Skip to main content
Log in

Enhanced calcification ameliorates the negative effects of UV radiation on photosynthesis in the calcifying phytoplankter Emiliania huxleyi

  • Articles
  • Marine Biology
  • Published:
Chinese Science Bulletin

Abstract

The calcifying phytoplankton species, coccolithophores, have their calcified coccoliths around the cells, however, their physiological roles are still unknown. Here, we hypothesized that the coccoliths may play a certain role in reducing solar UV radiation (UVR, 280–400 nm) and protect the cells from being harmed. Cells of Emiliania huxleyi with different thicknesses of the coccoliths were obtained by culturing them at different levels of dissolved inorganic carbon and their photophysiological responses to UVR were investigated. Although increased dissolved inorganic carbon decreased the specific growth rate, the increased coccolith thickness significantly ameliorated the photoinhibition of PSII photochemical efficiency caused by UVR. Increase by 91% in the coccolith thickness led to 35% increase of the PSII yield and 22% decrease of the photoinhibition of the effective quantum yield (ΦPSII) by UVR. The coccolith cover reduced more UVA (320–400 nm) than UVB (280–315 nm), leading to less inhibition per energy at the UV-A band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2. Science, 2004, 305: 367–371

    Article  Google Scholar 

  2. Feely R A, Sabine C L, Lee K, et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 2004, 305: 362–366

    Article  Google Scholar 

  3. Brewer P G. Ocean chemistry of the fossil fuel CO2 signal: the haline signal of “business as usual”. Geophys Res Lett, 1997, 24: 1367–1369

    Article  Google Scholar 

  4. Caldeira K, Wickett M E, Anthropogenic carbon and ocean pH. Nature, 2003, 425: 365

    Article  Google Scholar 

  5. Gao K S, Aruga Y, Asada K, et al. Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration. Mar Biol, 1993, 117: 129–132

    Article  Google Scholar 

  6. Riebesell U, Zondervan I, Rost B, et al. Reeeuced calcification of marine plankton in response to increased atmospheric CO2. Nature, 2000, 407: 364–367

    Article  Google Scholar 

  7. Paasche E. A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth coccolith formation, and calcification-photosynthesis interactions. Phycologia, 2001, 40: 503–529

    Google Scholar 

  8. Holligan P M, Fernandez E, Aiken J, et al. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Glob Biogeochem Cycl, 1993, 7: 879–900

    Article  Google Scholar 

  9. Nielsen M V. Growth, dark respiration and photosynthetic parameters of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) acclimated to different day length-irradiance combinations. J Phycol, 1997, 33: 818–822

    Article  Google Scholar 

  10. Nanninga H J, Tyrell T. Importance of light for the formation of algal blooms by Emiliania huxleyi. Mar Ecol Prog Ser, 1996, 136: 195–203

    Article  Google Scholar 

  11. Harris G N, Scanlan J S, Geider R J. Acclimation of Emiliania huxleyi (Prymnesiophyceae) to photon flux density. J Phycol, 2005, 41: 851–862

    Article  Google Scholar 

  12. Trimborn S, Langer G, Rost B. Effect of varying calcium concentrations and light intensities on calcification and photosynthesis in Emiliania huxleyi. Limnol Oceanogr, 2007, 52: 2285–2293

    Google Scholar 

  13. Häder D P, Kumar H D, Smith R C, et al. Effect of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol, 2007, 6: 267–285

    Article  Google Scholar 

  14. Weatherhead E C, Andersen S B. The search of the signs of recovery of ozone layer. Nature, 2006, 441: 39–45

    Article  Google Scholar 

  15. Boelen P, De-Boer M K, Kraay G W, et al. UVBR-induced DNA damage in natural marine picoplankton assemblages in the tropical Atlantic Ocean. Mar Ecol Prog Ser, 2000, 193: 1–9

    Article  Google Scholar 

  16. Xiong F S. Evidence that UV-B tolerance of the photosynthetic apparatus in microalgae is related to the D1-turnover mediated repair cycle in vivo. J Plant Physiol, 2001, 158: 285–294

    Article  Google Scholar 

  17. Wu H Y, Gao K S, Villafañe V E, et al. Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Appl Environ Microb, 2005, 71: 5004–5013

    Article  Google Scholar 

  18. Guan W C, Gao K S. Light histories influence the impacts of solar ultraviolet radiation on photosynthesis and growth in a marine diatom, Skeletonema costatum. J Photochem Photobiol B Biol, 2008, 91: 151–156

    Article  Google Scholar 

  19. Behrenfeld M J, Hardy J T, Lee H II. Ultraviolet-B radiation effects on inorganic nitrogen uptake by natural assemblages of oceanic phytoplankton. J Phycol, 1995, 31: 25–36

    Article  Google Scholar 

  20. Buma A G J, van Oijen T. van de Poll W. The sensitivity of Emiliania huxleyi (Prymnesiophyceae) to ultraviolet-B radiation. J Phycol, 2000, 36: 296–303

    Article  Google Scholar 

  21. Van Rijssel M, Buma A G J. UV radiation induced stress does not affect DMSP synthesis in the marine prymnesiophyte Emiliania huxleyi. Aquat Microb Ecol, 2002, 28: 167–174

    Article  Google Scholar 

  22. Guan W C, Gao K S. Impacts of UV radiation on photosynthesis and growth of the coccolithophore Emiliania huxleyi (Haptophyceae). Environ Exp Bot, 2010, 67: 502–508

    Article  Google Scholar 

  23. Keller M D, Selvin R C, Claus W, et al. Media for the culture of oceanic ultraplankton. J Phycol, 1987, 23: 633–638

    Article  Google Scholar 

  24. Takano H, Takei R, Manabe E, et al. Increased coccolith production by Emiliania huxleyi cultures enriched with dissolved inorganic carbon. Appl Microbiol Biotechnol, 1995, 43: 460–465

    Article  Google Scholar 

  25. Raven J A, Johnston A M. Mechanisms of inorganic carbon acquisition inmarine phytoplankton and their implications for the use of other resources. Limnol Oceanogr, 1991, 36: 1701–1714

    Google Scholar 

  26. Nimer N A, Merrett M J. Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi Lohmann. New Phytol, 1992, 121: 173–177

    Article  Google Scholar 

  27. Häder D P, Lebert M, Marangoni R, et al. ELDONET - European light dosimeter network hardware and software. J Photochem Photobiol B Biol, 1999, 52: 51–58

    Article  Google Scholar 

  28. Korbee-Peinado N, Abdala-DÍaz R T, Figueroa F L, et al. Ammonium and UV radiation stimulate the accumulation of mycosporine-like amino acids in Porphyra columbina (Rhodophyta) from patagonia, argentina. J Phycol, 2004, 40: 248–259

    Article  Google Scholar 

  29. Zheng Y Q, Gao K S. Impacts of solar UV radiation on the photosynthesis, growth, and UV-absorbing compounds in Gracilaria lemaneiformis (Rhodophyta) grown at different nitrate concentrations J Phycol, 2009, 45: 314–323

    Article  Google Scholar 

  30. Steeman N E. The use of radio-active carbon (C14) for measuring organic production in the sea. J Cons Perm Int Explor Mer, 1952, 18: 117–140

    Google Scholar 

  31. Villafañe V E, Sundbäck K, Figueroa F L, et al. Photosynthesis in the aquatic environment as affected by UVR. In: Helbling E W, Zagarese H E, eds. UV Effects in Aquatic Organisms and Ecosystems. Cambridge: The Royal Society of Chemistry, 2003. 357–397

    Chapter  Google Scholar 

  32. Neale P J, Kieber D J. Assessing biological and chemical effects of UV in the marine environment: Spectral weighting functions. In: Hester R E, Harrison R M, eds. Causes and Environmental Implications of Increased UV-B radiation. Cambridge: The Royal Society of Chemistry, 2000. 61–83

    Chapter  Google Scholar 

  33. Ruggaber A, Dlugi R, Nakajima T. Modelling of radiation quantities and photolysis frequencies in the troposphere. J Atmos Chem, 1994, 18: 171–210

    Article  Google Scholar 

  34. Genty B E, Briantais J M, Baker N R. Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non-photorespiratory conditions. Plant Physiol Biochem, 1989, 28: 1–10

    Google Scholar 

  35. Gao K S, Ruan Z X, Villafañce V E, et al. Ocean acidification exacerbates the effect of UV radiation on the calcifiying phytoplankter Emiliania huxleyi. Limnol Oceanogr, 2009, 54: 1855–1962

    Google Scholar 

  36. Gieskes W W C, Buma A G J. UV damage to plant life in a photobiologically dynamic environment: the case of marine phytoplankton. Plant Ecol, 1997, 128: 17–25

    Article  Google Scholar 

  37. Garde K, Caroline C. The impact of UV-B radiation and different PAR intensities on growth, uptake of 14C, excretion of DOC, cell volume, and pigmentation in the marine prymnesiophyte, Emiliania huxleyi. J Exp Mar Biol Ecol, 2000, 247: 99–112

    Article  Google Scholar 

  38. Suggett D, Le Floc H E, Harris G N, et al. Different strategies of photoacclimation by two strains of Emiliania huxleyi (Haptophyta). J Phycol, 2007, 43: 1209–1222

    Article  Google Scholar 

  39. Balch W M, Holligan P M, Ackleson S G, et al. Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine. Limnol. Oceanogr, 1991, 36: 629–643

    Article  Google Scholar 

  40. Ziveri P, Thunell R C. Coccolithophore export production in Guaymas Basin, Gulf of California: response to climate forcing. Deep-Sea Res II, 2000, 47: 2073–2100

    Article  Google Scholar 

  41. Tyrrell T, Taylor A H. A modelling study of Emiliania huxleyi in the NE Atlantic. J Mar Syst, 1996, 9: 83–112

    Article  Google Scholar 

  42. Robertson J E, Robinson C, Turner D R, et al. The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991. Deep-Sea Res, 1994, 41: 297–314

    Article  Google Scholar 

  43. Boelen P, Obernosterer I, Vink A A, et al. Atenuation of biologically effective UV radiation in tropical Atlantic waters measured with a biochemical DNA dosimeter. Photochem Photobiol, 1999, 69: 34–40

    Article  Google Scholar 

  44. Smith R C, Prezelin B B, Baker K S, et al. Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science, 1992, 255: 952–959

    Article  Google Scholar 

  45. Gieskes W W C, Karry G W. Transmission of ultraviolet light in the Weddell Sea: report on the first measurements made in Antarctic. Biomass Newsl, 1990, 12: 12–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KunShan Gao.

Additional information

This work was supported by the National Basic Research Program of China (Grant No. 2009CB421207), National Natural Science Foundation of China (Grant Nos. 40930846 and 40676063) and MEL Young Scientist Visiting Fellowship of State Key Laboratory of Marine Environment Science, Xiamen University and Ph.D. Foundation of Wenzhou Medical College (Grant Nos. MELRS0935 and 89209008).

About this article

Cite this article

Guan, W., Gao, K. Enhanced calcification ameliorates the negative effects of UV radiation on photosynthesis in the calcifying phytoplankter Emiliania huxleyi . Chin. Sci. Bull. 55, 588–593 (2010). https://doi.org/10.1007/s11434-010-0042-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-0042-5

Keywords

Navigation