Skip to main content
Log in

Tolerance of juvenile barnacles (Amphibalanus improvisus) to warming and elevated pCO2

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

We investigated the impacts of warming and elevated pCO2 on newly settled Amphibalanus improvisus from Kiel Fjord, an estuarine ecosystem characterized by significant natural pCO2 variability. In two experiments, juvenile barnacles were maintained at two temperature and three pCO2 levels (20/24 °C, 700–2,140 μatm) for 8 weeks in a batch culture and at four pCO2 levels (20 °C, 620–2,870 μatm) for 12 weeks in a water flow-through system. Warming as well as elevated pCO2 hardly affected growth or the condition index of barnacles, although some factor combinations led to temporal significances in enhanced or reduced growth with an increase in pCO2. While warming increased the shell strength of A. improvisus individuals, elevated pCO2 had only weak effects. We demonstrate a strong tolerance of juvenile A. improvisus to mean acidification levels of about 1,000 μatm pCO2 as is already naturally experienced by the investigated barnacle population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnes H, Klepal W, Mitchell BD (1976) Organic and inorganic composition of some cirripede shells. J Exp Mar Biol Ecol 21:119–127. doi:10.1016/0022-0981(76)90033-2

    Article  CAS  Google Scholar 

  • Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM (2010) Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar Ecol Prog Ser 419:95–108. doi:10.3354/meps08841

    Article  CAS  Google Scholar 

  • Berntsson KM, Jonsson PR (2003) Temporal and spatial patterns in recruitment and succession of a temperate marine fouling assemblage: a comparison of static panels and boat hulls during the boating season. Biofouling 19:187–195. doi:10.1080/0892701031000072091

    CAS  Google Scholar 

  • Blackford JC, Gilbert FJ (2007) pH variability and CO2 induced acidification in the North Sea. J Mar Syst 64:229–241. doi:10.1016/j.jmarsys.2006.03.016

    Article  Google Scholar 

  • Bourget E (1987) Barnacle shells: composition, structure and growth. In: Southward AJ (ed) Barnacle biology. Balkema, The Netherlands, pp 267–286

    Google Scholar 

  • Brennand HS, Soars N, Dworjanyn SA, Davis AR, Byrne M (2010) Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS ONE 5:e11372. doi:10.1371/journal.pone.0011372

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04

    Article  Google Scholar 

  • Costlow JD (1956) Shell development in Balanus improvisus Darwin. Duke University Harine Laboratory, Beaufort

    Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi:10.1126/science.1156401

    Article  CAS  Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction—AgCls + 1/2Hg−2 = Ags + HClaq and the standard acidity constant of the ion HSO4− in synthetic sea-water from 273.15-K to 318.15-K. J Chem Thermodyn 22:113–127. doi:10.1016/0021-9614(90)90074-z

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium-constants for the dissociation of carbonic-acid in seawater media. Deep Sea Res Part a Oceanogr Res Pap 34:1733–1743

    Article  CAS  Google Scholar 

  • Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar Chem 80:185–197. doi:10.1016/s0304-4203(02)00133-0

    Article  CAS  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem annual review of marine science. Annual Reviews, Palo Alto, pp 169–192

    Google Scholar 

  • Dupont S, Ortega-Martinez O, Thorndyke M (2010) Impact of near-future ocean acidification on echinoderms. Ecotoxicology 19:449–462. doi:10.1007/s10646-010-0463-6

    Article  CAS  Google Scholar 

  • Dupont S, Dorey N, Stumpp M, Melzner F, Thorndyke M (2012) Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar Biol 1–9. doi:10.1007/s00227-012-1921-x

  • Dürr S, Wahl M (2004) Isolated and combined impacts of blue mussels (Mytilus edulis) and barnacles (Balanus improvisus) on structure and diversity of a fouling community. J Exp Mar Biol Ecol 306:181–195. doi:10.1016/j.jembe.2004.01.006

    Article  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169. doi:10.1038/nclimate1122

    Article  CAS  Google Scholar 

  • Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi:10.1093/icesjms/fsn048

    Article  CAS  Google Scholar 

  • Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492

    Article  CAS  Google Scholar 

  • Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A, Krembs C, Maloy C (2010) The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar Coast Shelf Sci 88:442–449. doi:10.1016/j.ecss.2010.05.004

    Article  CAS  Google Scholar 

  • Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2009) Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar Ecol Prog Ser 389:193–202. doi:10.3354/meps08141

    Article  Google Scholar 

  • Findlay HS, Burrows MT, Kendall MA, Spicer JI, Widdicombe S (2010a) Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge? Ecology 91:2931–2940. doi:10.1890/09-1987.1

    Article  Google Scholar 

  • Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2010b) Relative influences of ocean acidification and temperature on intertidal barnacle post-larvae at the northern edge of their geographic distribution. Estuar Coast Shelf Sci 86:675–682. doi:10.1016/j.ecss.2009.11.036

    Article  CAS  Google Scholar 

  • Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2010c) Post-larval development of two intertidal barnacles at elevated CO2 and temperature. Mar Biol 157:725–735. doi:10.1007/s00227-009-1356-1

    Article  Google Scholar 

  • Gattuso J-P, Hansson L (2011) Ocean acidification. University Press Oxford, Oxford

    Google Scholar 

  • Gutowska M, Melzner F, Pörtner HO, Meier S (2010) Cuttlebone calcification increases during exposure to elevated seawater pCO2 in the cephalopod Sepia officinalis. Mar Biol 157:1653–1663

    Article  CAS  Google Scholar 

  • Hale R, Calosi P, McNeill L, Mieszkowska N, Widdicombe S (2011) Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120:661–674. doi:10.1111/j.1600-0706.2010.19469.x

    Article  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Jarrett JN (2003) Seasonal variation in larval condition and postsettlement performance of the barnacle Semibalanus balanoides. Ecology 84:384–390. doi:10.1890/0012-9658(2003)084[0384:svilca]2.0.co;2

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434. doi:10.1111/j.1461-0248.2010.01518.x

    Article  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284

    Article  CAS  Google Scholar 

  • McDonald MR, McClintock JB, Amsler CD, Rittschof D, Angus RA, Orihuela B, Lutostanski K (2009) Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite. Mar Ecol Prog Ser 385:179–187. doi:10.3354/meps08099

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberso CH, Hawley JE, Pytkowic RM (1973) Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric-pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Meier HEM (2006) Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Clim Dyn 27:39–68. doi:10.1007/s00382-006-0124-x

    Article  Google Scholar 

  • Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331

    Article  CAS  Google Scholar 

  • Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska M, Bange H, Hansen H, Körtzinger A (2012) Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar Biol 1–14. doi:10.1007/s00227-012-1954-1

  • Miller AW, Reynolds AC, Sobrino C, Riedel GF (2009) Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE 4:e5661. doi:10.1371/journal.pone.0005661

    Article  Google Scholar 

  • Nasrolahi A, Sari A, Saifabadi S, Malek M (2007) Effects of algal diet on larval survival and growth of the barnacle Amphibalanus (=Balanus) improvisus. J Mar Biol Assoc UK 87:1227–1233. doi:10.1017/s0025315407057037

    Article  Google Scholar 

  • Nasrolahi A, Pansch C, Lenz M, Wahl M (2012) Being young in a changing world: how temperature and salinity changes interactively modify the performance of larval stages of the barnacle Amphibalanus improvisus. Mar Biol 159:331–340. doi:10.1007/s00227-011-1811-7

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  Google Scholar 

  • Pansch C, Nasrolahi A, Appelhans YS, Wahl M (2012) Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvisus. J Exp Mar Biol Ecol 420–421:48–55. doi:10.1016/j.jembe.2012.03.023

    Article  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) MS Excel program developed for CO2 system calculations. Macro for low salinities. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge

    Google Scholar 

  • Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217. doi:10.3354/meps07768

    Article  Google Scholar 

  • Pörtner HO (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol 213:881–893. doi:10.1242/jeb.037523

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Ecology physiology and climate change. Science 322:690–692. doi:10.1126/science.1163156

    Article  Google Scholar 

  • Rabalais NN, Turner RE, Wiseman WJ (2002) Gulf of Mexico hypoxia, aka “The dead zone”. Annu Rev Ecol Syst 33:235–263. doi:10.1146/annurev.ecolsys.33.010802.150513

    Article  Google Scholar 

  • Range P, Chicharo MA, Ben-Hamadou R, Pilo D, Matias D, Joaquim S, Oliveira AP, Chicharo L (2011) Calcification, growth and mortality of juvenile clams Ruditapes decussatus under increased pCO2 and reduced pH: variable responses to ocean acidification at local scales? J Exp Mar Biol Ecol 396:177–184. doi:10.1016/j.jembe.2010.10.020

    Article  Google Scholar 

  • Riebesell U (2008) Climate change—acid test for marine biodiversity. Nature 454:46–47. doi:10.1038/454046a

    Article  CAS  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  CAS  Google Scholar 

  • Rodolfo-Metalpa R, Houlbreque F, Tambutte E, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso JP, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Change 1:308–312. doi:10.1038/nclimate1200

    Article  CAS  Google Scholar 

  • Salisbury J, Green M, Hunt C, Campbell J (2008) Coastal acidification by rivers: A threat to shellfish? Eos Trans AGU 89. doi:10.1029/2008eo500001

  • Sanford E, Menge BA (2001) Spatial and temporal variation in barnacle growth in a coastal upwelling system. Mar Ecol Prog Ser 209:143–157. doi:10.3354/meps209143

    Article  Google Scholar 

  • Shim J, Kim D, Kang YC, Lee JH, Jang ST, Kim CH (2007) Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea. Cont Shelf Res 27:2623–2636. doi:10.1016/j.csr.2007.07.005

    Article  Google Scholar 

  • Skinner LF, Siviero FN, Coutinho R (2007) Comparative growth of the intertidal barnacle Tetraclita stalactifera (Thoracica : Tetraclitidae) in sites influenced by upwelling and tropical conditions at the Cabo Frio region, Brazil. Rev Biol Trop 55:71–77

    Google Scholar 

  • The BACC Author Team (2008) Assessment of climate change for the Baltic Sea Basin. Springer, Berlin

    Google Scholar 

  • Thiyagarajan V, Harder T, Qian PY (2002) Effect of the physiological condition of cyprids and laboratory-mimicked seasonal conditions on the metamorphic successes of Balanus amphitrite Darwin (Cirripedia; Thoracica). J Exp Mar Biol Ecol 274:65–74. doi:10.1016/s0022-0981(02)00182-x

    Article  Google Scholar 

  • Thiyagarajan V, Hung OS, Chiu JMY, Wu RSS, Qian PY (2005) Growth and survival of juvenile barnacle Balanus amphitrite: interactive effects of cyprid energy reserve and habitat. Mar Ecol Prog Ser 299:229–237. doi:10.3354/meps299229

    Article  Google Scholar 

  • Thiyagarajan V, Pechenik JA, Gosselin LA, Qian PY (2007) Juvenile growth in barnacles: combined effect of delayed metamorphosis and sub-lethal exposure of cyprids to low-salinity stress. Mar Ecol Prog Ser 344:173–184. doi:10.3354/meps06931

    Article  Google Scholar 

  • Thomsen J, Gutowska M, Saphörster J, Heinemann A, Trübenbach K, Fietzke J, Hiebenthal C, Eisenhauer A, Körtzinger A, Wahl M, Melzner F (2010) Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification. Biogeosciences 7:3879–3891

    Article  CAS  Google Scholar 

  • Urban MC (2007) The growth-predation risk trade-off under a growing gape-limited predation threat. Ecology 88:2587–2597. doi:10.1890/06-1946.1

    Article  Google Scholar 

  • Wahl M, Shahnaz L, Dobretsov S, Saha M, Symanowski F, David K, Lachnit T, Vasel M, Weinberger F (2010) Ecology of antifouling resistance in the bladder wrack Fucus vesiculosus: patterns of microfouling and antimicrobial protection. Mar Ecol Prog Ser 411:33–48. doi:10.3354/Meps08644

    Article  Google Scholar 

  • Waldbusser GG (2011) The causes of acidification in Chesapeake Bay and consequences to oyster shell growth and dissolution. J Shellfish Res 30:559–560

    Article  Google Scholar 

  • Walther K, Anger K, Pörtner HO (2010) Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54 degrees vs. 79 degrees N). Mar Ecol Prog Ser 417:159–170. doi:10.3354/meps08807

    Article  Google Scholar 

  • Whiteley NM (2011) Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser 430:257–271. doi:10.3354/meps09185

    Article  CAS  Google Scholar 

  • Wong KKW, Lane AC, Leung PTY, Thiyagarajan V (2011) Response of larval barnacle proteome to CO2-driven seawater acidification. Comp Biochem Physiol D Genomics Proteomics 6:310–321. doi:10.1016/j.cbd.2011.07.001

    Article  CAS  Google Scholar 

  • Wood HL, Spicer J, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc 275:1767–1773

    Article  Google Scholar 

  • Wootton JT, Pfister CA, Forester JD (2008) Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset. Proc Natl Acad Sci U S A 105:18848–18853. doi:10.1073/pnas.0810079105

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the divers of the benthic ecology group at the GEOMAR and Jörn Thomsen for water sampling; Arne Körtzinger and Mandy Kierspel for pH, C T, and A T measurements; Jon Havenhand and Martin Ogemark for valuable advice on algal culture methods; Sarah Klünder and Giannina Hattich for maintenance as well as Hagen Pieper for map illustrations. This project was financed by the cluster of excellence “the future ocean” (Deutsche Forschungsgesellschaft—DFG; Neglected Bottleneck: D1067/34.1), the German National Academic Foundation and the BioAcid project (Federal Ministry of Education and Research—BMBF; D10/4.1.2; FKZ 03F0608A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Pansch.

Additional information

Communicated by S. Dupont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pansch, C., Nasrolahi, A., Appelhans, Y.S. et al. Tolerance of juvenile barnacles (Amphibalanus improvisus) to warming and elevated pCO2 . Mar Biol 160, 2023–2035 (2013). https://doi.org/10.1007/s00227-012-2069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2069-4

Keywords

Navigation