Data Description

  RIS BibTeX
Citation:
Lischka, S; Riebesell, U (2012): Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. doi:10.1594/PANGAEA.832422,
Supplement to: Lischka, Silke; Riebesell, Ulf (2012): Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic. Global Change Biology, 18(12), 3517-3528, doi:10.1111/gcb.12020
Abstract:
Ocean acidification and warming will be most pronounced in the Arctic Ocean. Aragonite shell-bearing pteropods in the Arctic are expected to be among the first species to suffer from ocean acidification. Carbonate undersaturation in the Arctic will first occur in winter and because this period is also characterized by low food availability, the overwintering stages of polar pteropods may develop into a bottleneck in their life cycle. The impacts of ocean acidification and warming on growth, shell degradation (dissolution), and mortality of two thecosome pteropods, the polar Limacina helicina and the boreal L. retroversa, were studied for the first time during the Arctic winter in the Kongsfjord (Svalbard). The abundance of L. helicina and L. retroversa varied from 23.5 to 120 ind /m2 and 12 to 38 ind /m2, and the mean shell size ranged from 920 to 981 µm and 810 to 823 µm, respectively. Seawater was aragonite-undersaturated at the overwintering depths of pteropods on two out of ten days of our observations. A 7-day experiment [temperature levels: 2 and 7 °C, pCO2 levels: 350, 650 (only for L. helicina) and 880 ?atm] revealed a significant pCO2 effect on shell degradation in both species, and synergistic effects between temperature and pCO2 for L. helicina. A comparison of live and dead specimens kept under the same experimental conditions indicated that both species were capable of actively reducing the impacts of acidification on shell dissolution. A higher vulnerability to increasing pCO2 and temperature during the winter season is indicated compared with a similar study from fall 2009. Considering the species winter phenology and the seasonal changes in carbonate chemistry in Arctic waters, negative climate change effects on Arctic thecosomes are likely to show up first during winter, possibly well before ocean acidification effects become detectable during the summer season.
Further details:
Lavigne, Héloise; Epitalon, Jean-Marie; Gattuso, Jean-Pierre (2014): seacarb: seawater carbonate chemistry with R. R package version 3.0. https://cran.r-project.org/package=seacarb *
Project(s):
Coverage:
Date/Time Start: 2010-01-29T00:00:00 * Date/Time End: 2010-02-26T00:00:00
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-05-08.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethodComment
1DATE/TIME *Date/TimeGeocode
2Species *SpeciesLischka, Silke *
3Abundance per volume *Abund v#/m3Lischka, Silke *
4Length *lµmLischka, Silke *Shell length
5Replicate *ReplicateLischka, Silke *
6Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmLischka, Silke *Target pCO2
7Temperature, water *Temp°CLischka, Silke *Target T
8Mortality *Mortality%Lischka, Silke *
9Sample code/label *LabelLischka, Silke *
10Status *StatusLischka, Silke *alive/dead
11Category *CatLischka, Silke *Shell degradation category (milky: 0=clear, 1=slight, 2=medium, 3=strong, 4=very strong)
12Category *CatLischka, Silke *Shell degradation category (brownish: 0=no, 1=slight, 2=medium, 3=strong, 4=very strong)
13Category *CatLischka, Silke *Shell degradation category (brownish: 0=no, 1=slight, 2=medium, 3=strong, 4=very strong)
14Category *CatLischka, Silke *Shell degradation category (Corrosion: 0=no , 1=slight, 2=medium, 3=strong, 4=very strong)
15Category *CatLischka, Silke *Shell degradation category (Perforations: 0=no , 1=slight (1_2 perforations), 2=medium (3_4 perforations), 3=strong (> 5 perforations))
16Salinity *SalLischka, Silke *
17Temperature, water *Temp°CLischka, Silke *start
18Temperature, water *Temp°CLischka, Silke *end
19Alkalinity, total *ATµmol/kgLischka, Silke *start
20Alkalinity, total *ATµmol/kgLischka, Silke *end
21pH *pHLischka, Silke *total scale, start
22pH *pHLischka, Silke *total scale, end
23Carbon, inorganic, dissolved *DICµmol/kgLischka, Silke *start
24Carbon, inorganic, dissolved *DICµmol/kgLischka, Silke *end
25Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmLischka, Silke *start
26Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmLischka, Silke *end
27Aragonite saturation state *Omega ArgLischka, Silke *start
28Aragonite saturation state *Omega ArgLischka, Silke *end
29Silicate *SILCATµmol/kgLischka, Silke *start
30Silicate *SILCATµmol/kgLischka, Silke *end
31Phosphate *PHSPHTµmol/kgLischka, Silke *start
32Phosphate *PHSPHTµmol/kgLischka, Silke *end
33Carbonate system computation flag *CSC flagYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
34Carbon dioxide *CO2µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *start
35Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *start
36Fugacity of carbon dioxide in seawater *fCO2wµatmYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *start
37Bicarbonate ion *[HCO3]-µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *start
38Carbonate ion *[CO3]2-µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *start
39Carbon, inorganic, dissolved *DICµmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *start
40Aragonite saturation state *Omega ArgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *start
41Calcite saturation state *Omega CalYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *start
42Carbon dioxide *CO2µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *end
43Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *end
44Fugacity of carbon dioxide in seawater *fCO2wµatmYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *end
45Bicarbonate ion *[HCO3]-µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *end
46Carbonate ion *[CO3]2-µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *end
47Carbon, inorganic, dissolved *DICµmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *end
48Aragonite saturation state *Omega ArgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *end
49Calcite saturation state *Omega CalYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *end
License:
Size:
8971 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML (shows only first 2000 rows)