Data Description

Citation:
Unger, J et al. (2013): Response of Nodularia spumigena to pCO2 - Part 3: Turnover of phosphorus compounds. doi:10.1594/PANGAEA.830881,
Supplement to: Unger, Juliane; Endres, Sonja; Wannicke, Nicola; Engel, Anja; Voss, Maren; Nausch, Günther; Nausch, Monika (2013): Response of Nodularia spumigena to pCO2-Part 3: Turnover of phosphorus compounds. Biogeosciences, 10(3), 1483-1499, doi:10.5194/bg-10-1483-2013
Abstract:
Diazotrophic cyanobacteria often form extensive summer blooms in the Baltic Sea driving their environment into phosphate limitation. One of the main species is the heterocystous cyanobacterium Nodularia spumigena. N. spumigena exhibits accelerated uptake of phosphate through the release of the exoenzyme alkaline phosphatase that also serves as an indicator of the hydrolysis of dissolved organic phosphorus (DOP). The present study investigated the utilization of DOP and its compounds (e.g. ATP) by N. spumigena during growth under varying CO2 concentrations, in order to estimate potential consequences of ocean acidification on the cell's supply with phosphorus. Cell growth, phosphorus pool fractions, and four DOP-compounds (ATP, DNA, RNA, and phospholipids) were determined in three set-ups with different CO2 concentrations (341, 399, and 508 µatm) during a 15-day batch experiment. The results showed rapid depletion of dissolved inorganic phosphorus (DIP) in all pCO2 treatments while DOP utilization increased with elevated pCO2, in parallel with the growth stimulation of N. spumigena. During the growth phase, DOP uptake was enhanced by a factor of 1.32 at 399 µatm and of 2.25 at 508 µatm compared to the lowest pCO2 concentration. Among the measured DOP compounds, none was found to accumulate preferentially during the incubation or in response to a specific pCO2 treatment. However, at the beginning 61.9 ± 4.3% of the DOP were not characterized but comprised the most highly utilized fraction. This is demonstrated by the decrement of this fraction to 27.4 ± 9.9% of total DOP during the growth phase, especially in response to the medium and high pCO2 treatment. Our results indicate a stimulated growth of diazotrophic cyanobacteria at increasing CO2 concentrations that is accompanied by increasing utilization of DOP as an alternative P source.
Further details:
Lavigne, Héloise; Gattuso, Jean-Pierre (2011): seacarb: seawater carbonate chemistry with R. R package version 2.4. https://cran.r-project.org/package=seacarb *
Project(s):
Coverage:
Date/Time Start: 2010-03-29T00:00:00 * Date/Time End: 2010-04-13T00:00:00
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2014-03-21.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethodComment
1Species *SpeciesUnger, Juliane *
2DATE/TIME *Date/TimeGeocode
3Incubation duration *Inc durdaysUnger, Juliane *
4Incubation duration *Inc durhUnger, Juliane *
5Treatment *TreatmUnger, Juliane *
6Temperature, water *Temp°CUnger, Juliane *
7Salinity *SalUnger, Juliane *
8pH *pHWannicke, Nicola *Potentiometric *total scale
9pH, standard deviation *pH std dev±Wannicke, Nicola *Potentiometric *total scale
10Carbon, inorganic, dissolved *DICµmol/kgWannicke, Nicola *Colorimetric *
11Carbon, inorganic, dissolved, standard deviation *DIC std dev±Wannicke, Nicola *Colorimetric *
12Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmWannicke, Nicola *Calculated using CO2SYS *
13Partial pressure of carbon dioxide, standard deviation *pCO2 std dev±Wannicke, Nicola *Calculated using CO2SYS *
14Alkalinity, total *ATµmol/kgWannicke, Nicola *Calculated using CO2SYS *
15Alkalinity, total, standard deviation *AT std dev±Wannicke, Nicola *Calculated using CO2SYS *
16Chlorophyll a *Chl aµg/lWannicke, Nicola *Fluorometric *10 l bottles
17Chlorophyll a, standard deviation *Chl a std dev±Wannicke, Nicola *Fluorometric *10 l bottles
18Chlorophyll a *Chl aµg/lNausch, Monika *Fluorometric *0.5 l [33P] bottles
19Chlorophyll a, standard deviation *Chl a std dev±Nausch, Monika *Fluorometric *0.5 l [33P] bottles
20Phosphorus, organic, particulate *POPµmol/lUnger, Juliane *Calculated *Nodularia
21Particulate organic phosphorus, standard deviation *POP std dev±Unger, Juliane *Calculated *Nodularia
22Dissolved inorganic phosphorus *DIPµmol/lUnger, Juliane *data pooled
23Dissolved inorganic phosphorus, standard deviation *DIP std dev±Unger, Juliane *data pooled
24Phosphorus, organic, dissolved *DOPµmol/lUnger, Juliane *Calculated *
25Phosphate, organic, dissolved, standard deviation *DOP std dev±Unger, Juliane *Calculated *
26Phosphorus, adenosine triphosphate, dissolved *dATP-Pnmol/lUnger, Juliane *Sirius Luminometer *
27Phosphorus, adenosine triphosphate, dissolved, standard deviation *dATP-P std dev±Unger, Juliane *Sirius Luminometer *
28Phosphorus, phospholipid, dissolved *dPL-Pnmol/lUnger, Juliane *Spectrophotometric *
29Phosphorus, phospholipid, dissolved, standard deviation *dPL-P std dev±Unger, Juliane *Spectrophotometric *
30Phosphorus, deoxyribonucleic acid, dissolved *dDNA-Pnmol/lUnger, Juliane *Spectrophotometric *
31Phosphorus, deoxyribonucleic acid, dissolved, standard deviation *dDNA-P std dev±Unger, Juliane *Spectrophotometric *
32Phosphorus, ribonucleic acid, dissolved *dRNA-Pnmol/lUnger, Juliane *Spectrophotometric *
33Phosphorus, ribonucleic acid, dissolved, standard deviation *dRNA-P std dev±Unger, Juliane *Spectrophotometric *
34Phosphorus, organic, dissolved *DOPµmol/lUnger, Juliane *Calculated *
35Phosphate, organic, dissolved, standard deviation *DOP std dev±Unger, Juliane *Calculated *
36Proportion, phosphate with 33 Phosphorus *[33P]PO4%Nausch, Monika *Liquid scintillation *in Nodularia
37Proportion, phosphate with 33 Phosphorus, standard deviation *[33P]PO4 std dev±Nausch, Monika *Liquid scintillation *in Nodularia
38Proportion, phosphate with 33 Phosphorus *[33P]PO4%Nausch, Monika *Liquid scintillation *in DIP
39Proportion, phosphate with 33 Phosphorus, standard deviation *[33P]PO4 std dev±Nausch, Monika *Liquid scintillation *in DIP
40Proportion, phosphate with 33 Phosphorus *[33P]PO4%Nausch, Monika *Liquid scintillation *in DOP
41Proportion, phosphate with 33 Phosphorus, standard deviation *[33P]PO4 std dev±Nausch, Monika *Liquid scintillation *in DOP
42Carbonate system computation flag *CSC flagYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
43Carbon dioxide *CO2µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
44Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
45Fugacity of carbon dioxide (water) at sea surface temperature (wet air) *fCO2water_SST_wetµatmYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
46Bicarbonate ion *[HCO3]-µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
47Carbonate ion *[CO3]2-µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
48Alkalinity, total *ATµmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
49Aragonite saturation state *Omega ArgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
50Calcite saturation state *Omega CalYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
License:
Size:
924 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML