Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Raitzsch, Markus; Dueñas-Bohórquez, Adriana; Reichart, Gert-Jan; de Nooijer, Lennart Jan; Bickert, Torsten (2010): Incorporation of Mg and Sr in calcite of cultured benthic foraminifera (Heterostegina depressa and Ammonia tepida) and seawater carbonate chemistry, 2010. doi:10.1594/PANGAEA.758073,
Supplement to: Raitzsch, M et al. (2010): Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated saturation state. Biogeosciences, 7(3), 869-881, doi:10.5194/bg-7-869-2010

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (omega) on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing) and Ammonia tepida (low-Mg calcite, symbiont-barren) were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite)/(TE/Caseawater). The culturing study shows that DMg of A. tepida significantly decreases with increasing omega at a gradient of -4.3x10-5 per omega unit. The DSr value of A. tepida does not change with omega, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing omega, while DSr increases considerably with omega at a gradient of 0.009 per omega unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50-100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep-sea benthic foraminifera typically used for paleostudies, the higher Ca concentrations in the past may potentially bias temperature reconstructions to a considerable degree. For instance, 25 Myr ago Mg/Ca ratios in A. tepida would have been 0.2 mmol/mol lower than today, due to the 1.5 times higher [Ca2+] of seawater, which in turn would lead to a temperature underestimation of more than 2 °C.
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethodComment
1Experimental treatmentExp trtmRaitzsch, Markus
2IdentificationIDRaitzsch, Markus
3Heterostegina depressaH. depressaRaitzsch, MarkusAbundance estimate
4Heterostegina depressaH. depressaRaitzsch, MarkusAbundance estimate
5Heterostegina depressaH. depressaRaitzsch, MarkusAbundance estimate
6Ammonia tepidaA. tepidaRaitzsch, MarkusAbundance estimate
7Ammonia tepidaA. tepidaRaitzsch, MarkusAbundance estimate
8Ammonia tepidaA. tepidaRaitzsch, MarkusAbundance estimate
9SalinitySalRaitzsch, Markus
10Temperature, waterTemp°CRaitzsch, Markus
11Alkalinity, totalATµmol/kgRaitzsch, Markus
12Alkalinity, total, standard deviationAT std dev±Raitzsch, Markus
13Carbon, inorganic, dissolvedDICµmol/kgRaitzsch, Markus
14Carbon, inorganic, dissolved, standard deviationDIC std dev±Raitzsch, MarkusGeo-Las 200Q 193 nm Excimerlaser (Lambda Physik)
15CalciumCa2+mmol/kgRaitzsch, Markus
16Calcium, standard deviationCa std dev±Raitzsch, Markus
17Carbon dioxideCO2µmol/kgRaitzsch, Markus
18Carbon dioxide, standard deviationCO2 std dev±Raitzsch, Markus
19Calcite saturation stateOmega CalRaitzsch, MarkusCalculated
20Calcite saturation state, standard deviationOmega Cal std dev±Raitzsch, Markus
21Carbonate system computation flagCSC flagNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
22pHpHNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)Total scale
23Carbon dioxideCO2µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
24Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
25Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
26Bicarbonate ion[HCO3]-µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
27Carbonate ion[CO3]2-µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
28Aragonite saturation stateOmega ArgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
29Calcite saturation stateOmega CalNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
30Magnesium/Calcium ratioMg/CaRaitzsch, MarkusSeawater
31Magnesium/Calcium ratio, standard deviationMg/Ca std dev±Raitzsch, MarkusSeawater
32Strontium/Calcium ratioSr/CaRaitzsch, MarkusSeawater
33Strontium/Calcium ratio, standard deviationSr/Ca std dev±Raitzsch, MarkusSeawater
34Heterostegina depressa, magnesium/calcium ratioH. depressa Mg/Cammol/molRaitzsch, Markus
35Heterostegina depressa, magnesium/calcium ratio, standard deviationH. depressa Mg/Ca std dev±Raitzsch, Markus
36Ammonia tepida, magnesium/calcium ratioA. tepida Mg/Cammol/molRaitzsch, Markus
37Ammonia tepida, magnesium/calcium ratio, standard deviationA. tepida Mg/Ca std dev±Raitzsch, Markus
38Heterostegina depressa, incorporation, magnesiumH. depressa DMgRaitzsch, MarkusGeo-Las 200Q 193 nm Excimerlaser (Lambda Physik)
39Heterostegina depressa, incorporation, magnesium, standard deviationH. depressa DMg std dev±Raitzsch, Markus
40Ammonia tepida, incorporation, magnesiumA. tepida DMgRaitzsch, MarkusGeo-Las 200Q 193 nm Excimerlaser (Lambda Physik)
41Ammonia tepida, incorporation, magnesium, standard deviationA. tepida DMg std dev±Raitzsch, Markus
42Heterostegina depressa, strontium/calcium ratioH. depressa Sr/Cammol/molRaitzsch, Markus
43Heterostegina depressa, strontium/calcium ratio, standard deviationH. depressa Sr/Ca std dev±Raitzsch, Markus
44Ammonia tepida, strontium/calcium ratioA. tepida Sr/Cammol/molRaitzsch, Markus
45Ammonia tepida, strontium/calcium ratio, standard deviationA. tepida Sr/Ca std dev±Raitzsch, Markus
46Heterostegina depressa, incorporation, strontiumH. depressa DSrRaitzsch, MarkusGeo-Las 200Q 193 nm Excimerlaser (Lambda Physik)
47Heterostegina depressa, incorporation, strontium, standard deviationH. depressa DSr std dev±Raitzsch, Markus
48Ammonia tepida, incorporation, strontiumA. tepida DSrRaitzsch, MarkusGeo-Las 200Q 193 nm Excimerlaser (Lambda Physik)
49Ammonia tepida, incorporation, strontium, standard deviationA. tepida DSr std dev±Raitzsch, Markus
Size:
304 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML