Not logged in
Data Publisher for Earth & Environmental Science

Thomsen, J et al. (2014): Experiment: Food availability outweighs ocean acidification effects in juvenile Mytilus edulis. doi:10.1594/PANGAEA.829723,
Supplement to: Thomsen, Jörn; Casties, Isabel; Pansch, Christian; Körtzinger, Arne; Melzner, Frank (2013): Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Global Change Biology, 19(4), 1017-1027, doi:10.1111/gcb.12109

Always quote above citation when using data! You can download the citation in several formats below.


Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg-1) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic community. In a coupled field and laboratory study we examined the annual pCO2 variability in this habitat and the combined effects of elevated pCO2 and food availability on juvenile M. edulis growth and calcification. In the laboratory experiment, mussel growth and calcification were found to chiefly depend on food supply, with only minor impacts of pCO2 up to 3350 µatm. Kiel Fjord was characterized by strong seasonal pCO2 variability. During summer, maximal pCO2 values of 2500 µatm were observed at the surface and >3000 µatm at the bottom. However, the field growth experiment revealed seven times higher growth and calcification rates of M. edulis at a high pCO2 inner fjord field station (mean pCO2 ca. 1000 µatm) in comparison to a low pCO2 outer fjord station (ca. 600 µatm). In addition, mussels were able to outcompete the barnacle Amphibalanus improvisus at the high pCO2 site. High mussel productivity at the inner fjord site was enabled by higher particulate organic carbon concentrations. Kiel Fjord is highly impacted by eutrophication, which causes bottom water hypoxia and consequently high seawater pCO2. At the same time, elevated nutrient concentrations increase the energy availability for filter feeding organisms such as mussels. Thus M. edulis can dominate over a seemingly more acidification resistant species such as A. improvisus. We conclude that benthic stages of M. edulis tolerate high ambient pCO2 when food supply is abundant and that important habitat characteristics such as species interactions and energy availability need to be considered to predict species vulnerability to ocean acidification.
Further details:
Lavigne, Héloise; Gattuso, Jean-Pierre (2011): seacarb: seawater carbonate chemistry with R. R package version 2.4. *
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2014-2-13.
#NameShort NameUnitPrincipal InvestigatorMethodComment
1Identification *IDThomsen, Jörn *
2Species *SpeciesThomsen, Jörn *
3Treatment *TreatmThomsen, Jörn *
4Experiment *ExpThomsen, Jörn *
5Length *lµmThomsen, Jörn *Shell length
6Length, standard deviation *l std dev±Thomsen, Jörn *Shell length std dev
7Calcium carbonate, dry weight *CaCO3 DWmgThomsen, Jörn *CaCO3 mass growth
8Calcium carbonate, dry weight, standard deviation *CaCO3 DW std dev±Thomsen, Jörn *CaCO3 mass growth std dev
9Mass *MassmgThomsen, Jörn *total organic mass growth
10Mass, standard deviation *Mass std dev±Thomsen, Jörn *total organic mass growth std dev
11Station *StationThomsen, Jörn *
12Location *LocationThomsen, Jörn *
13Date *DateThomsen, Jörn *
14Carbon dioxide, partial pressure *pCO2µatmThomsen, Jörn *
15Partial pressure of carbon dioxide, standard deviation *pCO2 std dev±Thomsen, Jörn *
16pH *pHThomsen, Jörn *NBS scale
17Mass *MassmgThomsen, Jörn *mussel CaCO3 per panel
18Mass, standard deviation *Mass std dev±Thomsen, Jörn *mussel CaCO3 per panel std dev
19Shell length *Shell lmmThomsen, Jörn *
20Mass *MassmgThomsen, Jörn *Shell mass
21Carbon, organic, particulate *POCµg/lThomsen, Jörn *
22Carbon, organic, particulate, standard deviation *POC std dev±Thomsen, Jörn *
23Nitrogen, organic, particulate *PONµg/lThomsen, Jörn *
24Nitrogen, organic, particulate, standard deviation *PON std dev±Thomsen, Jörn *
25Mass *MassmgThomsen, Jörn *dry mass
26Mass, standard deviation *Mass std dev±Thomsen, Jörn *dry mass std dev
27Coverage *Cov%Thomsen, Jörn *mussel coverage
28Coverage, standard deviation *Cov std dev±Thomsen, Jörn *mussel coverage std dev
29Coverage *Cov%Thomsen, Jörn *barncale coverage
30Coverage, standard deviation *Cov std dev±Thomsen, Jörn *barncale coverage std dev
31Survival *Survival%Thomsen, Jörn *barnacle surviva
32Survival rate, standard deviation *Survival rate std dev±Thomsen, Jörn *barnacle surviva std dev
33Calcium carbonate, mass *CaCO3gThomsen, Jörn *barnacle CaCO3 (g/plate)
34Calcium carbonate, standard deviation *CaCO3 std dev±Thomsen, Jörn *barnacle CaCO3 std dev
35Haemolymph, pH *pH (ha)Thomsen, Jörn *
36Haemolymph, pH, standard deviation *pH (ha) std dev±Thomsen, Jörn *
37Salinity *SalThomsen, Jörn *
38Salinity, standard deviation *Sal std dev±Thomsen, Jörn *
39Temperature, water *Temp°CThomsen, Jörn *
40Temperature, standard deviation *T std dev±Thomsen, Jörn *
41Carbon, inorganic, dissolved *DICµmol/kgThomsen, Jörn *
42Carbon, inorganic, dissolved, standard deviation *DIC std dev±Thomsen, Jörn *
43pH *pHThomsen, Jörn *total scale
44pH, standard deviation *pH std dev±Thomsen, Jörn *total scale
45Alkalinity, total *ATµmol/kgThomsen, Jörn *
46Alkalinity, total, standard deviation *AT std dev±Thomsen, Jörn *
47Calcite saturation state *Omega CalThomsen, Jörn *
48Calcite saturation state, standard deviation *Omega Cal std dev±Thomsen, Jörn *
49Aragonite saturation state *Omega ArgThomsen, Jörn *
50Aragonite saturation state, standard deviation *Omega Arg std dev±Thomsen, Jörn *
51Carbonate system computation flag *CSC flagYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
52pH *pHYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *total scale
53Carbon dioxide *CO2µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
54Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
55Fugacity of carbon dioxide (water) at sea surface temperature (wet air) *fCO2water_SST_wetµatmYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
56Bicarbonate ion *[HCO3]-µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
57Carbonate ion *[CO3]2-µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
58Alkalinity, total *ATµmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
59Aragonite saturation state *Omega ArgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
60Calcite saturation state *Omega CalYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
7211 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML (shows only first 2000 rows)