistry442
doi:10.1594/PANGAEA.721195doi:10.1029/1999GB001195Effect of calcium carbonate saturation state on the rate of calcification of an experimental coral reefUSABRcommunitycalcificationcarbon chemistry1134
doi:10.1594/PANGAEA.763286doi:10.1029/2010GC003393CO2 mediation of adverse effects of seawater acidification in Calcidiscus leptoporusSpainPhytoplanktonmorphology; otherprocess; calcification; growthcarbon chemistry246
doi:10.1594/PANGAEA.721107doi:10.1029/2005GC001227Species-specific responses of calcifying algae to changing seawater carbonate chemistryGermanySouth AtlanticPhytoplanktoncalcification; primary production; morphology;growthcarbon chemistry189
doi:10.1594/PANGAEA.733946doi:10.5194/bg-6-2637-2009Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistrySpainPhytoplanktongrowth; primary production; calcification;carbon chemistry496
doi:10.1594/PANGAEA.778475doi:10.1016/j.jembe.2011.11.028Calcification of Calcidiscus leptoporus under nitrogen and phosphorus limitationGermanyPhytoplanktongrowth; calcification; primary production;morphologycarbon chemistry238
doi:10.1594/PANGAEA.826456hdl:10013/epic.37875.d001The morphological response of Emiliania huxleyi to seawater carbonate chemistry changes: an inter-strain comparisonSpainPhytoplanktonmorphologycarbon chemistry496
doi:10.1594/PANGAEA.761915doi:10.3390/md8082318Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas - changes in metabolic pathways and thermal responseGermanyNorth AtlanticMolluskphysiologycarbon chemistry2179
doi:10.1594/PANGAEA.726955doi:10.5194/bg-5-523-2008Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO2 levelsNorwayNorth Atlanticprokaryotesotherprocess; community compositioncarbon chemistry11007
doi:10.1594/PANGAEA.837087doi:10.1111/febs.12614Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridisMonacoCnidariaphysiologycarbon chemistry1999
doi:10.1594/PANGAEA.835499doi:10.1098/rstb.2012.0441Bioturbation determines the response of benthic ammonia-oxidizing microorganisms to ocean acidificationUKprokaryotes; Archaea; crustaceansperformance; otherprocess; abundance;carbon chemistry13415
doi:10.1594/PANGAEA.825091doi:10.5194/bg-10-3465-2013The elemental composition of purple sea urchin (Strongylocentrotus purpuratus) calcite and potential effects of pCO2 during early life stagesUSANorth PacificEchinodermcalcificationcarbon chemistry704
doi:10.1594/PANGAEA.756651doi:10.1046/j.1365-2486.2000.00315.xCO2 partial pressure controls the calcification rate of a coral communityMonacoBRcommunitycalcificationcarbon chemistry1360
doi:10.1594/PANGAEA.756652doi:10.4319/lo.2002.47.2.0558Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressureMonacoBRcommunityprimary production; respiration; calcificationcarbon chemistry288
doi:10.1594/PANGAEA.771910doi:10.1111/j.1365-2486.2011.02575.xNitrogen source and pCO2 synergistically affect carbon allocation, growth and morphology of the coccolithophore Emiliania huxleyi: potential implications of ocean acidification for the carbon cycleUSAPhytoplanktonmorphology; growth; calcification; primary production;otherprocesscarbon chemistry188
doi:10.1594/PANGAEA.832413doi:10.5194/bg-10-1143-2013Effect of ocean acidification on the fatty acid composition of a natural plankton communityNorwayArcticBRcommunity; phytoplanktonphysiologycarbon chemistry38502
doi:10.1594/PANGAEA.777431doi:10.1104/pp.110.159285Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: a mechanistic viewIsraelprokaryotesnitrogen fixation; photosynthesis; otherprocess; adaptationlight; carbon chemistry608
doi:10.1594/PANGAEA.835484doi:10.1073/pnas.1315162110Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea iceUKArcticzooplankton; crustaceansotherprocess; mortalitycarbon chemistry3852
doi:10.1594/PANGAEA.824663doi:10.1371/journal.pone.0055562Rising CO2 interacts with growth light and growth rate to alter photosystem II photoinactivation of the coastal diatom Thalassiosira pseudonanaCanadaPhytoplanktonphotosynthesis; growthlight; carbon chemistry1542
doi:10.1594/PANGAEA.841041doi:10.1007/s00343-014-3317-xThe potential of ocean acidification on suppressing larval development in the Pacific oyster Crassostrea gigas and blood cockle Arca inflata ReeveChinaNorth PacificMolluskmorphologycarbon chemistry160
doi:10.1594/PANGAEA.824408doi:10.1016/j.marpolbul.2013.06.035Detrimental effects of reduced seawater pH on the early development of the Pacific abaloneChinaNorth PacificMolluskreproduction;morphologycarbon chemistry288
doi:10.1594/PANGAEA.778197doi:10.1016/j.marpolbul.2012.01.033A marine secondary producer respires and feeds more in a high CO2 oceanChinaNorth PacificZooplankton,crustaceanrespiration; performancecarbon chemistry424
doi:10.1594/PANGAEA.823110doi:10.1371/journal.pone.0051590Interactive effects of ocean acidification and nitrogen-limitation on the diatom Phaeodactylum tricornutumChinaPhytoplanktongrowth; morphology; photosynthesis; respirationnutrients; carbon chemistry29292
doi:10.1594/PANGAEA.823078doi:10.5194/bg-9-3931-2012Ocean acidification mediates photosynthetic response to UV radiation and temperature increase in the diatom Phaeodactylum tricornutumChinaPhytoplanktonphotosynthesistemperature; light; carbon chemistry41489
doi:10.1594/PANGAEA.837678doi:10.1371/journal.pone.0096173Light-modulated responses of growth and photosynthetic performance to ocean acidification in the model diatom Phaeodactylum tricornutumChinaPhytoplanktonphotosynthesis; growthlight; carbon chemistry3778
doi:10.1594/PANGAEA.761910doi:10.5194/bg-8-919-2011Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growthGermanyArcticzooplankton; mollusksmortality; growth; morphology; dissolutiontemperature; carbon chemistry2461
doi:10.1594/PANGAEA.832422doi:10.1111/gcb.12020Synergistic effects of ocean acidification and warming on overwintering pteropods in the ArcticGermanyArcticzooplankton; mollusksdissolution; morphology; mortality; otherprocess; abundancetemperature; carbon chemistry8971
doi:10.1594/PANGAEA.830590doi:10.2216/11-65.1CO2-driven seawater acidification increases photochemical stress in a green algaChinaNorth PacificAlgaephotosynthesislight; carbon chemistry3308
doi:10.1594/PANGAEA.823153doi:10.1111/j.1558-5646.2012.01812.xFunctional genetic divergence in high CO2 adapted Emiliania huxleyi populationsGermanyNorth AtlanticPhytoplanktonotherprocess; adaptationsalinity; light; carbon chemistry4800
doi:10.1594/PANGAEA.832482doi:10.1038/ngeo1441Adaptive evolution of a key phytoplankton species to ocean acidificationGermanyPhytoplanktonotherprocess; adaptation; calcification; growth; morphologycarbon chemistry3150
doi:10.1594/PANGAEA.832536doi:10.1098/rspb.2014.0003Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidificationGermanyPhytoplanktoncalcification; growth;otherprocess; photosynthesis; physiologycarbon chemistry15400
doi:10.1594/PANGAEA.744887doi:10.5194/bg-7-247-2010Effect of carbonate ion concentration and irradiance on calcification in planktonic foraminiferaFranceNorth Atlantic; North Pacificprotistscalcification; morphologylight; carbon chemistry8959
doi:10.1594/PANGAEA.771573doi:10.1111/j.1439-0485.2010.00426.xStructural and geochemical alterations in the Mg calcite bryozoan Myriapora truncata under elevated seawater pCO2 simulating ocean acidificationItalyMediterraneanbryozoadissolution; morphologycarbon chemistry495
doi:10.1594/PANGAEA.723045doi:10.5194/bg-5-371-2008Competition for inorganic and organic forms of nitrogen and phosphorous between phytoplankton and bacteria during an Emiliania huxleyi spring bloomNorwayBRcommunitygrowthcarbon chemistry4748
doi:10.1594/PANGAEA.837464doi:10.5194/bg-11-3695-2014Effect of enhanced pCO2 levels on the production of dissolved organic carbon and transparent exopolymer particles in short-term bioassay experimentsUKNorth Atlanticphytoplankton; BRcommunitygrowthcarbon chemistry12066
doi:10.1594/PANGAEA.830598doi:10.5194/bg-10-5671-2013Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the centuryFranceMediterraneanCoralsotherprocess; adaptation; respirationcarbon chemistry14120
doi:10.1594/PANGAEA.767577doi:10.5194/bg-6-1671-2009Calcification of the cold-water coral Lophelia pertusa, under ambient and reduced pHFranceNorth AtlanticCoralscalcification;carbon chemistry7748
doi:10.1594/PANGAEA.830598doi:10.1371/journal.pone.0062655End of the century pCO2 levels do not impact calcification in Mediterranean cold-water coralsFranceMediterraneanCoralscalcification; otherprocess; adaptationcarbon chemistry14120
doi:10.1594/PANGAEA.772704doi:10.1098/rspb.2011.1763Calcification rates and the effect of ocean acidification on Mediterranean cold-water coralsFranceMediterraneanCoralscorals; calcificationcarbon chemistry608
doi:10.1594/PANGAEA.763289doi:10.1017/S0025315410000457Short-term exposure to hypercapnia does not compromise feeding, acid-base balance or respiration of Patella vulgata but surprisingly is accompanied by radula damageUKNorth AtlanticMolluskotherprocess; physiology; respiration;carbon chemistry480
doi:10.1594/PANGAEA.823320doi:10.1002/ece3.475One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperatureFranceMediterraneanAlgaecalcification; photosynthesis; respiration;temperature; carbon chemistry14036
doi:10.1594/PANGAEA.767600doi:10.1242/jeb.051169Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidificationMonacoMediterraneanEchinodermreproduction; mortality; growth; calcificationcarbon chemistry16248
doi:10.1594/PANGAEA.819631doi:10.1098/rspb.2002.2212Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparisonMonacoCoralscalcification; morphologycarbon chemistry755
doi:10.1594/PANGAEA.721770doi:10.1007/s00338-008-0375-6Coral calcification responds to seawater acidification: a working hypothesis towards a physiological mechanismUKCoralsphotosynthesis; growth;carbon chemistry102
doi:10.1594/PANGAEA.834159doi:10.1093/icesjms/fsu161Effect of ocean warming and acidification on a plankton community in the NW Mediterranean SeaFranceMediterraneanBRcommunity; phytoplankton; prokaryotes; virusprimary production; abundance; physiology; otherprocess; photosynthesistemperature; carbon chemistry3443
doi:10.1594/PANGAEA.824665doi:10.1111/j.1529-8817.2012.01171.xElevated carbon dioxide differentially alters the photophysiology of Thalassiosira pseudonana (Bacillariophyceae) and Emiliania huxleyi (Haptophyta)CanadaPhytoplanktongrowth; photosynthesis; physiology; otherprocess; abundancecarbon chemistry1086
doi:10.1594/PANGAEA.756660doi:10.1017/S0954102009990198Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidificationUSAAntarcticmollusks; algae;brachiopodsdissolutioncarbon chemistry5342
doi:10.1594/PANGAEA.823445doi:10.1016/j.marpolbul.2013.02.010Effects of elevated CO2 on the reproduction of two calanoid copepodsUKNorth Atlanticzooplankton; crustaceansreproductioncarbon chemistry9998
doi:10.1594/PANGAEA.833887doi:10.1002/grl.50802Hysteresis between coral reef calcification and the seawater aragonite saturation stateAustraliaSouth PacificCoralscalcificationcarbon chemistry1204
doi:10.1594/PANGAEA.836205doi:10.1371/journal.pone.0086984The response of Antarctic sea ice algae to changes in pH and CO2AustraliaAntarcticphytoplankton; prokaryotesphotosynthesis; growth;carbon chemistry747
doi:10.1594/PANGAEA.771574doi:10.1086/662680Exposure to elevated temperature and pCO2 reduces respiration rate and energy status in the periwinkle Littorina littoreaUKNorth AtlanticMolluskrespiration; physiologytemperature; carbon chemistry196
doi:10.1594/PANGAEA.770479doi:10.1371/journal.pone.0024223Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulisGermanyBalticMolluskmorphology; dissolution;nutrients; carbon chemistry340
doi:10.1594/PANGAEA.727746doi:10.3354/meps293109Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialisGreeceMediterraneanMolluskgrowth; physiology; dissolutioncarbon chemistry486
doi:10.1594/PANGAEA.836006doi:10.1038/srep04189Ocean acidification impairs vermetid reef recruitmentUKMediterraneanMolluskreproduction; morphology; mortalitycarbon chemistry2248
doi:10.1594/PANGAEA.836664doi:10.1890/14-0559.1Temperature is the evil twin: effects of increased temperature and ocean acidification on reproduction in a reef fishAustraliaSouth PacificFishreproduction; mortality; physiologytemperature; carbon chemistry2364
doi:10.1594/PANGAEA.823152doi:10.1038/nclimate1599Parental environment mediates impacts of increased carbon dioxide on a coral reef fishAustraliaSouth PacificFishotherprocess; adaptation; morphology; physiology; mortality;temperature; carbon chemistry552
doi:10.1594/PANGAEA.826455doi:10.1111/gcb.12259Increased CO2 stimulates reproduction in a coral reef fishAustraliaSouth PacificFishmorphology; reproduction;carbon chemistry606
doi:10.1594/PANGAEA.721775doi:10.4319/lo.2004.49.2.0322Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO2USAPhytoplanktoncarbon chemistry392
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-3285-2013Effect of CO2 enrichment on bacterial metabolism in an Arctic fjordFranceArcticprokaryotesprimary production; respirationcarbon chemistry35695
doi:10.1594/PANGAEA.763909doi:10.1016/j.marpolbul.2010.09.012Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816)BelgiumNorth AtlanticEchinodermreproductioncarbon chemistry3306
doi:10.1594/PANGAEA.836066doi:10.1016/j.jembe.2014.04.007Impact of elevated pCO2 on acid-base regulation of the sea urchin Echinometra mathaei and its relation to resistance to ocean acidification: A study in mesocosmsBelgiumEchinodermphysiology; respiration; morphologycarbon chemistry3152
doi:10.1594/PANGAEA.823462doi:10.1016/j.jembe.2012.09.014Calcification reduction and recovery in native and non-native Mediterranean corals in response to ocean acidificationSpainMediterraneanCoralsalcification; morphology; otherprocesscarbon chemistry10438
doi:10.1594/PANGAEA.833187doi:10.3390/w6010059Resistance of two Mediterranean cold-water coral species to low-pH conditionsSpainMediterraneanCoralsmorphology; calcificationcarbon chemistry8700
doi:10.1594/PANGAEA.833768doi:10.1007/s00338-014-1159-9Differential response of two Mediterranean cold-water coral species to ocean acidificationSpainMediterraneanCoralscalcification; morphology; physiologycarbon chemistry12732
doi:10.1594/PANGAEA.831695doi:10.1111/j.1365-294X.2012.05554.xWhole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcificationAustraliaCoralscalcification;carbon chemistry2489
doi:10.1594/PANGAEA.829376doi:10.5194/bg-9-4155-2012Influence of CO2 and nitrogen limitation on the coccolith volume of Emiliania huxleyi (Haptophyta)AustraliaPhytoplanktonprimary production; calcification; morphology; growth;otherprocess; abundance;nutrients; carbon chemistry397
doi:10.1594/PANGAEA.834251doi:10.5194/bg-11-1065-2014Influence of temperature and CO2 on the strontium and magnesium composition of coccolithophore calciteAustraliaPhytoplanktoncalcification; growth; photosynthesistemperature; nutrients; carbon chemistry2247
doi:10.1594/PANGAEA.744738doi:10.5194/bg-7-1109-2010Effects of long-term high CO2 exposure on two species of coccolithophoresGermanyPhytoplanktongrowth; morphologycarbon chemistry1405
doi:10.1594/PANGAEA.744864doi:10.3354/meps08137Interacting effects of elevated temperature and ocean acidification on the aerobic performance of coral reef fishesAustraliaSouth PacificFishphysiology; mortalitytemperature; carbon chemistry324
doi:10.1594/PANGAEA.737412doi:10.1073/pnas.0809996106Ocean acidification impairs olfactory discrimination and homing ability of a marine fishAustraliaFishotherprocesscarbon chemistry70
doi:10.1594/PANGAEA.763912doi:10.3354/meps08990Ocean acidification does not affect the early life history development of a tropical marine fishAustraliaFishmortality; morphologycarbon chemistry144
doi:10.1594/PANGAEA.778199doi:10.5194/bg-8-1631-2011Effect of ocean acidification on otolith development in larvae of a tropical marine fishAustraliaFishmorphology; calcificationcarbon chemistry354
doi:10.1594/PANGAEA.833429doi:10.2478/oac-2012-0001Selective mortality associated with variation in CO2 tolerance in a marine fishAustraliaSouth PacificFishotherprocess; adaptation; mortality; performancecarbon chemistry627
doi:10.1594/PANGAEA.833440doi:10.1007/s00227-012-2111-6Elevated CO2 affects the behavior of an ecologically and economically important coral reef fishAustraliaSouth PacificFishperformancecarbon chemistry314
doi:10.1594/PANGAEA.838990doi:10.3354/meps10791Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fishUSANorth AtlanticFishmortality; otherprocess; adaptation; reproduction; morphology; growthcarbon chemistry952
doi:10.1594/PANGAEA.779704doi:10.1242/bio.2011036Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decadesJapanNorth PacificCoralsphysiology; performancecarbon chemistry256
doi:10.1594/PANGAEA.771296doi:10.1371/journal.pone.0014521Coral larvae under ocean acidification: survival, metabolism, and metamorphosisJapanNorth PacificCoralsmortality; physiology; reproductioncarbon chemistry1661
doi:10.1594/PANGAEA.825092doi:10.1038/nclimate1760Dolomite-rich coralline algae in reefs resist dissolution in acidified conditionsAustraliaSouth PacificAlgaedissolution; morphologycarbon chemistry801
doi:10.1594/PANGAEA.835645doi:10.1016/j.chemosphere.2012.09.063Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensisChileSouth PacificMolluskphysiologycarbon chemistry132
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-1391-2013Mesozooplankton community development at elevated CO2 concentrations: results from a mesocosm experiment in an Arctic fjordGermanyArcticBRcommunity; mollusks; zooplankton; crustaceans; annelidsotherprocess; abundance; community compositioncarbon chemistry35695
doi:10.1594/PANGAEA.777447doi:10.1038/nclimate1352Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter functionNorwaySouth PacificFishperformancecarbon chemistry600
doi:10.1594/PANGAEA.735138doi:10.5194/essd-2-167-2010EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidificationFrancecarbon chemistry1793
doi:10.1594/PANGAEA.833402doi:10.1371/journal.pone.0093021Does encapsulation protect embryos from the effects of ocean acidification? The example of Crepidula fornicataFranceNorth AtlanticMolluskreproduction; morphologycarbon chemistry6822
doi:10.1594/PANGAEA.830639doi:10.1111/jpy.12085Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperaturesFranceNorth AtlanticAlgaecalcification; physiology; primary production; respiration;temperature; carbon chemistry5796
doi:10.1594/PANGAEA.830640doi:10.1016/j.jembe.2013.07.006Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidificationFranceNorth AtlanticAlgaecalcification; physiology; primary production; respirationcarbon chemistry6456
doi:10.1594/PANGAEA.772705doi:10.1016/j.jembe.2011.10.020Interactive effects of elevated temperature and CO2 on foraging behavior of juvenile coral reef fishAustraliaSouth PacificFishperformancetemperature; carbon chemistry252
doi:10.1594/PANGAEA.721879Effect of CaCO3 (aragonite) saturation state of seawater on calcification of Porites coralJapanCoralscalcificationcarbon chemistry920
doi:10.1594/PANGAEA.833005doi:10.1007/s00338-013-1015-3Stress-tolerant corals of Florida Bay are vulnerable to ocean acidificationUSANorth AtlanticCoralscalcification; photosynthesiscarbon chemistry2975
doi:10.1594/PANGAEA.825090doi:10.1515/bot-2012-0163Effects of ocean acidification on different life-cycle stages of the kelp Laminaria hyperborea (Phaeophyceae)GermanyNorth AtlanticAlgaephotosynthesis; growth; reproduction; morphologycarbon chemistry3079
doi:10.1594/PANGAEA.825740doi:10.1111/pre.12006Effects of ocean acidification on growth and physiology of Ulva lactuca (Chlorophyta) in a rockpool-scenarioGermanyNorth AtlanticAlgaegrowth; photosynthesis; morphology;carbon chemistry1851
doi:10.1594/PANGAEA.834202doi:10.1093/jxb/ert329Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta)GermanyAlgaephotosynthesis; growthtemperature; carbon chemistry33142
doi:10.1594/PANGAEA.836793doi:10.1086/BBLv226n3p255Effects of ocean acidification on population dynamics and community structure of crustose coralline algaeAustraliaSouth Pacificalgae; BRcommunitycommunity composition; abundance; otherprocess; morphology; reproductioncarbon chemistry130378
doi:10.1594/PANGAEA.831600doi:10.1098/rspb.2013.0155Temperature and CO2 additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratusUSANorth PacificEchinodermphysiology; morphology; reproduction; respirationtemperature; carbon chemistry4571
doi:10.1594/PANGAEA.831423doi:10.1016/j.jembe.2012.03.023Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvisusGermanyBalticcrustaceanreproduction; mortalitysalinity; temperature; carbon chemistry60140
doi:10.1594/PANGAEA.831429doi:10.1007/s00227-012-2069-4Tolerance of juvenile barnacles (Amphibalanus improvisus) to warming and elevated pCO2GermanyBalticcrustaceanmorphology; mortality; growth; otherprocesstemperature; carbon chemistry23856
doi:10.1594/PANGAEA.831428doi:10.1111/gcb.12478Habitat traits and food availability determine the response of marine invertebrates to ocean acidificationGermanyNorth Atlanticcrustaceanmortality; morphology; reproductionnutrients; carbon chemistry43646
doi:10.1594/PANGAEA.831430doi:10.1093/icesjms/fst092Larval development of the barnacle Amphibalanus improvisus responds variably but robustly to near-future ocean acidificationSwedencrustaceanmorphology; mortalitycarbon chemistry4963
doi:10.1594/PANGAEA.834079doi:10.1021/es403351hDirect linkage between DMS production and microzooplankton grazing resulting from prey composition change under high pCO2 conditionsKoreaBRcommunity; phytoplanktonotherprocess; community compositiontemperature; carbon chemistry29214
doi:10.1594/PANGAEA.763298doi:10.1016/j.marpolbul.2010.08.018The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepodsUSAcrustaceans; zooplanktonotherprocess;carbon chemistry1680
doi:10.1594/PANGAEA.726955doi:10.5194/bg-5-739-2008Effects of increased atmospheric CO2 on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloomNorwayNorth Atlanticphytoplankton; prokaryotesgrowth; otherprocess; abundance; community composition;carbon chemistry11007
doi:10.1594/PANGAEA.830183doi:10.1016/j.marpolbul.2013.02.011Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, MexicoUKNorth Pacificprotistsotherprocess; community composition; dissolutioncarbon chemistry14399
doi:10.1594/PANGAEA.836007doi:10.1007/s00227-013-2365-7Impact of ocean acidification in the metabolism and swimming behavior of the dolphinfish (Coryphaena hippurus) early larvaePortugalFishperformance; physiologycarbon chemistry70
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-297-2013Response of bacterioplankton activity in an Arctic fjord system to elevated pCO2: results from a mesocosm perturbation studyGermanyArcticBRcommunity;prokaryotesgrowth; physiology; otherprocess; abundancecarbon chemistry35695
doi:10.1594/PANGAEA.758700doi:10.1111/j.1600-0706.2010.19470.xWill variation among genetic individuals influence species responses to global climate change?UKNorth Atlanticbryozoareproduction; morphology; growth;temperature; carbon chemistry1584
doi:10.1594/PANGAEA.835574doi:10.5194/bg-11-2519-2014European sea bass, Dicentrarchus labrax, in a changing oceanUKFishmorphology; mortality; physiology;carbon chemistry26641
doi:10.1594/PANGAEA.779703doi:10.3354/meps09309Species-specific consequences of ocean acidification for the calcareous tropical green algae HalimedaUSANorth PacificAlgaemorphology; calcification; photosynthesiscarbon chemistry945
doi:10.1594/PANGAEA.834573doi:10.5194/bg-11-1863-2014The influence of seawater pH on U / Ca ratios in the scleractinian cold-water coral Lophelia pertusaGermanyNorth Atlantic;MediterraneanCoralscalcificationcarbon chemistry171
doi:10.1594/PANGAEA.823460doi:10.1111/j.1365-2486.2012.02756.xOcean acidification weakens the structural integrity of coralline algaeUKNorth AtlanticAlgaemorphology; growth;carbon chemistry152
doi:10.1594/PANGAEA.831831doi:10.1002/ece3.723Phenotypic plasticity of coralline algae in a high CO2 worldGermanyNorth AtlanticAlgaeotherprocess; adaptation; physiology; growthcarbon chemistry21046
doi:10.1594/PANGAEA.758073doi:10.5194/bg-7-869-2010Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated calcite saturation stateGermanyprotistsmorphology; calcificationcarbon chemistry304
doi:10.1594/PANGAEA.835629doi:10.1017/S0025315413000891Geographical variation in shell morphology of juvenile snails (Concholepas concholepas) along the physical-chemical gradient of the Chilean coastChileSouth PacificMolluskmorphologytemperature; carbon chemistry5424
doi:10.1594/PANGAEA.758702doi:10.1016/j.jembe.2010.10.020Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased pCO2 and reduced pH: variable responses to ocean acidification at local scales?PortugalMolluskmorphology; mortality; reproduction;carbon chemistry750
doi:10.1594/PANGAEA.841042doi:10.3354/meps10861Relative sensitivity of soft-bottom intertidal macrofauna to increased CO2 and experimental stressPortugalNorth AtlanticBRcommunity;community composition; otherprocesscarbon chemistry11595
doi:10.1594/PANGAEA.833632doi:10.1016/j.jembe.2012.05.010Seawater acidification by CO2 in a coastal lagoon environment: effects on life history traits of juvenile mussels Mytilus galloprovincialisPortugalNorth AtlanticMolluskgrowth; morphology; mortalitycarbon chemistry3090
doi:10.1594/PANGAEA.831208doi:10.1111/j.1574-6941.2012.01443.xEffect of increased pCO2 on bacterial assemblage shifts in response to glucose addition in Fram Strait seawater mesocosmsNorwayArcticprokaryotesotherprocess; community compositioncarbon chemistry112442
doi:10.1594/PANGAEA.721887doi:10.3354/meps293069Effect of nutrient enrichment and elevated CO2 partial pressure on growth rate of Atlantic scleractinian coral Acropora cervicornisUSANorth AtlanticCoralsgrowth; mortalitynutrients; carbon chemistry608
doi:10.1594/PANGAEA.830261doi:10.1111/gcb.12158Ocean acidification and warming scenarios increase microbioerosion of coral skeletonsAustraliaSouth Pacificcorals; phytoplankton; algaedissolution; otherprocess; community compositiontemperature; carbon chemistry9021
doi:10.1594/PANGAEA.833683doi:10.1111/gcb.12035Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenariosAustraliaSouth Pacificprotistscalcification; morphology; growth; photosynthesis; respirationnutrients; carbon chemistry4892
doi:10.1594/PANGAEA.779699doi:10.1046/j.1365-2486.2003.00678.xInteracting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coralMonacoCoralsphotosynthesis; calcification; respirationtemperature; carbon chemistry1676
doi:10.1594/PANGAEA.770439doi:10.1007/s00227-010-1580-8Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO2: from physiology to molecular levelFrancePhytoplanktoncalcificationcarbon chemistry192
doi:10.1594/PANGAEA.771912doi:10.5194/cp-6-771-2010Perturbing phytoplankton: response and isotopic fractionation with changing carbonate chemistry in two coccolithophore specieUKPhytoplanktongrowth; calcification; photosynthesis; morphologycarbon chemistry1647
doi:10.1594/PANGAEA.726955doi:10.5194/bg-5-1157-2008Mesocosm CO2 perturbation studies: from organism to community levelGermanyphytoplanktonphytoplankton; growth; calcification; photosynthesis; morphologycarbon chemistry11007
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-1835-2013Technical Note: A mobile sea-going mesocosm system-new opportunities for ocean change researchGermanyArcticcarbon chemistry35695
doi:10.1594/PANGAEA.728092doi:10.1038/35030078Reduced calcification of marine plankton in response to increased atmospheric CO2GermanyPhytoplanktonprimary production; calcification; morphologycarbon chemistry3006
doi:10.1594/PANGAEA.770071doi:10.1016/j.gca.2011.04.025A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidificationUSANorth AtlanticCoralscalcificationcarbon chemistry216
doi:10.1594/PANGAEA.770088doi:10.1016/j.jembe.2011.04.006Skeletal mineralogy in a high-CO2 worldUSANorth Atlanticcrustaceans; mollusks; algae; echinoderms; corals; annelidscalcificationcarbon chemistry2760
doi:10.1594/PANGAEA.733947doi:10.1130/G30210A.1Marine calcifiers exhibit mixed responses to CO2-induced ocean acidificationUSAcrustaceans; mollusks; echinoderms; coralscalcificationcarbon chemistry14500
doi:10.1594/PANGAEA.754790doi:10.1007/s00338-010-0632-3A nonlinear calcification response to CO2-induced ocean acidification by the coral Oculina arbusculaUSACoralscalcification; growth; mortality; morphologycarbon chemistry1941
doi:10.1594/PANGAEA.835576doi:10.1371/journal.pone.0096172Responses of the metabolism of the larvae of Pocillopora damicornis to ocean acidification and warmingUSASouth PacificCoralsphysiologytemperature; carbon chemistry2020
doi:10.1594/PANGAEA.722837doi:10.3354/meps272025Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levelsFranceNorth Atlanticphytoplankton; prokaryotes; virusotherprocess; abundancecarbon chemistry6535
doi:10.1594/PANGAEA.777725doi:10.1038/nclimate1200Coral and mollusc resistance to ocean acidification adversely affected by warmingMonacoMediterraneancorals; molluskscalcification; growth; morphologytemperature; carbon chemistry19239
doi:10.1594/PANGAEA.737475doi:10.1111/j.1439-0485.2009.00354.xEffects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 ventsMonacoMediterraneanbryozoacalcification; dissolutiontemperature; carbon chemistry198
doi:10.1594/PANGAEA.833669doi:10.1371/journal.pone.0052212Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyiGermanyPhytoplanktoncalcification; growth; physiologylight; carbon chemistry696
doi:10.1594/PANGAEA.777432doi:10.4319/lo.2012.57.2.0607Effects of CO2 and their modulation by light in the life-cycle stages of the coccolithophore Emiliania huxleyiGermanyPhytoplanktongrowth;calcification; primary production; photosynthesislight; carbon chemistry536
doi:10.1594/PANGAEA.772712doi:10.1111/j.1365-2486.2011.02594.xOcean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae)New ZealandSouth PacificAlgaereproduction; performance;carbon chemistry447
doi:10.1594/PANGAEA.833325doi:10.5194/bg-10-555-2013Ocean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosmsGermanyArcticprokaryotesotherprocess; community compositioncarbon chemistry27144
doi:10.1594/PANGAEA.721890doi:10.1016/j.gca.2004.03.013Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminiferaUSAprotistscalcificationcarbon chemistry1631
doi:10.1594/PANGAEA.758194doi:10.1111/j.1365-2486.2009.01886.xSynergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitatsAustraliaSouth PacificAlgaeotherprocess; abundance; community compositionnutrients; carbon chemistry136
doi:10.1594/PANGAEA.833685doi:10.1371/journal.pone.0052224Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia superba, exposed to enhanced carbon dioxide (CO2)USAAntarcticZooplankton,crustaceanphysiologycarbon chemistry855
doi:10.1594/PANGAEA.824063doi:10.1371/journal.pone.0070455Differential responses of calcifying and non-calcifying epibionts of a brown macroalga to present-day and future upwelling pCO2GermanyBalticalgae; bryozoa; annelidsgrowth; morphology; reproduction;carbon chemistry4408
doi:10.1594/PANGAEA.833423doi:10.1371/journal.pone.0074118Juvenile king scallop, Pecten maximus, is potentially tolerant to low levels of ocean acidification when food is unrestrictedUKMolluskphysiology; respirationnutrients; carbon chemistry46309
doi:10.1594/PANGAEA.830139doi:10.1515/bot-2012-0143Combined effects of CO2, temperature, irradiance and time on the physiological performance of Chondrus crispus (Rhodophyta)GermanyNorth AtlanticAlgaegrowth; morphology; photosynthesistemperature; light; carbon chemistry7680
doi:10.1594/PANGAEA.834430doi:10.1371/journal.pone.0093649Mixed effects of elevated pCO2 on fertilisation, larval and juvenile development and adult responses in the mobile subtidal scallop Mimachlamys asperrima (Lamarck, 1819)AustraliaSouth PacificMolluskreproduction; physiology; morphology; otherprocesscarbon chemistry928
doi:10.1594/PANGAEA.820432doi:10.1007/s00227-012-2057-8Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from NorwayGermanyNorth AtlanticMolluskmortality; performance; physiologytemperature; carbon chemistry1973
doi:10.1594/PANGAEA.823378doi:10.1038/nclimate1774Variation in plastic responses of a globally distributed picoplankton species to ocean acidificationUKPhytoplanktongrowth; morphology; photosynthesis;otherprocess; adaptationcarbon chemistry5228
doi:10.1594/PANGAEA.833060doi:10.1007/s00227-012-2036-0Tolerance of Hyas araneus zoea I larvae to elevated seawater PCO2 despite elevated metabolic costsGermanyArcticcrustaceanmorphology; mortality; physiology;carbon chemistry26064
doi:10.1594/PANGAEA.833067doi:10.3354/meps10687Pre-hatching seawater pCO2 affects development and survival of zoea stages of Arctic spider crab Hyas araneusGermanyArcticcrustaceanreproduction; physiology; morphology; mortality; performancecarbon chemistry16522
doi:10.1594/PANGAEA.823079doi:10.1371/journal.pone.0053118Individual variability in reproductive success determines winners and losers under ocean acidification: a case study with sea urchinsAustraliaSouth PacificEchinodermreproductioncarbon chemistry1375
doi:10.1594/PANGAEA.823080doi:10.1016/j.marpolbul.2013.10.040Sperm swimming in the polychaete Galeolaria caespitosa shows substantial inter-individual variability in response to future ocean acidificationAustraliaSouth Pacificannelidsreproductioncarbon chemistry1403
doi:10.1594/PANGAEA.837755doi:10.1038/nclimate2379Adaptation of a globally important coccolithophore to ocean warming and acidificationGermanyPhytoplanktonadaptation; otherprocess; growth; morphology; primary production; calcificationtemperature; carbon chemistry20349
doi:10.1594/PANGAEA.726914doi:10.4319/lo.2006.51.3.1284The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystomaIsraelRed SeaCoralscalcification; photosynthesis; respirationcarbon chemistry1292
doi:10.1594/PANGAEA.833874doi:10.1371/journal.pone.0075049Coral energy reserves and calcification in a high-CO2 world at two temperaturesUSACoralscalcification; morphology; physiologytemperature; carbon chemistry4748
doi:10.1594/PANGAEA.774449doi:10.1016/j.jembe.2011.06.024Regenerative capacity and biochemical composition of the sea star Luidia clathrata (Say) (Echinodermata: Asteroidea) under conditions of near-future ocean acidificationUSANorth AtlanticEchinodermperformance; morphologycarbon chemistry636
doi:10.1594/PANGAEA.836140doi:10.1016/j.jembe.2014.04.005Multiple stressor effects of near-future elevated seawater temperature and decreased pH on righting and escape behaviors of two common Antarctic gastropodsUSAAntarcticMolluskperformancetemperature; carbon chemistry240
doi:10.1594/PANGAEA.726955doi:10.5194/bg-5-707-2008Build-up and decline of organic matter during PeECE IIIGermanyNorth AtlanticBRcommunityotherprocesscarbon chemistry11007
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-161-2013Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxideGermanyArcticphytoplankton; BRcommunityotherprocess; community compositioncarbon chemistry35695
doi:10.1594/PANGAEA.727841doi:10.3354/meps261111Response of the coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrate limitationFrancePhytoplanktongrowth; calcification; primary production; respiration;carbon chemistry941
doi:10.1594/PANGAEA.835214doi:10.1371/journal.pone.0088308Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO2GermanyPhytoplanktongrowth; calcification; photosynthesis; primary productiontemperature; carbon chemistry1958
doi:10.1594/PANGAEA.833900doi:10.1002/2013GL058489Diverse coral communities in naturally acidified waters of a Western Pacific ReefUSANorth PacificCoralscommunity composition; otherprocess; calcificationcarbon chemistry132
doi:10.1594/PANGAEA.770089doi:10.1016/j.marchem.2011.08.003Calcification and organic production on a Hawaiian coral reefUSANorth PacificBRcommunitycalcification; photosynthesiscarbon chemistry1178
doi:10.1594/PANGAEA.830475doi:10.1073/pnas.1216012109Ocean acidification slows nitrogen fixation and growth in the dominant diazotroph Trichodesmium under low-iron conditionsChinaprokaryotesgrowth; nitrogen fixation; physiologynutrients; carbon chemistry6960
doi:10.1594/PANGAEA.839076doi:10.1016/j.marenvres.2014.05.004Grazing under experimental hypercapnia and elevated temperature does not affect the radula of a chiton (Mollusca, Polyplacophora, Lepidopleurida)UKNorth AtlanticMolluskmorphologytemperature; carbon chemistry196
doi:10.1594/PANGAEA.767586doi:10.1029/2006JC003770Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reefIsraelRed SeaCoralscalcification; biogeochemistrytemperature; nutrients; carbon chemistry378
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-4847-2013Pelagic community production and carbon-nutrient stoichiometry under variable ocean acidification in an Arctic fjord.NorwayArcticBRcommunity; prokaryotes; phytoplanktonprimary productioncarbon chemistry35695
doi:10.1594/PANGAEA.763301doi:10.1098/rsbl.2011.0293Ocean acidification erodes crucial auditory behaviour in a marine fishUKFishperformancecarbon chemistry100
doi:10.1594/PANGAEA.831527doi:10.1007/s00338-012-0952-6Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warmingAustraliaSouth PacificAlgaecalcification; photosynthesistemperature; carbon chemistry51002
doi:10.1594/PANGAEA.774792doi:10.4319/lo.2011.56.4.1200Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiersAustraliaSouth Pacificalgae; protistscalcification; photosynthesis; morphology; mortalitytemperature; carbon chemistry3776
doi:10.1594/PANGAEA.778503doi:10.3354/ab00266Impact of medium-term exposure to CO2 enriched seawater on the physiological functions of the velvet swimming crab Necora puberUKNorth Atlanticcrustaceanphysiology; calcification; dissolution; otherprocess;carbon chemistry1687
doi:10.1594/PANGAEA.833061doi:10.1073/pnas.1117508109Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of BiscayUKNorth AtlanticPhytoplanktonotherprocess; community composition;carbon chemistry13730
doi:10.1594/PANGAEA.839886doi:10.1242/bio.20149894Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeusAustraliaSouth PacificMolluskperformancecarbon chemistry1044
doi:10.1594/PANGAEA.837677doi:10.1007/s00227-014-2511-xEffect of increasing sea water pCO2 on the northern Atlantic krill species Nyctiphanes couchiiNorwayNorth Atlanticzooplankton; crustaceansmortality; morphologycarbon chemistry9602
doi:10.1594/PANGAEA.721923doi:10.1038/37333Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopesUSANorth Pacificprotistscalcificationcarbon chemistry1060
doi:10.1594/PANGAEA.833817doi:10.1111/1462-2920.12424Strategies to alleviate P-limitation in the future acidified oceansIsraelprokaryotesphysiology; nitrogen fixation; growthnutrients; carbon chemistry1003
doi:10.1594/PANGAEA.835309doi:10.1371/journal.pone.0070106Elevated CO2 levels do not affect the shell structure of the bivalve Arctica islandica from the Western BalticGermanyBalticMolluskmorphology; growth;carbon chemistry1377
doi:10.1594/PANGAEA.831181doi:10.1186/1742-9994-9-28Metabolic shifts in the Antarctic fish Notothenia rossii in response to rising temperature and PCO2GermanyAntarcticFishphysiology; respirationtemperature; carbon chemistry1116
doi:10.1594/PANGAEA.831182doi:10.1016/j.cbpb.2013.06.006Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossiiGermanyAntarcticFishphysiology; laboratorytemperature; carbon chemistry14843
doi:10.1594/PANGAEA.774447doi:10.1016/j.cbpa.2011.06.023CO2 induced acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvaeGermanyEchinodermcalcification; physiology; mortality; growth; morphologycarbon chemistry632
doi:10.1594/PANGAEA.833111doi:10.1073/pnas.1209174109Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcificationGermanyNorth AtlanticEchinodermphysiology; calcificationcarbon chemistry41045
doi:10.1594/PANGAEA.779697doi:10.1016/j.aquatox.2011.12.020Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidificationGermanyNorth AtlanticEchinodermphysiologycarbon chemistry489
doi:10.1594/PANGAEA.774592doi:10.1016/j.cbpa.2011.06.022CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delayGermanyEchinodermphysiology; mortality; growth; morphology; respiration; performancecarbon chemistry27972
doi:10.1594/PANGAEA.726955doi:10.5194/bg-5-1145-2008Microzooplankton grazing and phytoplankton growth in marine mesocosms with increased CO2 levelsGermanyNorth AtlanticBRcommunitygrowth; otherprocess;community compositioncarbon chemistry11007
doi:10.1594/PANGAEA.825108doi:10.1007/s00338-012-0996-7Light availability determines susceptibility of reef building corals to ocean acidificationUKCoralscalcification; photosynthesislight; carbon chemistry560
doi:10.1594/PANGAEA.833852doi:10.1111/jpy.12054Effects of pCO2 and iron on the elemental composition and cell geometry of the marine diatom Pseudo-nitzschia pseudodelicatissima (Bacillariophyceae)JapanPhytoplanktongrowth; morphologynutrients; carbon chemistry1800
doi:10.1594/PANGAEA.758198doi:10.1007/s12562-009-0189-7Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora)JapanNorth PacificCoralsmortality; growth; otherprocess;carbon chemistry3510
doi:10.1594/PANGAEA.833912doi:10.1111/maec.12044Effects of low pCO conditions on sea urchin larval sizeJapanNorth PacificEchinodermmorphologycarbon chemistry204
doi:10.1594/PANGAEA.769754doi:10.1007/s12237-013-9709-xResponse of an Arctic sediment nitrogen cycling community to increased CO2UKArcticprokaryotes; BRcommunityotherprocess; community compositioncarbon chemistry47660
doi:10.1594/PANGAEA.756661doi:10.4319/lo.2009.54.6.2072The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica)USAMolluskmortality; otherprocesscarbon chemistry2461
doi:10.1594/PANGAEA.771297doi:10.1073/pnas.0913804107Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfishUSAMolluskgrowth; mortality;morphology; otherprocesscarbon chemistry2628
doi:10.1594/PANGAEA.762307doi:10.5194/bg-10-315-2013Effect of increased pCO2 on the planktonic metabolic balance during a mesocosm experiment in an Arctic fjordFranceArcticBRcommunity; zooplankton; phytoplanktonrespiration; primary productioncarbon chemistry35695
doi:10.1594/PANGAEA.726955doi:10.5194/bg-5-669-2008Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels in a mesocosm studyNorwayNorth Atlanticphytoplankton; prokaryotesotherprocesscarbon chemistry11007
doi:10.1594/PANGAEA.837683doi:10.4319/lo.2014.59.5.1468Nutrient availability affects the response of juvenile corals and the endosymbionts to ocean acidificationJapancorals; protistsabundance; otherprocess; photosynthesis; calcificationnutrients; carbon chemistry156
doi:10.1594/PANGAEA.823383doi:10.1371/journal.pone.0032116High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulentaUSANorth PacificPhytoplanktonotherprocessnutrients; carbon chemistry439
doi:10.1594/PANGAEA.835476doi:10.1098/rstb.2012.0437Short- and long-term conditioning of a temperate marine diatom community to acidification and warmingUSASouth PacificPhytoplanktonotherprocess; community compositiontemperature; carbon chemistry10188
doi:10.1594/PANGAEA.823381doi:10.1111/evo.12029Short- versus long-term responses to changing CO2 in a coastal dinoflagellate bloom: implications for interspecific competitive interactions and community structureUSANorth PacificBRcommunity; phytoplanktonotherprocess; community compositioncarbon chemistry5616
doi:10.1594/PANGAEA.831372doi:10.3354/meps09644Response of two marine bacterial isolates to high CO2 concentrationSpainMediterraneanprokaryotes;otherprocess; growth; physiology; primary production; respirationcarbon chemistry168
doi:10.1594/PANGAEA.831099doi:10.1016/j.aquaculture.2012.09.025Larval growth response of the Portuguese oyster (Crassostrea angulata) to multiple climate change stressorsChinaNorth PacificMolluskmorphologysalinity; temperature; carbon chemistry405
doi:10.1594/PANGAEA.829723doi:10.1111/gcb.12109Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experimentsGermanyBalticMolluskcalcification; morphologynutrients; carbon chemistry7211
doi:10.1594/PANGAEA.763336doi:10.5194/bg-7-3879-2010Calcifying invertebrates succeed in a naturally CO2 enriched coastal habitat but are threatened by high levels of future acidificationGermanyNorth AtlanticMolluskotherprocess; growth; dissolution; physiology; reproductioncarbon chemistry4825
doi:10.1594/PANGAEA.756663doi:10.1007/s00227-010-1527-0Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulisGermanyNorth AtlanticMolluskrespiration; physiology; growth;carbon chemistry498
doi:10.1594/PANGAEA.837671doi:10.7287/peerj.preprints.388v1Shotgun proteomics reveals physiological response to ocean acidification in Crassostrea gigasUSANorth PacificMolluskphysiology; morphology; mortality;carbon chemistry23319
doi:10.1594/PANGAEA.835714doi:10.1007/s00227-012-2055-xElevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigasUSANorth PacificMolluskmorphologycarbon chemistry7013
doi:10.1594/PANGAEA.755149ingentaconnect.comDynamics of the carbon dioxide system on the Great Bahama BankUSANorth AtlanticBRcommunitycalcificationcarbon chemistry279
doi:10.1594/PANGAEA.831725doi:10.5194/bg-10-3997-2013Photosynthate translocation increases in response to low seawater pH in a coral-dinoflagellate symbiosisMonacocorals; protistsphotosynthesis; respirationcarbon chemistry1033
doi:10.1594/PANGAEA.755150doi:10.1029/2008GB003286Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendolithsUSANorth PacificCoralsdissolution; otherprocess; community compositioncarbon chemistry544
doi:10.1594/PANGAEA.824406doi:10.4319/lo.2013.58.3.0997Sensitivity of Antarctic phytoplankton species to ocean acidification: growth, carbon acquisition, and species interactionGermanyPhytoplanktongrowth; photosynthesis; otherprocesscarbon chemistry1753
doi:10.1594/PANGAEA.833713doi:10.1016/j.jembe.2013.11.001Photophysiological responses of Southern Ocean phytoplankton to changes in CO2 concentrations: Short-term versus acclimation effectsGermanyPhytoplanktonphotosynthesislight; carbon chemistry36257
doi:10.1594/PANGAEA.733948doi:10.1016/j.jembe.2009.05.017The effect of pCO2 on carbon acquisition and intracellular assimilation in four marine diatomsGermanyPhytoplanktonphotosynthesiscarbon chemistry1263
doi:10.1594/PANGAEA.758715doi:10.1038/ngeo500Survival of mussels in extremely acidic waters on a submarine volcanoCanadaNorth Pacificmollusks; crustaceansmortality; morphology; growthcarbon chemistry780
doi:10.1594/PANGAEA.763348doi:10.1016/j.scitotenv.2010.12.007Effects of lower surface ocean pH upon the stability of shallow water carbonate sedimentsAustraliaNorth Pacificmollusks; crustaceansmortality; morphology; growthcarbon chemistry2353
doi:10.1594/PANGAEA.830881doi:10.5194/bg-10-1483-2013Response of Nodularia spumigena to pCO2-Part 3: Turnover of phosphorus compoundsGermanyBalticprokaryotesgrowthcarbon chemistry924
doi:10.1594/PANGAEA.835715doi:10.1016/j.toxicon.2013.11.011Impact of elevated pCO on paralytic shellfish poisoning toxin content and composition in Alexandrium tamarenseGermanyPhytoplanktonphysiology; growth; otherprocesscarbon chemistry6500
doi:10.1594/PANGAEA.824705doi:10.1371/journal.pone.0065987Ocean acidification reduces growth and calcification in a marine dinoflagellateGermanyPhytoplanktoncalcification; growth; morphologycarbon chemistry8222
doi:10.1594/PANGAEA.830817doi:10.1073/pnas.1216153110Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef coralsMonacoCoralscalcification;physiology;carbon chemistry2880
doi:10.1594/PANGAEA.833257doi:10.3390/w5041890Effects of ocean acidification and warming on sperm activity and early life stages of the Mediterranean mussel (Mytilus galloprovincialis)NorwayMolluskcalcification; morphology; reproduction; respiration; mortalitytemperature; carbon chemistry36718
doi:10.1594/PANGAEA.726955doi:10.5194/bg-5-407-2008Dynamics of dimethylsulphoniopropionate and dimethylsulphide under different CO2 concentrations during a mesocosm experimentGermanyNorth Atlanticphytoplankton; prokaryotesotherprocess; community compositioncarbon chemistry11007
doi:10.1594/PANGAEA.771576doi:10.3354/meps08809Size-dependent pH effect on calcification in post-larval hard clam Mercenaria spp.USAMolluskcalcificationcarbon chemistry282
doi:10.1594/PANGAEA.758181doi:10.1007/s12237-010-9307-0Biocalcification in the Eastern oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pHUSANorth Atlanticcrustaceancalcification; dissolutioncarbon chemistry376
doi:10.1594/PANGAEA.833913In situ effects of low pH and elevated HCO3 on juvenile massive Porites spp. in Moorea, French PolynesiaUSASouth PacificCoralscalcification; respirationcarbon chemistry464
doi:10.1594/PANGAEA.833949doi:10.1007/s00338-013-1085-2Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrumUSANorth PacificCoralsphotosynthesistemperature; carbon chemistry1801
doi:10.1594/PANGAEA.752286doi:10.3354/meps08807Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54¡ã vs. 79¡ãN)GermanyNorth Atlanticcrustaceanmortality; morphologytemperature; carbon chemistry8067
doi:10.1594/PANGAEA.736931doi:10.5194/bg-6-2207-2009Impact of anthropogenic ocean acidification on thermal tolerance of the spider crab Hyas araneusGermanyNorth Atlanticcrustaceanphysiology; performancecarbon chemistry396
doi:10.1594/PANGAEA.761765doi:10.1007/s00227-011-1711-xImpacts of temperature and acidification on larval calcium incorporation of the spider crab Hyas araneus from different latitudes (54¡ã vs. 79¡ãN)GermanyArctic; North Atlanticcrustaceanotherprocesstemperature; carbon chemistry5804
doi:10.1594/PANGAEA.833259doi:10.1016/j.jembe.2013.10.007Some like it hot: temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixulaSpainNorth AtlanticEchinodermmortality; reproduction; morphologytemperature; carbon chemistry20913
doi:10.1594/PANGAEA.836666doi:10.1016/j.jprot.2014.08.010Proteomic and metabolomic responses of Pacific oyster Crassostrea gigas to elevated pCO2 exposureChinaNorth PacificMolluskphysiologycarbon chemistry352
doi:10.1594/PANGAEA.833188doi:10.1016/j.marpolbul.2012.11.008Impact of elevated levels of CO2 on animal mediated ecosystem function: the modification of sediment nutrient fluxes by burrowing urchinsUKNorth AtlanticEchinodermphysiologycarbon chemistry4040
doi:10.1594/PANGAEA.836845doi:10.1242/bio.20147922Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen.The NetherlandsCoralscalcificationoxygen; carbon chemistry1312
doi:10.1594/PANGAEA.773847doi:10.1007/s10750-010-0224-9Effects of pH on asexual reproduction and statolith formation of the scyphozoan, Aurelia labiataUSANorth PacificCnidariamorphology; reproduction; mortalitycarbon chemistry46926
doi:10.1594/PANGAEA.726955doi:10.1029/2006GL028139Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: potential climate impactsUSANorth AtlanticBRcommunitymorphology; reproduction; mortalitycarbon chemistry11007
doi:10.1594/PANGAEA.831694doi:10.1371/journal.pone.0045124Ocean acidification accelerates reef bioerosionGermanySouth Pacificcorals; Poriferadissolution;carbon chemistry2116
doi:10.1594/PANGAEA.831660doi:10.3354/ab00527Effects of ocean acidification and global warming on reef bioerosion-lessons from a clionaid spongeGermanySouth Pacificcorals; protists; Poriferadissolution;temperature; carbon chemistry2508
doi:10.1594/PANGAEA.831657doi:10.1007/s10152-014-0385-4Sponge bioerosion accelerated by ocean acidification across species and latitudes?GermanyNorth AtlanticPoriferadissolutioncarbon chemistry1515
doi:10.1594/PANGAEA.770491doi:10.1111/j.1462-2920.2011.02571.xEffects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier ReefAustraliaSouth Pacificprokaryotesotherprocess; community compositioncarbon chemistry156
doi:10.1594/PANGAEA.770091doi:10.1016/j.cbd.2011.07.001Response of larval barnacle proteome to CO2-driven seawater acidificationChinaNorth Pacificcrustaceanreproduction; physiology; respiration; performancecarbon chemistry354
doi:10.1594/PANGAEA.736021doi:10.5194/bg-6-2015-2009The influence of hypercapnia and the infaunal brittlestar Amphiura filiformis on sediment nutrient flux-will ocean acidification affect nutrient exchange?UKNorth AtlanticEchinodermotherprocesscarbon chemistry2727
doi:10.1594/PANGAEA.840478doi:10.1086/BBLv226n3p269Populations of Pacific oysters Crassostrea gigas respond variably to elevated CO2 and predation by Morula marginalbaAustraliaSouth PacificMolluskmorphology; respiration; performance; physiology;carbon chemistry37864
doi:10.1594/PANGAEA.821994doi:10.1127/1863-9135/2012/0299Growth and photosynthesis of a diatom grown under elevated CO2 in the presence of solar UV radiationChinaPhytoplanktongrowth; photosynthesislight; carbon chemistry3736
doi:10.1594/PANGAEA.758214doi:10.5194/bg-7-2915-2010CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutumChinaPhytoplanktongrowth; photosynthesis; respiration; otherprocesscarbon chemistry152
doi:10.1594/PANGAEA.758222doi:10.1007/s11434-010-4119-yCombined effects of solar UV radiation and CO2-induced seawater acidification on photosynthetic carbon fixation of phytoplankton assemblages in the South China SeaChinaNorth PacificPhytoplanktonprimary productionlight; carbon chemistry3597
doi:10.1594/PANGAEA.820556doi:10.1104/pp.112.206961Future CO2-induced ocean acidification mediates the physiological performance of a green tide algaChinaNorth PacificAlgaephotosynthesis; growthcarbon chemistry2510
doi:10.1594/PANGAEA.840328doi:10.4319/lo.2014.59.6.1919Comparative responses of two dominant Antarctic phytoplankton taxa to interactions between ocean acidification, warming, irradiance, and iron availabilityUSAPhytoplanktongrowth; primary production; morphology;community composition; otherprocesstemperature; nutrients; light; carbon chemistry32742
doi:10.1594/PANGAEA.820681doi:10.1093/pcp/pcs066Reduced calcification decreases photoprotective capability in the coccolithophorid Emiliania huxleyiChinaPhytoplanktonphotosynthesis; calcificationcarbon chemistry6738
doi:10.1594/PANGAEA.770102doi:10.5194/bg-8-1441-2011Photosynthetic responses of Emiliania huxleyi to UV radiation and elevated temperature: roles of calcified coccoliths3608
doi:10.1594/PANGAEA.820200doi:10.5194/bg-9-1441-2012Threshold of carbonate saturation state determined by a CO2 control experimentJapanNorth PacificBRcommunity; corals; protists; algaedissolutioncarbon chemistry4606
doi:10.1594/PANGAEA.826461doi:10.1016/j.marenvres.2012.06.002Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidityChinaPhytoplanktongrowth; photosynthesis; respiration;light; carbon chemistry4682
doi:10.1594/PANGAEA.743388doi:10.5194/bg-3-357-2006CO32- concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, HawaiiUSANorth PacificCoralscalcification; dissolutioncarbon chemistry1796
doi:10.1594/PANGAEA.825021doi:10.12681/mms.553Effects of low pH and raised temperature on egg production, hatching and metabolic rates of a Mediterranean copepod species (Acartia clausi) under oligotrophic conditionsGreeceMediterraneancrustaceans; zooplanktonreproduction; physiology; respirationtemperature; nutrients; carbon chemistry862
doi:10.1594/PANGAEA.835393doi:10.1016/j.marpolbul.2014.01.008The larvae of congeneric gastropods showed differential responses to the combined effects of ocean acidification, temperature and salinityChinaNorth PacificMolluskmortality; performance; respirationsalinity; temperature; carbon chemistry3136
doi:10.1594/PANGAEA.821402doi:10.1007/s00227-012-2073-8The synergistic effects of increasing temperature and CO2 levels on activity capacity and acid-base balance in the spider crab, Hyas araneusGermanyArcticcrustaceanphysiologytemperature; carbon chemistry468
doi:10.1594/PANGAEA.838830doi:10.1086/BBLv226n3p282Decline in coccolithophore diversity and impact on coccolith morphogenesis along a natural CO2 gradientSpainMediterraneanPhytoplanktonabundance; community composition; morphology; otherprocesscarbon chemistry292
doi:10.1594/PANGAEA.726883doi:10.1016/S0022-0981(02)00037-0Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengthsGermanyPhytoplanktonprimary production; calcification; growthcarbon chemistry1190
doi:10.1594/PANGAEA.726883doi:10.1029/2000GB001321Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO2GermanyPhytoplanktonprimary production; calcificationcarbon chemistry1190
doi:10.1594/PANGAEA.721926doi:10.1016/0037-0738(95)00048-DThe mechanism of production enhancement in coral reef carbonate systems: model and empirical resultsJapanNorth Pacufuccorals; BRcommunityphotosynthesis; calcification; primary productioncarbon chemistry189
doi:10.1594/PANGAEA.727288doi:10.1016/S0016-7037(00)00474-9The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyiGermanyphytoplanktonphysiology; respirationcarbon chemistry286
doi:10.1594/PANGAEA.718250doi:10.1029/2004GB002400Seasonal and bleaching-induced changes in coral reef metabolism and CO2 fluxJapanNorth Pacufuccoralsphysiology; primary production; calcification; respirationcarbon chemistry1469
doi:10.1594/PANGAEA.717469doi:10.1111/j.0022-3646.1997.00729.xPrimary production, calcification, and air-sea CO2 fluxes of a macroalgal-dominated coral reef community (Moorea, French Polynesia)FranceSouth Pacificalgaeprimary production; respiration; calcification; dissolutioncarbon chemistry320
doi:10.1594/PANGAEA.716842hdl:10013/epic.34199.d001Oxygen and carbon dioxide fluxes at the water-sediment interface of a tropical lagoonFranceSouth PacificBrcommunityrespirationcarbon chemistry600
doi:10.1594/PANGAEA.717727doi:10.3354/meps232129Organic carbon flux in Shiraho coral reef (Ishigaki Island, Japan)JapanNorth Pacufuccoralscarbon chemistry308
doi:10.1594/PANGAEA.727288doi:10.1016/S0016-7037(00)00474-9Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyiGermanyphytoplanktongrowth; performance; otherprocesslight; carbon chemistry286
doi:10.1594/PANGAEA.834082doi:10.1371/journal.pone.0104738Impacts of groundwater discharge at Myora Springs (North Stradbroke Island, Australia) on the phenolic metabolism of eelgrass, Zostera muelleri, and grazing by the juvenile rabbitfish, Siganus fuscescensUSASouth Pacificalgaephysiology; otherprocess; performancecarbon chemistry2473
doi:10.1594/PANGAEA.832403doi:10.5194/bg-10-1471-2013High tolerance of microzooplankton to ocean acidification in an Arctic coastal plankton communityGermanyArcticzooplanktoncommunity composition; otherprocesscarbon chemistry27948
doi:10.1594/PANGAEA.819627doi:10.3354/meps334063Growth limitation in marine red-tide dinoflagellates: effects of pH versus inorganic carbon availabilityDenmarkphytoplanktongrowth; physiology; primary productioncarbon chemistry2389
doi:10.1594/PANGAEA.721856doi:10.1007/s00338-008-0454-8Estimation of photosynthesis and calcification rates at a fringing reef by accounting for diurnal variations and the zonation of coral reef communities on reef flat and slope: a case study for the Shiraho reef, Ishigaki Island, southwest JapanJapanNorth Pacufuccorals; BRcommunitycalcification; photosynthesis; primary productioncarbon chemistry2576
doi:10.1594/PANGAEA.722837doi:10.1007/s10872-004-5764-zEffects of CO2 Enrichment on Marine PhytoplanktonGermanyphytoplanktoncalcificationcarbon chemistry6535
doi:10.1594/PANGAEA.830908doi:10.1007/s00300-012-1174-7Effect of ocean acidification and temperature increase on the planktonic foraminifer Neogloboquadrina pachyderma (sinistral)NorwayArcticprotistsmortality; calcification; respirationtemperature; carbon chemistry7932
doi:10.1594/PANGAEA.774781doi:10.1016/j.gca.2011.08.012Controls on Sr/Ca and Mg/Ca in scleractinian corals: The effects of Ca-ATPase and transcellular Ca channels on skeletal chemistryUKRed Seacoralsmorphology; photosynthesis; physiology; respiration; calcificationcarbon chemistry1204
doi:10.1594/PANGAEA.717486doi:10.3354/meps145109Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibriumMonacoSouth PacificBrcommunitycalcification; primary production; respiration; physiology; community composition; otherprocesscarbon chemistry459
doi:10.1594/PANGAEA.721964hdl:10013/epic.35511.d001Carbon fluxes at the water-sediment interface in Reunion Island fringing reefFranceIndianBrcommunityprimary production; physiology; respirationcarbon chemistry1292
doi:10.1594/PANGAEA.717621hdl:10013/epic.34198.d001Benthic respiratory and photosynthetic quotients in a tropical lagoonFranceSouth PacificBrcommunityrespiration; primary production; physiologycarbon chemistry294
doi:10.1594/PANGAEA.721761doi:10.3354/meps07000Benthic community respiration in areas impacted by the invasive mollusk Crepidula fornicataFranceNorth AtlanticBrcommunityrespiration; primary productiocarbon chemistry1853