Forsgren, Elisabet; Dupont, Sam; Jutfelt, Fredrik; Amundsen, Trond (2013): Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.839190, Supplement to: Forsgren, E et al. (2013): Elevated CO2 affects embryonic development and larval phototaxis in a temperate marine fish. Ecology and Evolution, 3(11), 3637-3646, https://doi.org/10.1002/ece3.709
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
As an effect of anthropogenic CO2 emissions, the chemistry of the world's oceans is changing. Understanding how this will affect marine organisms and ecosystems are critical in predicting the impacts of this ongoing ocean acidification. Work on coral reef fishes has revealed dramatic effects of elevated oceanic CO2 on sensory responses and behavior. Such effects may be widespread but have almost exclusively been tested on tropical reef fishes. Here we test the effects elevated CO2 has on the reproduction and early life history stages of a temperate coastal goby with paternal care by allowing goby pairs to reproduce naturally in an aquarium with either elevated (ca 1400 µatm) CO2 or control seawater (ca 370 µatm CO2). Elevated CO2 did not affect the occurrence of spawning nor clutch size, but increased embryonic abnormalities and egg loss. Moreover, we found that elevated CO2 significantly affected the phototactic response of newly hatched larvae. Phototaxis is a vision-related fundamental behavior of many marine fishes, but has never before been tested in the context of ocean acidification. Our findings suggest that ocean acidification affects embryonic development and sensory responses in temperate fishes, with potentially important implications for fish recruitment.
Keyword(s):
Further details:
Lavigne, Héloïse; Epitalon, Jean-Marie; Gattuso, Jean-Pierre (2014): seacarb: seawater carbonate chemistry with R. R package version 3.0 [webpage]. https://cran.r-project.org/package=seacarb
Project(s):
Coverage:
Latitude: 58.250000 * Longitude: 11.450000
Date/Time Start: 2010-07-20T00:00:00 * Date/Time End: 2010-08-24T00:00:00
Event(s):
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-11-21.
Parameter(s):
License:
Creative Commons Attribution 3.0 Unported (CC-BY-3.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
5589 data points
Download Data
View dataset as HTML (shows only first 2000 rows)