Data Description

Raitzsch, M et al. (2010): Incorporation of Mg and Sr in calcite of cultured benthic foraminifera (Heterostegina depressa and Ammonia tepida) and seawater carbonate chemistry, 2010. doi:10.1594/PANGAEA.758073,
Supplement to: Raitzsch, Markus; Dueñas-Bohórquez, Adriana; Reichart, Gert-Jan; de Nooijer, Lennart Jan; Bickert, Torsten (2010): Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated saturation state. Biogeosciences, 7(3), 869-881, doi:10.5194/bg-7-869-2010
We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (omega) on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing) and Ammonia tepida (low-Mg calcite, symbiont-barren) were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite)/(TE/Caseawater). The culturing study shows that DMg of A. tepida significantly decreases with increasing omega at a gradient of -4.3x10-5 per omega unit. The DSr value of A. tepida does not change with omega, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing omega, while DSr increases considerably with omega at a gradient of 0.009 per omega unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50-100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep-sea benthic foraminifera typically used for paleostudies, the higher Ca concentrations in the past may potentially bias temperature reconstructions to a considerable degree. For instance, 25 Myr ago Mg/Ca ratios in A. tepida would have been 0.2 mmol/mol lower than today, due to the 1.5 times higher [Ca2+] of seawater, which in turn would lead to a temperature underestimation of more than 2 °C.
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).
#NameShort NameUnitPrincipal InvestigatorMethodComment
1Experimental treatment *Exp trtmRaitzsch, Markus *
2Identification *IDRaitzsch, Markus *
3Heterostegina depressa *H. depressaRaitzsch, Markus *Abundance estimate *
4Heterostegina depressa *H. depressaRaitzsch, Markus *Abundance estimate *
5Heterostegina depressa *H. depressaRaitzsch, Markus *Abundance estimate *
6Ammonia tepida *A. tepidaRaitzsch, Markus *Abundance estimate *
7Ammonia tepida *A. tepidaRaitzsch, Markus *Abundance estimate *
8Ammonia tepida *A. tepidaRaitzsch, Markus *Abundance estimate *
9Salinity *SalRaitzsch, Markus *
10Temperature, water *Temp°CRaitzsch, Markus *
11Alkalinity, total *ATµmol/kgRaitzsch, Markus *
12Alkalinity, total, standard deviation *AT std dev±Raitzsch, Markus *
13Carbon, inorganic, dissolved *DICµmol/kgRaitzsch, Markus *
14Carbon, inorganic, dissolved, standard deviation *DIC std dev±Raitzsch, Markus *Geo-Las 200Q 193 nm Excimerlaser (Lambda Physik) *
15Calcium *Ca2+mmol/kgRaitzsch, Markus *
16Calcium, standard deviation *Ca std dev±Raitzsch, Markus *
17Carbon dioxide *CO2µmol/kgRaitzsch, Markus *
18Carbon dioxide, standard deviation *CO2 std dev±Raitzsch, Markus *
19Calcite saturation state *Omega CalRaitzsch, Markus *Calculated *
20Calcite saturation state, standard deviation *Omega Cal std dev±Raitzsch, Markus *
21Carbonate system computation flag *CSC flagNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
22pH *pHNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *Total scale
23Carbon dioxide *CO2µmol/kgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
24Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
25Fugacity of carbon dioxide (water) at sea surface temperature (wet air) *fCO2water_SST_wetµatmNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
26Bicarbonate ion *[HCO3]-µmol/kgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
27Carbonate ion *[CO3]2-µmol/kgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
28Aragonite saturation state *Omega ArgNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
29Calcite saturation state *Omega CalNisumaa, Anne-Marin *Calculated using seacarb after Nisumaa et al. (2010) *
30Magnesium/Calcium ratio *Mg/CaRaitzsch, Markus *Seawater
31Magnesium/Calcium ratio, standard deviation *Mg/Ca std dev±Raitzsch, Markus *Seawater
32Strontium/Calcium ratio *Sr/CaRaitzsch, Markus *Seawater
33Strontium/Calcium, standard deviation *Sr/Ca std dev±Raitzsch, Markus *Seawater
34Heterostegina depressa, magnesium/calcium ratio *H. depressa Mg/Cammol/molRaitzsch, Markus *
35Heterostegina depressa, magnesium/calcium ratio, standard deviation *H. depressa Mg/Ca std dev±Raitzsch, Markus *
36Ammonia tepida, magnesium/calcium ratio *A. tepida Mg/Cammol/molRaitzsch, Markus *
37Ammonia tepida, magnesium/calcium ratio, standard deviation *A. tepida Mg/Ca std dev±Raitzsch, Markus *
38Heterostegina depressa, incorporation, magnesium *H. depressa DMgRaitzsch, Markus *Geo-Las 200Q 193 nm Excimerlaser (Lambda Physik) *
39Heterostegina depressa, incorporation, magnesium, standard deviation *H. depressa DMg std dev±Raitzsch, Markus *
40Ammonia tepida, incorporation, magnesium *A. tepida DMgRaitzsch, Markus *Geo-Las 200Q 193 nm Excimerlaser (Lambda Physik) *
41Ammonia tepida, incorporation, magnesium, standard deviation *A. tepida DMg std dev±Raitzsch, Markus *
42Heterostegina depressa, strontium/calcium ratio *H. depressa Sr/Cammol/molRaitzsch, Markus *
43Heterostegina depressa, strontium/calcium ratio, standard deviation *H. depressa Sr/Ca std dev±Raitzsch, Markus *
44Ammonia tepida, strontium/calcium ratio *A. tepida Sr/Cammol/molRaitzsch, Markus *
45Ammonia tepida, strontium/calcium ratio, standard deviation *A. tepida Sr/Ca std dev±Raitzsch, Markus *
46Heterostegina depressa, incorporation, strontium *H. depressa DSrRaitzsch, Markus *Geo-Las 200Q 193 nm Excimerlaser (Lambda Physik) *
47Heterostegina depressa, incorporation, strontium, standard deviation *H. depressa DSr std dev±Raitzsch, Markus *
48Ammonia tepida, incorporation, strontium *A. tepida DSrRaitzsch, Markus *Geo-Las 200Q 193 nm Excimerlaser (Lambda Physik) *
49Ammonia tepida, incorporation, strontium, standard deviation *A. tepida DSr std dev±Raitzsch, Markus *
304 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML