Skip to main content
Log in

Combined effects of solar UV radiation and CO2-induced seawater acidification on photosynthetic carbon fixation of phytoplankton assemblages in the South China Sea

  • Article
  • Marine Biology
  • Published:
Chinese Science Bulletin

Abstract

2010 We carried out short term pCO2/pH perturbation experiments in the coastal waters of the South China Sea to evaluate the combined effects of seawater acidification (low pH/high pCO2) and solar UV radiation (UVR, 280–400 nm) on photosynthetic carbon fixation of phytoplankton assemblages. Under photosynthetically active radiation (PAR) alone treatments, reduced pCO2 (190 ppmv) with increased pH resulted in a significant decrease in the photosynthetic carbon fixation rate (about 23%), while enriched pCO2 (700 ppmv) with lowered pH had no significant effect on the photosynthetic performance compared to the ambient level. The apparent photosynthetic efficiency decreased under the reduced pCO2 level, probably due to C-limitation as well as energy being diverged for up-regulation of carbon concentrating mechanisms (CCMs). In the presence of UVR, both UV-A and UV-B caused photosynthetic inhibition, though UV-A appeared to enhance the photosynthetic efficiency under lower PAR levels. UV-B caused less inhibition of photosynthesis under the reduced pCO2 level, probably because of its contribution to the inorganic carbon (Ci)-acquisition processes. Under the seawater acidification conditions (enriched pCO2), both UV-A and UV-B reduced the photosynthetic carbon fixation to higher extents compared to the ambient pCO2 conditions. We conclude that solar UV and seawater acidification could synergistically inhibit photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith R C, Baker K S. Penetration of UV-B and biologically effective dose-rates in natural waters. Photochem Photobiol, 1979, 29: 311–323

    Article  Google Scholar 

  2. Häder D P, Kumar H D, Smith R C, et al. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci, 2007, 6: 267–285

    Article  Google Scholar 

  3. Gao K, Li P, Watanabe T, et al. Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis and DNA of Arthrospira (Spirulina) platensis (Cyanophyta). J Phycol, 2008, 44: 777–786

    Article  Google Scholar 

  4. Zsiros O, Allakhverdiev S I, Higashi S, et al. Very strong UV-A light temporally separates the photoinhibition of photosystem II into light-induced inactivation and repair. BBA-Bioenergetics, 2006, 1757: 123–129

    Article  Google Scholar 

  5. Hall R S B, Bornman J F, Björn L O. UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis. J Photochem Photobiol B, 2002, 66: 13–20

    Article  Google Scholar 

  6. Helbling E W, Villafañe V E. UVR effects on phytoplankton primary production: A comparison between Arctic and Antarctic marine ecosystems. In: Hessen D O, ed. UV-radiation and arctic ecosystems. Berlin: Springer Verlag, 2002. 203–226

    Google Scholar 

  7. Marcoval M A, Villafane V E, Helbling E W. Combined effects of solar ultraviolet radiation and nutrients addition on growth, biomass and taxonomic composition of coastal marine phytoplankton communities of Patagonia. J Photochem Photobiol B, 2008, 91: 157–166

    Article  Google Scholar 

  8. Gao K, Li G, Helbling E W, et al. Variability of UVR effects on photosynthesis of summer phytoplankton assemblages from a tropical coastal area of the South China Sea. Photochem Photobiol, 2007, 83: 802–809

    Article  Google Scholar 

  9. Karsten U, Dummermuth A, Hoyer K, et al. Interactive effects of ultraviolet radiation and salinity on the ecophysiology of two Arctic red algae from shallow waters. Polar Biol, 2003, 26: 249–258

    Google Scholar 

  10. Sobrino C, Ward M L, Neale P J. Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: Effects on growth, photosynthesis, and spectral sensitivity of photoinhibition. Limnol Oceanogr, 2008, 53: 494–505

    Article  Google Scholar 

  11. Gao K, Ruan Z, Villafañe V E, et al. Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi. Limnol Oceanogr, 2009, 54: 1855–1862

    Google Scholar 

  12. Shelly K, Roberts S, Heraud P, et al. Interactions between UV-B exposure and phosphorus nutrition. I. Effects on growth, phosphate uptake, and chlorophyll fluorescence. J Phycol, 2005, 41: 1204–1211

    Google Scholar 

  13. Zhai W, Dai M, Cai W J, et al. High partial pressure of CO2 and its maintaining mechanism in a subtropical estuary: The Pearl River estuary, China. Mar Chem, 2005, 93: 21–32

    Article  Google Scholar 

  14. Skirrow G. The dissolved gases-carbon dioxide. In: Riley J P, Skirrow G, eds. Chemical Oceanography. New York: Academic Press, 1975

    Google Scholar 

  15. Hoegh-Guldberg O, Mumby P J, Hooten A J, et al. Coral reefs under rapid climate change and ocean acidification. Science, 2007, 318: 1737–1742

    Article  Google Scholar 

  16. Riebesell U, Wolf-Gladrow D A, Smetacek V S. Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 1993, 361: 249–251

    Article  Google Scholar 

  17. Hein M, Sand-Jensen K. CO2 increases oceanic primary production. Nature, 1997, 388: 526–527

    Article  Google Scholar 

  18. Hinga K R. Effects of pH on coastal marine phytoplankton. Mar Ecol-Prog Ser, 2002, 238: 281–300

    Article  Google Scholar 

  19. Wu H, Gao K. Ultraviolet radiation stimulated activity of extracellular carbonic anhydrase in the marine diatom Skeletonema costatum. Funct Plant Biol, 2009, 36: 137–143

    Article  Google Scholar 

  20. Beardall J, Sobrino C, Stojkovic S. Interactions between the impacts of ultraviolet radiation, elevated CO2, and nutrient limitation on marine primary producers. Photochem Photobiol Sci, 2009, 8: 1257–1265

    Article  Google Scholar 

  21. Häder D P, Lebert M, Marangoni R, et al. ELDONET-European Light Dosimeter Network hardware and software. J Photochem Photobiol B, 1999, 52: 51–58

    Article  Google Scholar 

  22. Zheng Y, Gao K. Impacts of solar UV radiation on the photosynthesis, growth and UV-absorbing compounds in gracilaria lemaneiformis (Rhodophyta) grown at different nitrate concentrations. J Phycol, 2009, 45: 314–323

    Article  Google Scholar 

  23. Gao K, Wu Y, Li G, et al. Solar UV-radiation drives CO2-fixation in marine phytoplankton: A double-edged sword. Plant Physiol, 2007, 144: 54–59

    Article  Google Scholar 

  24. Holm-Hansen O, Helbling E W. Técnicas para la medición de la productividad primaria en el fitoplancton. In: Alveal K, Ferrario M E, Oliveira E C, et al., eds. Manual de Métodos Ficológicos. Concepción: Universida d de Concepción, 1995. 329–350

    Google Scholar 

  25. Porra R J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res, 2002, 73: 149–156

    Article  Google Scholar 

  26. Eilers P H C, Petters J C H. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model, 1988, 42: 199–215

    Article  Google Scholar 

  27. Schippers P, Lürling M. Increase of atmospheric CO2 promotes phytoplankton productivity. Ecol Lett, 2004, 7: 446–451

    Article  Google Scholar 

  28. Riebesell U, Zondervan I, Rost B, et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 2000, 407: 364–367

    Article  Google Scholar 

  29. Qiu B S, Liu J Y. Utilization of inorganic carbon in the edible cyanobacterium Ge-Xian-Mi (Nostoc) and its role in alleviating photo-inhibition. Plant Cell Environ, 2004, 27: 1447–1458

    Article  Google Scholar 

  30. Beardall J, Heraud P, Roberts S, et al. Effects of UV-B radiation on inorganic carbon acquisition by the marine microalga Dunaliella tertiolecta (Chlorophyceae). Phycologia, 2002, 41: 268–272

    Article  Google Scholar 

  31. Raven J A, Cockell C S, De La Rocha C L. The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Phil Trans R Soc, 2008, 363: 2641–2650

    Article  Google Scholar 

  32. Giordano M, Beardall J, Raven J A. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol, 2005, 56: 99–131

    Article  Google Scholar 

  33. Badger M R, Andrews T J, Whitney S M, et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot, 1998, 76: 1052–1071

    Article  Google Scholar 

  34. Zheng Y. Physiological response of a coralline alga to changes in CO2 concentration and solar UV radiation. Dissertation for Doctoral Degree. Shantou: Shantou University, 2009

    Google Scholar 

  35. Wu Y, Gao K, Li G, et al. Seasonal impacts of solar UV radiation on photosynthesis of phytoplankton assemblages in the coastal water of the South China Sea. Photochem Photobiol, 2010, 86: 586–592

    Article  Google Scholar 

  36. Hansen P J. Effects of high pH on the growth and survival of marine phytoplankton: Implications for species succession. Aquat Microb Ecol, 2002, 28: 279–288

    Article  Google Scholar 

  37. Spilling K. Dense sub-ice bloom of dinoflagellates in the Baltic Sea, potentially limited by high pH. J Plankton Res, 2007, 29: 895–901

    Article  Google Scholar 

  38. Takahashi S, Milward S E, Fan D Y, et al. How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol, 2009, 149: 1560–1567

    Article  Google Scholar 

  39. Menéndez M, Martínez M, Comín F A. A comparative study of the effect of pH and inorganic carbon resources on the photosynthesis of three floating macroalgae species of a Mediterranean coastal lagoon. J Exp Mar Biol Ecol, 2001, 256: 123–136

    Article  Google Scholar 

  40. Feely R A, Sabine C L, Hernandez-Ayon J M, et al. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science, 2008, 320: 1490–1492

    Article  Google Scholar 

  41. Li G, Wu Y, Gao K. Effects of Typhoon Kaemi on coastal phytoplankton assemblages in the South China Sea, with special reference to the effects of solar UV radiation. J Geophys Res, 2009, 114, doi:10.1029/2008JG000896

  42. Kallas T, Castenholz R W. Internal pH and ATP-ADP pools in the cyanobacterium Synechococcus sp. during exposure to growth-inhibiting low pH. J Bacteriol, 1982, 149: 229–236

    Google Scholar 

  43. Michelet B, Boutry M. The plasma membrane H+-ATPase (A highly regulated enzyme with multiple physiological functions). Plant Physiol, 1995, 108: 1–6

    Google Scholar 

  44. Buch-Pedersen M J, Palmgren M G. Mechanism of proton transport by plant plasma membrane proton ATPases. J Plant Res, 2003, 116: 507–515

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KunShan Gao.

About this article

Cite this article

Wu, Y., Gao, K. Combined effects of solar UV radiation and CO2-induced seawater acidification on photosynthetic carbon fixation of phytoplankton assemblages in the South China Sea. Chin. Sci. Bull. 55, 3680–3686 (2010). https://doi.org/10.1007/s11434-010-4119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4119-y

Keywords

Navigation