Data Description

  RIS BibTeX
Gutowska, MA et al. (2010): Seawater carbonate chemistry and biological processes of Sepia officinalis during experiments, 2010. doi:10.1594/PANGAEA.757991,
Supplement to: Gutowska, Magdalena A; Melzner, Frank; Langenbuch, M; Bock, C; Claireaux, G; Pörtner, Hans-Otto (2010): Acid-base regulatory ability of the cephalopod (Sepia officinalis) in response to environmental hypercapnia. Journal of Comparative Physiology B-Biochemical Systemic and Environmentalphysiology, 180(3), 323-335, doi:10.1007/s00360-009-0412-y
Acidification of ocean surface waters by anthropogenic carbon dioxide (CO2) emissions is a currently developing scenario that warrants a broadening of research foci in the study of acid-base physiology. Recent studies working with environmentally relevant CO2 levels, indicate that some echinoderms and molluscs reduce metabolic rates, soft tissue growth and calcification during hypercapnic exposure. In contrast to all prior invertebrate species studied so far, growth trials with the cuttlefish Sepia officinalis found no indication of reduced growth or calcification performance during long-term exposure to 0.6 kPa CO2. It is hypothesized that the differing sensitivities to elevated seawater pCO2 could be explained by taxa specific differences in acid-base regulatory capacity. In this study, we examined the acid-base regulatory ability of S. officinalis in vivo, using a specially modified cannulation technique as well as 31P NMR spectroscopy. During acute exposure to 0.6 kPa CO2, S. officinalis rapidly increased its blood [HCO3] to 10.4 mM through active ion-transport processes, and partially compensated the hypercapnia induced respiratory acidosis. A minor decrease in intracellular pH (pHi) and stable intracellular phosphagen levels indicated efficient pHi regulation. We conclude that S. officinalis is not only an efficient acid-base regulator, but is also able to do so without disturbing metabolic equilibria in characteristic tissues or compromising aerobic capacities. The cuttlefish did not exhibit acute intolerance to hypercapnia that has been hypothesized for more active cephalopod species (squid). Even though blood pH (pHe) remained 0.18 pH units below control values, arterial O2 saturation was not compromised in S. officinalis because of the comparatively lower pH sensitivity of oxygen binding to its blood pigment. This raises questions concerning the potentially broad range of sensitivity to changes in acid-base status amongst invertebrates, as well as to the underlying mechanistic origins. Further studies are needed to better characterize the connection between acid-base status and animal fitness in various marine species.
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).
#NameShort NameUnitPrincipal InvestigatorMethodComment
1Experimental treatment *Exp trtmGutowska, Magdalena A *
2Incubation duration *Inc durhGutowska, Magdalena A *
3Salinity *SalGutowska, Magdalena A *
4Temperature, water *Temp°CGutowska, Magdalena A *
5pH *pHGutowska, Magdalena A *Optical sensor (HPS-OIW) *NBS scale, H+ ion concentration in µmol/l
6Bicarbonate *[HCO3]-mmol/lGutowska, Magdalena A *Calculated using CO2SYS *
7Carbon dioxide, partial pressure *pCO2PaGutowska, Magdalena A *Measured *
8Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmGutowska, Magdalena A *Calculated *
9Alkalinity, total *ATµmol/kgGutowska, Magdalena A *Calculated using CO2SYS *
10Carbon, inorganic, dissolved *DICµmol/kgGutowska, Magdalena A *Calculated using CO2SYS *
11pH *pHGutowska, Magdalena A *Calculated *NBS scale, H+ ion concentration in µmol/kg
12Carbonate system computation flag *CSC flagNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
13pH *pHNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *Total scale, H+ ion concentration in µmol/kg
14Carbon dioxide *CO2µmol/kgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
15Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
16Fugacity of carbon dioxide (water) at sea surface temperature (wet air) *fCO2water_SST_wetµatmNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
17Bicarbonate ion *[HCO3]-µmol/kgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
18Carbonate ion *[CO3]2-µmol/kgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
19Aragonite saturation state *Omega ArgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
20Calcite saturation state *Omega CalNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
21Sepia officinalis, pH, intracellular *S. officinalis pH inGutowska, Magdalena A *Optical sensor (HPS-OIW) *
22Sepia officinalis, pH, intracellular, standard deviation *S. officinalis pH in std dev±Gutowska, Magdalena A *
23Sepia officinalis, phosphate, inorganic vs phospho-L-arginine ratio *S. officinalis Pi/PLAGutowska, Magdalena A *Measured *
24Sepia officinalis, phosphate, inorganic vs phospho-L-arginine ratio, standard de *S. officinalis Pi/PLA std dev±Gutowska, Magdalena A *
25Sepia officinalis, ventilation frequency, changes *S. officinalis ventilationbpmGutowska, Magdalena A *Measured *
26Sepia officinalis, ventilation frequency, changes, standard deviation *S. officinalis ventilation std dev±Gutowska, Magdalena A *
27Sepia officinalis, haemolymph pH *S. officinalis pH (ha)Gutowska, Magdalena A *Optical sensor (HPS-OIW) *
28Sepia officinalis, haemolymph pH, standard deviation *S. officinalis pH (ha) std dev±Gutowska, Magdalena A *
29Sepia officinalis, haemolymph, bicarbonate ion *S. officinalis [HCO3]- (ha)mmol/lGutowska, Magdalena A *Calculated *
30Sepia officinalis, haemolymph, bicarbonate, standard deviation *S. officinalis [HCO3]- (ha) std dev±Gutowska, Magdalena A *
31Sepia officinalis, haemolymph pCO2 *S. officinalis pCO2 (ha)kPaGutowska, Magdalena A *Calculated *
32Sepia officinalis, haemolymph pCO2, standard deviation *S. officinalis pCO2 (ha) std dev±Gutowska, Magdalena A *
33Sepia officinalis, haemolymph O2 *S. officinalis O2 (ha)kPaGutowska, Magdalena A *Optical sensor (PS1, PreSens) *
34Sepia officinalis, haemolymph O2, standard deviation *S. officinalis O2 (ha) std dev±Gutowska, Magdalena A *
1725 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML