Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Iñiguez, Concepcion; Carmona, Raquel; Lorenzo, M Rosario; Niell, F Xavier; Wiencke, Christian; Gordillo, Francisco J L (2016): Increased CO2 modifies the carbon balance and the photosynthetic yield of two common Arctic brown seaweeds: Desmarestia aculeata and Alaria esculenta. PANGAEA, https://doi.org/10.1594/PANGAEA.849401, Supplement to: Iñiguez, C et al. (2016): Increased CO2 modifies the carbon balance and the photosynthetic yield of two common Arctic brown seaweeds: Desmarestia aculeata and Alaria esculenta. Polar Biology, 39(11), 1979-1991, https://doi.org/10.1007/s00300-015-1724-x

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Ocean acidification affects with special intensity Arctic ecosystems, being marine photosynthetic organisms a primary target, although the consequences of this process in the carbon fluxes of Arctic algae are still unknown. The alteration of the cellular carbon balance due to physiological acclimation to an increased CO2 concentration (1300 ppm) in the common Arctic brown seaweeds Desmarestia aculeata and Alaria esculenta from Kongsfjorden (Svalbard) was analysed. Growth rate of D. aculeata was negatively affected by CO2 enrichment, while A. esculenta was positively affected, as a result of a different reorganization of the cellular carbon budget in both species. Desmarestia aculeata showed increased respiration, enhanced accumulation of storage biomolecules and elevated release of dissolved organic carbon, whereas A. esculenta showed decreased respiration and lower accumulation of storage biomolecules. Gross photosynthesis (measured both as O2 evolution and 14C fixation) was not affected in any of them, suggesting that photosynthesis was already saturated at normal CO2 conditions and did not participate in the acclimation response. However, electron transport rate changed in both species in opposite directions, indicating different energy requirements between treatments and species specificity. High CO2 levels also affected the N-metabolism, and 13C isotopic discrimination values from algal tissue pointed to a deactivation of carbon concentrating mechanisms. Since increased CO2 has the potential to modify physiological mechanisms in different ways in the species studied, it is expected that this may lead to changes in the Arctic seaweed community, which may propagate to the rest of the food web.
Keyword(s):
Alaria esculenta; Arctic; Benthos; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (<20 L); Chromista; Coast and continental shelf; Desmarestia aculeata; Laboratory experiment; Macroalgae; Ochrophyta; Polar; Primary production/Photosynthesis; Respiration; Single species
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloise (2015): seacarb: seawater carbonate chemistry with R. R package version 3.0.8. https://cran.r-project.org/package=seacarb
Coverage:
Latitude: 78.916670 * Longitude: 11.933330
Event(s):
KongsfjordenOA * Latitude: 78.916670 * Longitude: 11.933330 * Method/Device: Experiment (EXP)
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2015-09-15.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1SpeciesSpeciesIñiguez, Concepcion
2TreatmentTreatIñiguez, Concepcion
3Growth rateµ%/dayIñiguez, Concepcion
4Growth rate, standard deviationµ std dev±Iñiguez, Concepcion
5Net photosynthesis rate, oxygenPN O2µmol/g/hIñiguez, Concepcion
6Net photosynthesis rate, standard deviationPN std dev±Iñiguez, Concepcion
7Gross photosynthesis rate, oxygenPG O2µmol/g/hIñiguez, Concepcion
8Gross photosynthesis rate, standard deviationPG std dev±Iñiguez, Concepcion
9Carbon fixation rateC fixµmol/g/hIñiguez, Concepcion14C
10Carbon fixation rate, standard deviationC fix std dev±Iñiguez, Concepcion14C
11Respiration rate, oxygenResp O2µmol/g/hIñiguez, Concepcion
12Respiration rate, oxygen, standard deviationResp O2 std dev±Iñiguez, Concepcion
13Dissolved organic carbon release rateDOC relµmol/g/hIñiguez, Concepcion
14Dissolved organic carbon release rate, standard deviationDOC rel std dev±Iñiguez, Concepcion
15Particulate organic carbon release ratePOC relµmol/g/hIñiguez, Concepcion
16Particulate organic carbon release rate, standard deviationPOC rel std dev±Iñiguez, Concepcion
17PercentagePerc%Iñiguez, Concepcionfixed carbon lost by respiration
18PercentagePerc%Iñiguez, Concepcionfixed carbon invested in new biomass production (growth)
19PercentagePerc%Iñiguez, Concepcionfixed carbon accumulated in storage biomolecules
20PercentagePerc%Iñiguez, Concepcionorganic carbon released and found in DOC form
21PercentagePerc%Iñiguez, Concepcionorganic carbon released and found in POC form
22Photosynthetic quotientPQIñiguez, Concepcion
23Photosynthetic quotient, standard deviationPQ std dev±Iñiguez, Concepcion
24Electron transport rateETRµmol e/m2/sIñiguez, Concepcionat an irradiance of 30 µE/m**2/s
25Electron transport rate, standard deviationETR std dev±Iñiguez, Concepcionat an irradiance of 30 µE/m**2/s
26Electron transport rateETRµmol e/m2/sIñiguez, Concepcionmax
27Electron transport rate, standard deviationETR std dev±Iñiguez, Concepcionmax
28Initial slope of rapid light curvealphaµmol electrons/µmol quantaIñiguez, Concepcion
29Initial slope of rapid light curve, standard deviationalpha std dev±Iñiguez, Concepcion
30Light saturationEkµmol/m2/sIñiguez, Concepcion
31Light saturation, standard deviationEk std dev±Iñiguez, Concepcion
32IrradianceEµmol/m2/sIñiguez, Concepcionat which chronic photoinhibition begins
33Irradiance, standard deviationE std dev±Iñiguez, Concepcionat which chronic photoinhibition begins
34Maximum photochemical quantum yield of photosystem IIFv/FmIñiguez, Concepcion
35Maximum photochemical quantum yield of photosystem II, standard deviationFv/Fm std dev±Iñiguez, Concepcion
36Carbon, totalTC%Iñiguez, Concepcion
37Carbon, total, standard deviationTC std dev±Iñiguez, Concepcion
38Nitrogen, totalTN%Iñiguez, Concepcion
39Nitrogen, standard deviationN std dev±Iñiguez, Concepcion
40Carbon/Nitrogen ratioC/NIñiguez, Concepcion
41Carbon/Nitrogen ratio, standard deviationC/N std dev±Iñiguez, Concepcion
42δ13Cδ13C‰ PDBIñiguez, Concepcion
43δ13C, standard deviationδ13C std dev±Iñiguez, Concepcion
44RatioRatioIñiguez, Concepcionfresh mass/dry mass
45Ratio, standard deviationRatio std dev±Iñiguez, Concepcionfresh mass/dry mass
46Temperature, waterTemp°CIñiguez, Concepcion
47Temperature, water, standard deviationTemp std dev±Iñiguez, Concepcion
48SalinitySalIñiguez, Concepcion
49Salinity, standard deviationSal std dev±Iñiguez, Concepcion
50pHpHIñiguez, ConcepcionPotentiometricNBS scale
51pH, standard deviationpH std dev±Iñiguez, ConcepcionPotentiometricNBS scale
52Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmIñiguez, ConcepcionCalculated using CO2calc
53Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Iñiguez, ConcepcionCalculated using CO2calc
54Carbon dioxideCO2µmol/kgIñiguez, ConcepcionCalculated using CO2calc
55Carbon dioxide, standard deviationCO2 std dev±Iñiguez, ConcepcionCalculated using CO2calc
56Bicarbonate ion[HCO3]-µmol/kgIñiguez, ConcepcionCalculated using CO2calc
57Bicarbonate ion, standard deviation[HCO3]- std dev±Iñiguez, ConcepcionCalculated using CO2calc
58Carbonate ion[CO3]2-µmol/kgIñiguez, ConcepcionCalculated using CO2calc
59Carbonate ion, standard deviation[CO3]2- std dev±Iñiguez, ConcepcionCalculated using CO2calc
60Carbon, inorganic, dissolvedDICµmol/kgIñiguez, ConcepcionCalculated using CO2calc
61Carbon, inorganic, dissolved, standard deviationDIC std dev±Iñiguez, ConcepcionCalculated using CO2calc
62Alkalinity, totalATµmol/kgIñiguez, ConcepcionPotentiometric titration
63Alkalinity, total, standard deviationAT std dev±Iñiguez, ConcepcionPotentiometric titration
64Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
65pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale
66Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
67Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
68Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
69Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
70Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
71Carbon, inorganic, dissolvedDICµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
72Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
73Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Size:
292 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML