Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Trimborn, Scarlett; Brenneis, Tina; Sweet, Elizabeth; Rost, Bjoern (2013): Seawater carbonate chemistry and growth, carbon acquisition, and species interaction of Antarctic phytoplankton species in a laboratory experiment. PANGAEA, https://doi.org/10.1594/PANGAEA.824406, Supplement to: Trimborn, S et al. (2013): Sensitivity of Antarctic phytoplankton species to ocean acidification: Growth, carbon acquisition, and species interaction. Limnology and Oceanography, 58(3), 997-1007, https://doi.org/10.4319/lo.2013.58.3.0997

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Despite the fact that ocean acidification is considered to be especially pronounced in the Southern Ocean, little is known about CO2-dependent physiological processes and the interactions of Antarctic phytoplankton key species. We therefore studied the effects of CO2 partial pressure (PCO2) (16.2, 39.5, and 101.3 Pa) on growth and photosynthetic carbon acquisition in the bloom-forming species Chaetoceros debilis, Pseudo-nitzschia subcurvata, Fragilariopsis kerguelensis, and Phaeocystis antarctica. Using membrane-inlet mass spectrometry, photosynthetic O2 evolution and inorganic carbon (Ci) fluxes were determined as a function of CO2 concentration. Only the growth of C. debilis was enhanced under high PCO2. Analysis of the carbon concentrating mechanism (CCM) revealed the operation of very efficient CCMs (i.e., high Ci affinities) in all species, but there were species-specific differences in CO2-dependent regulation of individual CCM components (i.e., CO2 and uptake kinetics, carbonic anhydrase activities). Gross CO2 uptake rates appear to increase with the cell surface area to volume ratios. Species competition experiments with C. debilis and P. subcurvata under different PCO2 levels confirmed the CO2-stimulated growth of C. debilis observed in monospecific incubations, also in the presence of P. subcurvata. Independent of PCO2, high initial cell abundances of P. subcurvata led to reduced growth rates of C. debilis. For a better understanding of future changes in phytoplankton communities, CO2-sensitive physiological processes need to be identified, but also species interactions must be taken into account because their interplay determines the success of a species.
Keyword(s):
Antarctic; Bottles or small containers/Aquaria ( 20 L); Chaetoceros debilis; Chromista; Fragilariopsis kerguelensis; Growth/Morphology; Laboratory experiment; Laboratory strains; Ochrophyta; Pelagos; Phaeocystis antarctica; Phytoplankton; Primary production/Photosynthesis; Pseudo-nitzschia subcurvata; Single species; Species interaction
Further details:
Lavigne, Héloise; Gattuso, Jean-Pierre (2011): seacarb: seawater carbonate chemistry with R. R package version 2.4. https://cran.r-project.org/package=seacarb
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2013-12-10.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethodComment
1IdentificationIDTrimborn, Scarlett
2SpeciesSpeciesTrimborn, Scarlett
3DescriptionDescriptionTrimborn, Scarlett
4TreatmentTreatTrimborn, Scarlett
5Growth rateµ1/dayTrimborn, Scarlett
6Growth rate, standard deviationµ std dev±Trimborn, Scarlett
7Bicarbonate uptake/net fixation ratio[HCO3]- upt/net fixmol/molTrimborn, Scarlett
8Bicarbonate uptake/net fixation ratio, standard deviation[HCO3]- upt/net fix std dev±Trimborn, Scarlett
9Extracellular carbonic anhydrase activityeCA activityU/µg Chl aTrimborn, ScarlettMeasured by loss of 18O (Silverman, 1982)
10Extracellular carbonic anhydrase activity, standard deviationeCA act std dev±Trimborn, ScarlettMeasured by loss of 18O (Silverman, 1982)
11Chaetoceros debilis/Pseudo-nitzschia subcurvata ratioC. debilis/P-n subcurvataTrimborn, Scarletttheoretical
12Chaetoceros debilis/Pseudo-nitzschia subcurvata ratio, standard deviationC. debilis/P-n subcurvata std dev±Trimborn, Scarletttheoretical
13Chaetoceros debilis/Pseudo-nitzschia subcurvata ratioC. debilis/P-n subcurvataTrimborn, Scarlettcounted
14Chaetoceros debilis/Pseudo-nitzschia subcurvata ratio, standard deviationC. debilis/P-n subcurvata std dev±Trimborn, Scarlettcounted
15Gross carbon dioxide uptake/net fixation ratioG CO2 upt/net fix%Trimborn, Scarlett
16Gross carbon dioxide uptake/net fixation ratio, standard deviationG CO2 upt/net fix std dev±Trimborn, Scarlett
17Cell surface area/cell volume ratioCell SA/cell vol1/µmTrimborn, Scarlett
18Cell surface area/cell volume, standard deviationCell SA/cell vol std dev±Trimborn, Scarlett
19Carbon dioxide, reciprocal of photosynthetic affinity valueCO2 K1/2µmol/lTrimborn, Scarlett
20Carbon dioxide, reciprocal of photosynthetic affinity value, standard deviationCO2 K1/2 std dev±Trimborn, Scarlett
21Photosynthesis carbon dioxide uptake rate, maximum velocityP CO2 upt rate Vmaxµmol/mg/hTrimborn, Scarlett
22Photosynthesis carbon dioxide uptake, maximum velocity, standard deviationP CO2 upt Vmax std dev±Trimborn, Scarlett
23Gross carbon dioxide uptake, half saturation concentrationK1/2 G CO2 uptµmol/lTrimborn, Scarlett
24Gross carbon dioxide uptake, half saturation concentration, standard deviationK1/2 G CO2 upt std dev±Trimborn, Scarlett
25Gross carbon dioxide uptake rate per chlorophyll a, maximum velocityG CO2 upt rate Vmaxµmol/mg/hTrimborn, Scarlett
26Gross carbon dioxide uptake per chlorophyll a, maximum velocity, standard deviationG CO2 upt Vmax std dev±Trimborn, Scarlett
27Net carbon dioxide uptake, half saturation concentrationK1/2 N CO2 uptµmol/lTrimborn, Scarlett
28Net carbon dioxide uptake, half saturation concentration, standard deviationK1/2 N CO2 upt std dev±Trimborn, Scarlett
29Net carbon dioxide uptake rate per chlorophyll a, maximum velocityN CO2 upt rate Vmaxµmol/mg/hTrimborn, Scarlett
30Net carbon dioxide uptake per chlorophyll a, maximum velocity, standard deviationN CO2 upt Vmax std dev±Trimborn, Scarlett
31Bicarbonate ion, reciprocal of photosynthetic affinity value[HCO3]- K1/2µmol/lTrimborn, Scarlett
32Bicarbonate ion, reciprocal of photosynthetic affinity value, standard deviation[HCO3]- K1/2 std dev±Trimborn, Scarlett
33Bicarbonate uptake rate per chlorophyll a, maximum velocity[HCO3]- upt rate Vmaxµmol/mg/hTrimborn, Scarlett
34Bicarbonate uptake per chlorophyll a, maximum velocity, standard deviation[HCO3]- upt Vmax std dev±Trimborn, Scarlett
35Temperature, waterTemp°CTrimborn, Scarlett
36SalinitySalTrimborn, Scarlett
37SilicateSi(OH)4µmol/lTrimborn, Scarlett
38Nitrate[NO3]-µmol/lTrimborn, Scarlett
39Phosphate[PO4]3-µmol/lTrimborn, Scarlett
40Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetPaTrimborn, ScarlettCalculated using CO2SYS
41Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Trimborn, ScarlettCalculated using CO2SYS
42Carbon dioxideCO2µmol/kgTrimborn, ScarlettCalculated using CO2SYS
43Carbon dioxide, standard deviationCO2 std dev±Trimborn, ScarlettCalculated using CO2SYS
44Carbon, inorganic, dissolvedDICµmol/kgTrimborn, ScarlettCalculated using CO2SYS
45Carbon, inorganic, dissolved, standard deviationDIC std dev±Trimborn, ScarlettCalculated using CO2SYS
46Alkalinity, totalATµmol/kgTrimborn, ScarlettPotentiometric titration
47Alkalinity, total, standard deviationAT std dev±Trimborn, ScarlettPotentiometric titration
48pHpHTrimborn, ScarlettPotentiometricNBS scale
49pH, standard deviationpH std dev±Trimborn, ScarlettPotentiometricNBS scale
50Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
51pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale
52Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
53Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
54Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
55Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
56Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
57Carbon, inorganic, dissolvedDICµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
58Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
59Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Size:
1753 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML