Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Van de Waal, Dedmer B; Eberlein, Tim; John, Uwe; Wohlrab, Sylke; Rost, Bjoern (2014): Impact of elevated pCO2 on paralytic shellfish poisoning toxin content and composition in Alexandrium tamarense. PANGAEA, https://doi.org/10.1594/PANGAEA.835715, Supplement to: Van de Waal, DB et al. (2014): Impact of elevated pCO2 on paralytic shellfish poisoning toxin content and composition in Alexandrium tamarense. Toxicon, 78, 58-67, https://doi.org/10.1016/j.toxicon.2013.11.011

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Ocean acidification is considered a major threat to marine ecosystems and may particularly affect primary producers. Here we investigated the impact of elevated pCO2 on paralytic shellfish poisoning toxin (PST) content and composition in two strains of Alexandrium tamarense, Alex5 and Alex2. Experiments were carried out as dilute batch to keep carbonate chemistry unaltered over time. We observed only minor changes with respect to growth and elemental composition in response to elevated pCO2. For both strains, the cellular PST content, and in particular the associated cellular toxicity, was lower in the high CO2 treatments. In addition, Alex5 showed a shift in its PST composition from a nonsulfated analogue towards less toxic sulfated analogues with increasing pCO2. Transcriptomic analyses suggest that the ability of A. tamarense to maintain cellular homeostasis is predominantly regulated on the post-translational level rather than on the transcriptomic level. Furthermore, genes associated to secondary metabolite and amino acid metabolism in Alex5 were down-regulated in the high CO2 treatment, which may explain the lower PST content. Elevated pCO2 also induced up-regulation of a putative sulfotransferase sxtN homologue and a substantial down-regulation of several sulfatases. Such changes in sulfur metabolism may explain the shift in PST composition towards more sulfated analogues. All in all, our results indicate that elevated pCO2 will have minor consequences for growth and elemental composition, but may potentially reduce the cellular toxicity of A. tamarense.
Keyword(s):
Alexandrium tamarense; Bottles or small containers/Aquaria ( 20 L); Chromista; Gene expression (incl. proteomics); Growth/Morphology; Immunology/Self-protection; Laboratory experiment; Laboratory strains; Myzozoa; Not applicable; Pelagos; Phytoplankton; Primary production/Photosynthesis; Single species
Further details:
Lavigne, Héloise; Epitalon, Jean-Marie; Gattuso, Jean-Pierre (2014): seacarb: seawater carbonate chemistry with R. R package version 3.0. https://cran.r-project.org/package=seacarb
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne et al, 2014) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2014-09-11.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1SpeciesSpeciesVan de Waal, Dedmer B
2StrainStrainVan de Waal, Dedmer B
3FigureFigVan de Waal, Dedmer B
4TableTabVan de Waal, Dedmer B
5Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmVan de Waal, Dedmer Btreatment
6Cellular paralytic shellfish toxin, totalCell PSTpg/#Van de Waal, Dedmer B
7Cellular paralytic shellfish toxin, total, standard deviationCell PST std dev±Van de Waal, Dedmer B
8Toxicity, cellularCell toxicitypg/#Van de Waal, Dedmer BSTXeq
9Toxicity, cellular, standard deviationCell toxicity std dev±Van de Waal, Dedmer BSTXeq
10Neurotoxin saxitoxinSTX%Van de Waal, Dedmer B
11Neurotoxin saxitoxin, standard deviationSTX std dev±Van de Waal, Dedmer B
12NeosaxitoxinNEO%Van de Waal, Dedmer B
13Neosaxitoxin, standard deviationNEO std dev±Van de Waal, Dedmer B
14Gonyautoxins 2/3GTX 2/3%Van de Waal, Dedmer B
15Gonyautoxins 2/3, standard deviationGTX 2/3 std dev±Van de Waal, Dedmer B
16Gonyautoxins 1/4GTX 1/4%Van de Waal, Dedmer B
17Gonyautoxins 1/4, standard deviationGTX 1/4 std dev±Van de Waal, Dedmer B
18Di-sulfated toxins C1+C2Di-sulfated toxins C1+C2%Van de Waal, Dedmer B
19Di-sulfated toxins C1+C2, standard deviationDi-sulfated toxins C1+C2 std dev±Van de Waal, Dedmer B
20CategoryCatVan de Waal, Dedmer BKOG
21Gene abundanceGA#Van de Waal, Dedmer Bdown-regulated
22Gene abundanceGA#Van de Waal, Dedmer Bup-regulated
23Time in daysTimedaysVan de Waal, Dedmer B
24Cell densityCells#/mlVan de Waal, Dedmer B
25Growth rateµ1/dayVan de Waal, Dedmer B
26Growth rate, standard deviationµ std dev±Van de Waal, Dedmer B
27Production of particulate organic carbon per cellPOC prodpg/#/dayVan de Waal, Dedmer B
28Particulate organic carbon, production, standard deviationPOC prod std dev±Van de Waal, Dedmer B
29Carbon, organic, particulate, per cellPOCpg/#Van de Waal, Dedmer B
30Carbon, organic, particulate, standard deviationPOC std dev±Van de Waal, Dedmer B
31Nitrogen, organic, particulate, per cellPONpg/#Van de Waal, Dedmer B
32Nitrogen, organic, particulate, standard deviationPON std dev±Van de Waal, Dedmer B
33Carbon/Nitrogen ratioC/NVan de Waal, Dedmer B
34Carbon/Nitrogen ratio, standard deviationC/N std dev±Van de Waal, Dedmer B
35Temperature, waterTemp°CVan de Waal, Dedmer B
36SalinitySalVan de Waal, Dedmer B
37PhosphatePHSPHTµmol/kgVan de Waal, Dedmer B
38pHpHVan de Waal, Dedmer BPotentiometricNBS scale
39pH, standard deviationpH std dev±Van de Waal, Dedmer BPotentiometricNBS scale
40Alkalinity, totalATµmol/kgVan de Waal, Dedmer BPotentiometric titration
41Alkalinity, total, standard deviationAT std dev±Van de Waal, Dedmer BPotentiometric titration
42Carbon, inorganic, dissolvedDICµmol/kgVan de Waal, Dedmer BCoulometric titration
43Carbon, inorganic, dissolved, standard deviationDIC std dev±Van de Waal, Dedmer BCoulometric titration
44Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmVan de Waal, Dedmer BCalculated using CO2SYS
45Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Van de Waal, Dedmer BCalculated using CO2SYS
46Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
47pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale
48Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
49Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
50Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
51Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
52Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
53Carbon, inorganic, dissolvedDICµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
54Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
55Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Size:
6500 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML (shows only first 2000 rows)