Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Walther, Kathleen; Sartoris, Franz-Josef; Pörtner, Hans-Otto (2011): Chemistry and biological processes during experiments with spider crab Hyas araneus [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.761765, Supplement to: Walther, K et al. (2011): Impacts of temperature and acidification on larval calcium incorporation of the spider crab Hyas araneus from different latitudes (54° vs. 79°N). Marine Biology, 158(9), 2043-2053, https://doi.org/10.1007/s00227-011-1711-x

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
The combined effects of ocean warming and acidification were compared in larvae from two popula- tions of the cold-eurythermal spider crab Hyas araneus, from one of its southernmost populations (around Helgo- land, southern North Sea, 54°N, habitat temperature 3-18°C; collection: January 2008, hatch: January-February 2008) and from one of its northernmost populations (Svalbard, North Atlantic, 79°N, habitat temperature 0-6°C; collection: July 2008, hatch: February-April 2009). Larvae were exposed to temperatures of 3, 9 and 15°C combined with present-day normocapnic (380 ppm CO2) and projected future CO2 concentrations (710 and 3,000 ppm CO2). Calcium content of whole larvae was measured in freshly hatched Zoea I and after 3, 7 and 14 days during the Megalopa stage. Significant differences between Helgoland and Svalbard Megalopae were observed at all investigated temperatures and CO2 condi- tions. Under 380 ppm CO2, the calcium content increased with rising temperature and age of the larvae. At 3 and 9°C, Helgoland Megalopae accumulated more calcium than Svalbard Megalopae. Elevated CO2 levels, especially 3,000 ppm, caused a reduction in larval calcium contents at 3 and 9°C in both populations. This effect set in early, at 710 ppm CO2 only in Svalbard Megalopae at 9°C. Fur- thermore, at 3 and 9°C Megalopae from Helgoland replenished their calcium content to normocapnic levels and more rapidly than Svalbard Megalopae. However, Svalbard Megalopae displayed higher calcium contents under 3,000 ppm CO2 at 15°C. The findings of a lower capacity for calcium incorporation in crab larvae living at the cold end of their distribution range suggests that they might be more sensitive to ocean acidification than those in temperate regions.
Keyword(s):
Animalia; Arctic; Arthropoda; Bottles or small containers/Aquaria (<20 L); Calcification/Dissolution; Coast and continental shelf; Hyas araneus; Laboratory experiment; North Atlantic; Pelagos; Polar; Single species; Temperate; Temperature; Zooplankton
Funding:
Seventh Framework Programme (FP7), grant/award no. 211384: European Project on Ocean Acidification
Sixth Framework Programme (FP6), grant/award no. 511106: European network of excellence for Ocean Ecosystems Analysis
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
2 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding: