Ziveri, Patrizia; Passaro, Marcello; Incarbona, Alessandro; Milazzo, Marco; Rodolfo-Metalpa, Riccardo; Hall-Spencer, Jason M (2014): Decline in Coccolithophore Diversity and Impact on Coccolith Morphogenesis Along a Natural CO2 Gradient [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.838830, Supplement to: Ziveri, P et al. (2014): Decline in Coccolithophore Diversity and Impact on Coccolith Morphogenesis Along a Natural CO2 Gradient. Biological Bulletin, 226(3), 282-290, https://doi.org/10.1086/BBLv226n3p282
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
A natural pH gradient caused by marine CO2 seeps off Vulcano Island (Italy) was used to assess the effects of ocean acidification on coccolithophores, which are abundant planktonic unicellular calcifiers. Such seeps are used as natural laboratories to study the effects of ocean acidification on marine ecosystems, since they cause long-term changes in seawater carbonate chemistry and pH, exposing the organisms to elevated CO2 concentrations and therefore mimicking future scenarios. Previous work at CO2 seeps has focused exclusively on benthic organisms. Here we show progressive depletion of 27 coccolithophore species, in terms of cell concentrations and diversity, along a calcite saturation gradient from Omega calcite 6.4 to <1. Water collected close to the main CO2 seeps had the highest concentrations of malformed Emiliania huxleyi. These observations add to a growing body of evidence that ocean acidification may benefit some algae but will likely cause marine biodiversity loss, especially by impacting calcifying species, which are affected as carbonate saturation falls.
Keyword(s):
Further details:
Lavigne, Héloïse; Epitalon, Jean-Marie; Gattuso, Jean-Pierre (2014): seacarb: seawater carbonate chemistry with R. R package version 3.0 [webpage]. https://cran.r-project.org/package=seacarb
Project(s):
Funding:
Seventh Framework Programme (FP7), grant/award no. 265103: Mediterranean Sea Acidification in a Changing Climate
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-11-12.
Parameter(s):
License:
Creative Commons Attribution 3.0 Unported (CC-BY-3.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
292 data points