Data Description

Citation:
Olischläger, M; Wiencke, C (2013): Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta). doi:10.1594/PANGAEA.834202,
Supplement to: Olischläger, Mark; Wiencke, Christian (2013): Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta). Journal of Experimental Botany, 64(18), 5587-5597, doi:10.1093/jxb/ert329
Abstract:
This study aimed to examine interactive effects between ocean acidification and temperature on the photosynthetic and growth performance of Neosiphonia harveyi. N. harveyi was cultivated at 10 and 17.5 °C at present (~380 µatm), expected future (~800 µatm), and high (~1500 µatm) pCO2. Chlorophyll a fluorescence, net photosynthesis, and growth were measured. The state of the carbon-concentrating mechanism (CCM) was examined by pH-drift experiments (with algae cultivated at 10 °C only) using ethoxyzolamide, an inhibitor of external and internal carbonic anhydrases (exCA and intCA, respectively). Furthermore, the inhibitory effect of acetazolamide (an inhibitor of exCA) and Tris (an inhibitor of the acidification of the diffusive boundary layer) on net photosynthesis was measured at both temperatures. Temperature affected photosynthesis (in terms of photosynthetic efficiency, light saturation point, and net photosynthesis) and growth at present pCO2, but these effects decreased with increasing pCO2. The relevance of the CCM decreased at 10 °C. A pCO2 effect on the CCM could only be shown if intCA and exCA were inhibited. The experiments demonstrate for the first time interactions between ocean acidification and temperature on the performance of a non-calcifying macroalga and show that the effects of low temperature on photosynthesis can be alleviated by increasing pCO2. The findings indicate that the carbon acquisition mediated by exCA and acidification of the diffusive boundary layer decrease at low temperatures but are not affected by the cultivation level of pCO2, whereas the activity of intCA is affected by pCO2. Ecologically, the findings suggest that ocean acidification might affect the biogeographical distribution of N. harveyi.
Further details:
Lavigne, Héloise; Epitalon, Jean-Marie; Gattuso, Jean-Pierre (2014): seacarb: seawater carbonate chemistry with R. R package version 3.0. https://cran.r-project.org/package=seacarb *
Project(s):
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-07-22.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethodComment
1Species *SpeciesBeardsley, Christine *
2Experiment *ExpBeardsley, Christine *
3Figure *FigBeardsley, Christine *
4Treatment *TreatmBeardsley, Christine *
5Identification *IDBeardsley, Christine *
6Maximal electron transport rate, relative *rETR maxµmol e/m2/sBeardsley, Christine *
7Light saturation *Ekµmol/m2/sBeardsley, Christine *
8Photosynthetic quantum efficiency *alphaBeardsley, Christine *
9Effective quantum yield *YBeardsley, Christine *
10Irradiance *EµE/m2/sBeardsley, Christine *
11Electron transport rate *ETRµmol e/m2/sBeardsley, Christine *
12Net photosynthesis rate, oxygen *PN O2µmol/g/hBeardsley, Christine *
13pH *pHBeardsley, Christine *NBS scale
14Time in hours *TimehBeardsley, Christine *
15Inhibition of net photosynthesis *Inhib NP%Beardsley, Christine *
16Mass *MassgBeardsley, Christine *fresh
17Incubation duration *Inc durdaysBeardsley, Christine *
18Growth rate *µ%/dayBeardsley, Christine *14 days of cultivation
19Growth rate *µ%/dayBeardsley, Christine *between day 17 and 24 of cultivation
20Chlorophyll a *Chl aµg/gBeardsley, Christine *
21Ratio *RatioBeardsley, Christine *fresh mass (mg)/Chlorophyll a (mg)
22Salinity *SalBeardsley, Christine *
23Salinity, standard deviation *Sal std dev±Beardsley, Christine *
24Temperature, water *Temp°CBeardsley, Christine *input
25Temperature, water *Temp°CBeardsley, Christine *output
26Temperature, water, standard deviation *Temp std dev±Beardsley, Christine *output
27Alkalinity, total *ATµmol/kgBeardsley, Christine *
28Alkalinity, total, standard deviation *AT std dev±Beardsley, Christine *
29pH *pHBeardsley, Christine *Potentiometric *total scale, measured at 25
30pH, standard deviation *pH std dev±Beardsley, Christine *Potentiometric *total scale, measured at 25
31Carbon, inorganic, dissolved *DICµmol/kgBeardsley, Christine *Potentiometric titration *
32Carbon, inorganic, dissolved, standard deviation *DIC std dev±Beardsley, Christine *Potentiometric titration *
33Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmBeardsley, Christine *Calculated using CO2SYS *
34Partial pressure of carbon dioxide, standard deviation *pCO2 std dev±Beardsley, Christine *Calculated using CO2SYS *
35Carbon dioxide *CO2µmol/kgBeardsley, Christine *Calculated using CO2SYS *
36Carbon dioxide, standard deviation *CO2 std dev±Beardsley, Christine *Calculated using CO2SYS *
37Bicarbonate ion *[HCO3]-µmol/kgBeardsley, Christine *Calculated using CO2SYS *
38Bicarbonate ion, standard deviation *[HCO3]- std dev±Beardsley, Christine *Calculated using CO2SYS *
39Carbonate ion *[CO3]2-µmol/kgBeardsley, Christine *Calculated using CO2SYS *
40Carbonate ion, standard deviation *[CO3]2- std dev±Beardsley, Christine *Calculated using CO2SYS *
41Calcite saturation state *Omega CalBeardsley, Christine *Calculated using CO2SYS *
42Calcite saturation state, standard deviation *Omega Cal std dev±Beardsley, Christine *Calculated using CO2SYS *
43Aragonite saturation state *Omega ArgBeardsley, Christine *Calculated using CO2SYS *
44Aragonite saturation state, standard deviation *Omega Arg std dev±Beardsley, Christine *Calculated using CO2SYS *
45Carbonate system computation flag *CSC flagYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
46pH *pHYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
47Carbon dioxide *CO2µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
48Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) *pCO2water_SST_wetµatmYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
49Fugacity of carbon dioxide (water) at sea surface temperature (wet air) *fCO2water_SST_wetµatmYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
50Bicarbonate ion *[HCO3]-µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
51Carbonate ion *[CO3]2-µmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
52Carbon, inorganic, dissolved *DICµmol/kgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
53Aragonite saturation state *Omega ArgYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
54Calcite saturation state *Omega CalYang, Yan *Calculated using seacarb after Nisumaa et al. (2010) *
License:
Size:
33142 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML (shows only first 2000 rows)