Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Bach, Lennart Thomas; Mackinder, Luke C M (2013): Experiment: Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.830627, Supplement to: Bach, Lennart Thomas; Mackinder, Luke C M; Schulz, Kai Georg; Wheeler, Glen; Schroeder, Declan C; Brownlee, Colin; Riebesell, Ulf (2013): Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi. New Phytologist, 199(1), 121-134, https://doi.org/10.1111/nph.12225

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Coccolithophores are important calcifying phytoplankton predicted to be impacted by changes in ocean carbonate chemistry caused by the absorption of anthropogenic CO2. However, it is difficult to disentangle the effects of the simultaneously changing carbonate system parameters (CO2, bicarbonate, carbonate and protons) on the physiological responses to elevated CO2. Here, we adopted a multifactorial approach at constant pH or CO2 whilst varying dissolved inorganic carbon (DIC) to determine physiological and transcriptional responses to individual carbonate system parameters. We show that Emiliania huxleyi is sensitive to low CO2 (growth and photosynthesis) and low bicarbonate (calcification) as well as low pH beyond a limited tolerance range, but is much less sensitive to elevated CO2 and bicarbonate. Multiple up-regulated genes at low DIC bear the hallmarks of a carbon-concentrating mechanism (CCM) that is responsive to CO2 and bicarbonate but not to pH. Emiliania huxleyi appears to have evolved mechanisms to respond to limiting rather than elevated CO2. Calcification does not function as a CCM, but is inhibited at low DIC to allow the redistribution of DIC from calcification to photosynthesis. The presented data provides a significant step in understanding how E. huxleyi will respond to changing carbonate chemistry at a cellular level
Keyword(s):
Calcification/Dissolution; Chromista; Containers and aquaria (20-1000 L or < 1 m**2); Emiliania huxleyi; Growth/Morphology; Haptophyta; Laboratory experiment; Laboratory strains; Not applicable; Pelagos; Phytoplankton; Primary production/Photosynthesis; Single species
Further details:
Lavigne, Héloïse; Gattuso, Jean-Pierre (2011): seacarb: seawater carbonate chemistry with R. R package version 2.4. https://cran.r-project.org/package=seacarb
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2014-02-11.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1SpeciesSpeciesBach, Lennart Thomas
2TreatmentTreatBach, Lennart Thomas
3TreatmentTreatBach, Lennart Thomas
4IrradianceEµmol/m2/sBach, Lennart Thomas
5Light:Dark cycleL:Dhh:hhBach, Lennart Thomas
6Temperature, waterTemp°CBach, Lennart Thomas
7SalinitySalBach, Lennart Thomas
8Carbon, inorganic, dissolvedDICµmol/kgBach, Lennart Thomas
9DifferenceDiffBach, Lennart ThomasDIC difference from t0 to tfin
10pHpHBach, Lennart Thomasfree scale
11DifferenceDiffBach, Lennart ThomaspH difference from t0 to tfin
12Bicarbonate ion[HCO3]-µmol/kgBach, Lennart Thomas
13DifferenceDiffBach, Lennart ThomasHCO3 difference from t0 to tfin
14Carbonate ion[CO3]2-µmol/kgBach, Lennart Thomas
15DifferenceDiffBach, Lennart ThomasCO32 difference from t0 to tfin
16Carbon dioxideCO2µmol/kgBach, Lennart Thomas
17DifferenceDiffBach, Lennart ThomasCO2 difference from t0 to tfin
18Growth rateµ1/dayBach, Lennart Thomas
19DifferenceDiffBach, Lennart Thomasgrowth rate difference from t0 to tfin
20Particulate inorganic carbon/particulate organic carbon ratioPIC/POCBach, Lennart Thomas
21DifferenceDiffBach, Lennart ThomasPIC/POC difference from t0 to tfin
22Chlorophyll aChl aµg/lBach, Lennart Thomas
23DifferenceDiffBach, Lennart Thomaschl a difference from t0 to tfin
24Particulate organic carbon production per cellPOC prod/cellpg/#/dayBach, Lennart Thomas
25DifferenceDiffBach, Lennart ThomasPOC proddifference from t0 to tfin
26Particulate inorganic carbon production per cellPIC prod/cellpg/#/dayBach, Lennart Thomas
27DifferenceDiffBach, Lennart ThomasPIC difference from t0 to tfin
28Carbon/Nitrogen ratioC/NBach, Lennart Thomas
29DifferenceDiffBach, Lennart ThomasC/N difference from t0 to tfin
30Anion exchanger like 1AEL1Bach, Lennart Thomas
31Anion exchanger like 1, standard errorAEL1 std e±Bach, Lennart Thomas
32alpha carbonic anhydrase 1alpha CA1Bach, Lennart Thomas
33alpha carbonic anhydrase 1, standard erroralpha CA1 std e±Bach, Lennart Thomas
34alpha carbonic anhydrase 2alpha CA2Bach, Lennart Thomas
35alpha carbonic anhydrase 2, standard erroralpha CA2 std e±Bach, Lennart Thomas
36beta carbonic anhydrasebeta CABach, Lennart Thomas
37beta carbonic anhydrase, standard errorbeta CA std e±Bach, Lennart Thomas
38gamma carbonic anhydrase, meangamma CABach, Lennart Thomas
39gamma carbonic anhydrase, standard errorgamma CA std e±Bach, Lennart Thomas
40delta carbonic anhydrasedelta CABach, Lennart Thomas
41delta carbonic anhydrase, standard errordelta CA std e±Bach, Lennart Thomas
42RubisCORubisCOBach, Lennart Thomas
43RubisCO, standard errorRubisCO std e±Bach, Lennart Thomas
44Voltage-gated H+ channelHVCN1Bach, Lennart Thomas
45Voltage-gated H+ channel, standard errorHVCN1 std e±Bach, Lennart Thomas
46Vacuolar-type H+ pumpATPVc_/cBach, Lennart Thomas
47Vacuolar-type H+ pump, standard errorATPVc_/c std e±Bach, Lennart Thomas
48Plasma membran type H+ pumpPATPBach, Lennart Thomas
49Plasma membran type H+ pump, standard errorPATP std e±Bach, Lennart Thomas
50Ca2+/H+ exchanger 3CAX3Bach, Lennart Thomas
51Ca2+/H+ exchanger 3, standard errorCAX3 std e±Bach, Lennart Thomas
52Na+/H+ exchanger 2NhaA2Bach, Lennart Thomas
53Na+/H+ exchanger 2, standard errorNhaA2 std e±Bach, Lennart Thomas
54Low CO2 induced geneLCIXBach, Lennart Thomas
55Low CO2 induced gene, standard errorLCIX std e±Bach, Lennart Thomas
56Aquaporin 2AQP2Bach, Lennart Thomas
57Aquaporin 2, standard errorAQP2 std e±Bach, Lennart Thomas
58Glutamic acid, proline, alanine rich proteinGPABach, Lennart Thomas
59Glutamic acid, proline, alanine rich protein, standard errorGPA std e±Bach, Lennart Thomas
60Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
61pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale
62Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
63Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
64Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
65Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
66Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
67Alkalinity, totalATµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
68Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
69Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
1165 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML