Fiorini, Sarah; Middelburg, Jack J; Gattuso, Jean-Pierre (2011): Seawater carbonate chemistry, nutrients, particulate carbon and growth rate of Emiliania huxleyi (AC472), Calcidiscus leptoporus (AC370) and Syracosphaera pulchra (AC418) during experiments, 2011 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.773860, Supplement to: Fiorini, S et al. (2011): Testing the effects of elevated pCO2 on coccolithophores (Prymnesiophyceae): comparison between haploid and diploid life stages. Journal of Phycology, 47(6), 1281–1291, https://doi.org/10.1111/j.1529-8817.2011.01080.x
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
The response of Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler, Calcidiscus leptoporus (G. Murray et V. H. Blackman) J. Schiller, andSyracosphaera pulchra Lohmann to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. We reported on the response of both haploid and diploid life stages of these three species. Growth rate, cell size, particulate inorganic carbon (PIC), and particulate organic carbon (POC) of both life stages were measured at two different pCO2 (400 and 760 parts per million [ppm]), and their organic and inorganic carbon production were calculated. The two life stages within the same species generally exhibited a similar response to elevated pCO2, the response of the haploid stage being often more pronounced than that of the diploid stage. The growth rate was consistently higher at elevated pCO2, but the response of other processes varied among species. Calcification rate of C. leptoporusand of S. pulchra did not change at elevated pCO2, whereas it increased in E. huxleyi. POC production and cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. Elevated pCO2 has a significant effect on these three coccolithophore species, the haploid stage being more sensitive. This effect must be taken into account when predicting the fate of coccolithophores in the future ocean.
Keyword(s):
Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (<20 L); Calcidiscus leptoporus; Calcification/Dissolution; Chromista; Emiliania huxleyi; Growth/Morphology; Haptophyta; Laboratory experiment; Laboratory strains; Pelagos; Phytoplankton; Primary production/Photosynthesis; Single species; South Pacific; Syracosphaera pulchra
Project(s):
Funding:
Sixth Framework Programme (FP6), grant/award no. 511106: European network of excellence for Ocean Ecosystems Analysis
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).
Parameter(s):
License:
Creative Commons Attribution 3.0 Unported (CC-BY-3.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
492 data points