Not logged in
Data Publisher for Earth & Environmental Science

Hu, Marian Y; Tseng, Yung-Che; Stumpp, Meike; Gutowska, Magdalena A; Kiko, Rainer; Lucassen, Magnus; Melzner, Frank (2011): Seawater carbonate chemistry, mass, length and gene expression of Sepia officinalis during experiments, 2011. doi:10.1594/PANGAEA.774787,
Supplement to: Hu, MY et al. (2011): Elevated seawater pCO2 differentially affects branchial acid-base transporters over the course of development in the cephalopod Sepia officinalis. American Journal of Physiology, 300(5), R1100-R1114, doi:10.1152/ajpregu.00653.2010

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

The specific transporters involved in maintenance of blood pH homeostasis in cephalopod molluscs have not been identified to date. Using in situ hybridization and immuno histochemical methods, we demonstrate that Na+/K+-ATPase (soNKA), a V-type H+-ATPase (soV-HA), and Na+/HCO3- cotransporter (soNBC) are co-localized in NKA-rich cells in the gills of Sepia officinalis. mRNA expression patterns of these transporters and selected metabolic genes were examined in response to moderately elevated seawater pCO2 (0.16 and 0.35 kPa) over a time-course of six weeks in different ontogenetic stages. The applied CO2 concentrations are relevant for ocean acidification scenarios projected for the coming decades. We determined strong expression changes in late stage embryos and hatchlings, with one to three log2-fold reductions in soNKA, soNBCe, socCAII and COX. In contrast, no hypercapnia induced changes in mRNA expression were observed in juveniles during both short- and long-term exposure. However a transiently increased demand of ion regulatory demand was evident during the initial acclimation reaction to elevated seawater pCO2. Gill Na+/K+-ATPase activity and protein concentration were increased by approximately 15% in during short (2-11 day), but not long term (42 day) exposure. Our findings support the hypothesis that the energy budget of adult cephalopods is not significantly compromised during long-term exposure to moderate environmental hypercapnia. However, the down regulation of ion-regulatory and metabolic genes in late stage embryos, taken together with a significant reduction in somatic growth, indicates that cephalopod early life stages are challenged by elevated seawater pCO2.
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).
#NameShort NameUnitPrincipal InvestigatorMethodComment
1SpeciesSpeciesHu, Marian Y
2CommentCommentHu, Marian Y
3Experimental treatmentExp trtmHu, Marian Y
4Experiment dayExp daydayHu, Marian Y
5SalinitySalHu, Marian Y
6Salinity, standard deviationSal std dev±Hu, Marian Y
7Temperature, waterTemp°CHu, Marian Y
8Temperature, standard deviationT std dev±Hu, Marian Y
9pHpHHu, Marian YWTW 340i pH-analyzer and WTW SenTix 81-electrodeNBS scale
10pH, standard deviationpH std dev±Hu, Marian Y
11Aragonite saturation stateOmega ArgHu, Marian YCalculated using CO2SYS
12Aragonite saturation state, standard deviationOmega Arg std dev±Hu, Marian Y
13Carbon dioxide, partial pressurepCO2PaHu, Marian YCalculated using CO2SYS
14Carbon dioxide, partial pressure, standard deviationpCO2 std dev±Hu, Marian Y
15Alkalinity, totalATµmol/kgHu, Marian YPotentiometric open-cell titration
16Alkalinity, total, standard deviationAT std dev±Hu, Marian Y
17Sepia officinalis, massS. officinalis mgHu, Marian YPrecision scale (Sartorius TE64, Sartorius AG, Germany)
18Sepia officinalis, mass, standard deviationS. officinalis m std dev±Hu, Marian Y
19Sepia officinalis, length, mantleS. officinalis lmmHu, Marian YStereomicroscopy (Leica)
20Sepia officinalis, length, mantle, standard deviationS. officinalis l std dev±Hu, Marian Y
21Sodium/Potassium adenosine triphosphatase gene expressionNa/K-ATPaseHu, Marian Ysee reference(s)
22Sodium/Potassium adenosine triphosphatase gene expression, standard deviationNa/K-ATPase std dev±Hu, Marian Y
23Sodium/bicarbonate cotransporter gene expressionNa/HCO3 cotranspHu, Marian Ysee reference(s)
24Sodium/bicarbonate cotransporter gene expression, standard deviationNa/HCO3 cotransp std dev±Hu, Marian Y
25Sodium driven chlorine/bicarbonate exchanger gene expressionNa-driven Cl/HCO3 exchangerHu, Marian Ysee reference(s)
26Sodium driven chlorine/bicarbonate exchanger gene expression, standard deviationNa-driven Cl/HCO3 exchanger std dev±Hu, Marian Y
27Carbonic anhydrase gene expressionCAHu, Marian Ysee reference(s)
28Carbonic anhydrase gene expression, standard deviationCA std dev±Hu, Marian Y
29Adenosine triphosphate synthase gene expressionATP-synthHu, Marian Ysee reference(s)
30Adenosine triphosphate synthase gene expression, standard deviationATP-synth std dev±Hu, Marian Y
31Cytochrome P-450 gene expressionCYP 450Hu, Marian Ysee reference(s)
32Cytochrome P-450 gene expression, standard deviationCYP 450 std dev±Hu, Marian Y
33Cytochrome-c-oxydase gene expressionCOXHu, Marian Ysee reference(s)
34Cytochrome-c-oxydase gene expression, standard deviationCOX std dev±Hu, Marian Y
35Octopine dehydrogenase gene expressionODHHu, Marian Ysee reference(s)
36Octopine dehydrogenase gene expression, standard deviationODH std dev±Hu, Marian Y
37Sodium/Potassium adenosine triphosphatase maximumNa/K-ATPase maxHu, Marian Ysee reference(s)
38Sodium/Potassium adenosine triphosphatase maximum, standard deviationNa/K-ATPase max std dev±Hu, Marian Y
39Sodium/Potassium adenosine triphosphatase relative protein concentrationNa/K-ATPase protein%Hu, Marian Ysee reference(s)
40Sodium/Potassium adenosine triphosphatase relative protein concentration, standard deviationNa/K-ATPase protein std dev±Hu, Marian Y
41Sodium/Potassium adenosine triphosphatase relative mRNA expressionNa/K-ATPase mRNA%Hu, Marian Ysee reference(s)
42Sodium/Potassium adenosine triphosphatase relative mRNA expression, standard deviationNa/K-ATPase mRNA std dev±Hu, Marian Y
43Sepia officinalis, perivitelline fluid, pHS. officinalis PVF pHHu, Marian YWTW 340i pH-analyzer and WTW SenTix 81-electrode
44Sepia officinalis, perivitelline fluid, pCO2S. officinalis PVF pCO2kPaHu, Marian YCalculated using CO2SYS
45Gene nameGeneHu, Marian Y
46Sepia officinalis, mRNA gene expressionS. officinalis mRNA expressHu, Marian Ysee reference(s)
47Sepia officinalis, mRNA gene expression, standard deviationS. officinalis mRNA express std dev±Hu, Marian Y
48Sepia officinalis, mRNA gene expression changeS. officinalis mRNA express change%Hu, Marian Ysee reference(s)
49Carbonate system computation flagCSC flagNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
50pHpHNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)Total scale
51Carbon dioxideCO2µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
52Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
53Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
54Bicarbonate ion[HCO3]-µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
55Carbonate ion[CO3]2-µmol/kgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
56Carbon, inorganic, dissolvedDICµmol/kgHu, Marian YCalculated using CO2SYS
57Aragonite saturation stateOmega ArgNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
58Calcite saturation stateOmega CalNisumaa, Anne-MarinCalculated using seacarb after Nisumaa et al. (2010)
2979 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML (shows only first 2000 rows)