Hennige, Sebastian; Wicks, L C; Kamenos, N A; Bakker, Dorothee C E; Findlay, Helen S; Dumousseaud, Cynthia; Roberts, J Murray (2014): Short-term metabolic and growth responses of the cold-water coral lophelia pertusa to ocean acidification [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.820339, Supplement to: Hennige, S et al. (2014): Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep Sea Research Part II: Topical Studies in Oceanography, 99, 27-35, https://doi.org/10.1016/j.dsr2.2013.07.005
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
Cold-water corals are amongst the most three-dimensionally complex deep-sea habitats known and are associated with high local biodiversity. Despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has already decreased from 8.2 to ~ 8.1. Predicted CO2 emissions will decrease this by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Data here relate to a short term data set (21 days) on metabolism and net calcification rates of freshly collected L. pertusa from Mingulay Reef Complex, Scotland. These data from freshly collected L. pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species.
Keyword(s):
Original version:
Hennige, Sebastian; Wicks, L C; Roberts, J Murray (2012): Short-Term Responses of the Cold Water Coral Lophelia Pertusa to Ocean Acidification. British Oceanographic Data Cente, Natural Environment Research Council, https://doi.org/10.5285/a931a96d-f08d-4e7d-af30-866f5e3e8fd8
Further details:
Lavigne, Héloïse; Gattuso, Jean-Pierre (2011): seacarb: seawater carbonate chemistry with R. R package version 2.4 [webpage]. https://cran.r-project.org/package=seacarb
Project(s):
Funding:
Natural Environment Research Council (NERC), grant/award no. NE/H017305/1: Impacts of ocean acidification on key benthic ecosystems, communities, habitats, species and life cycles
Coverage:
Latitude: 56.823000 * Longitude: -7.376000
Date/Time Start: 2011-07-01T00:00:00 * Date/Time End: 2011-07-30T00:00:00
Event(s):
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2013-10-13.
Parameter(s):
License:
Creative Commons Attribution 3.0 Unported (CC-BY-3.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
1107 data points