Edmunds, Peter J; Cumbo, Vivian R; Fan, Tung-Yung (2013): Metabolic costs of larval settlement and metamorphosis in the coral Seriatopora caliendrum under ambient and elevated pCO2 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.821644, Supplement to: Edmunds, PJ et al. (2013): Metabolic costs of larval settlement and metamorphosis in the coral Seriatopora caliendrum under ambient and elevated pCO2. Journal of Experimental Marine Biology and Ecology, 443, 33-38, https://doi.org/10.1016/j.jembe.2013.02.032
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
We tested the effects of pCO2 on Seriatopora caliendrum recruits over the first 5.3 d of post-settlement existence. In March 2011, 11-20 larvae were settled in glass vials (3.2 mL) and incubated at 24.0 °C and ~250 µmol quanta/m**2/s while supplied with seawater (at 1.4 mL/s) equilibrated with 51.6 Pa pCO2 (ambient) or 86.4 Pa pCO2. At 51.6 Pa pCO2, mean respiration 7 h post-settlement was 0.056 ± 0.007 nmol O2/recruit/min, but rose quickly to 0.095 ± 0.007 nmol O2/recruit/min at 3.3 d post-settlement, and thereafter declined to 0.075 ± 0.002 nmol O2/recruit/min at 5.3 d post-settlement (all ± SE). Elevated pCO2 depressed respiration of recruits by 19% after 3.3 d and 12% overall (i.e., integrated over 5.3 d), and while it had no effect on corallite area, elevated pCO2 was associated with weaker adhesion to the glass settlement surface and lower protein biomass. The unique costs of settlement and metamorphosis for S. caliendrum over 5.3 d are estimated to be 257 mJ/recruit at 51.6 Pa pCO2, which is less than the energy content of the larvae and recruits.
Keyword(s):
Further details:
Lavigne, Héloïse; Gattuso, Jean-Pierre (2011): seacarb: seawater carbonate chemistry with R. R package version 2.4 [webpage]. https://cran.r-project.org/package=seacarb
Project(s):
Coverage:
Latitude: 21.938170 * Longitude: 120.746020
Date/Time Start: 2011-03-02T00:00:00 * Date/Time End: 2011-03-20T00:00:00
Minimum Elevation: -10.0 m * Maximum Elevation: -5.0 m
Event(s):
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2013-10-10.
Parameter(s):
License:
Creative Commons Attribution 3.0 Unported (CC-BY-3.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
2089 data points
Download Data
View dataset as HTML (shows only first 2000 rows)