Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Iñiguez, Concepcion; Carmona, Raquel; Lorenzo, M Rosario; Niell, F Xavier; Wiencke, Christian; Gordillo, Francisco J L (2016): Increased temperature, rather than elevated CO2, modulates the carbon assimilation of the Arctic kelps Saccharina latissima and Laminaria solidungula. PANGAEA, https://doi.org/10.1594/PANGAEA.870756, Supplement to: Iñiguez, C et al. (2016): Increased temperature, rather than elevated CO2, modulates the carbon assimilation of the Arctic kelps Saccharina latissima and Laminaria solidungula. Marine Biology, 163(12), 18 pp, https://doi.org/10.1007/s00227-016-3024-6

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Ocean acidification and warming are affecting with special intensity the Arctic Ocean. Arctic coastal ecosystems are dominated by kelp forests with a high biomass production, which are expected to be directly affected by the increases in CO2 and temperature. This study presents the different physiological responses of the Arctic kelps Saccharina latissima and Laminaria solidungula from Kongsfjorden (Svalbard) cultured at 4 and 9 °C in combination with current (390 ppm) and increased (1200 ppm) levels of atmospheric CO2. Both species were largely unaffected by increased CO2 conditions. Carbon fixation was not influenced by CO2, indicating that photosynthesis was C-saturated at present levels, and 13C isotopic discrimination values from algal tissue suggested no deactivation of carbon concentrating mechanisms at increased CO2 levels. Inhibition of photosynthesis by carbonic anhydrases (CAs) inhibitors highlighted the important role of external CAs in inorganic carbon acquisition in Arctic kelps. Saccharina latissima showed a significantly higher growth rate at 9 °C than at 4 °C, probably due to the decrease in the dark respiration rate observed. Growth rate of L. solidungula was not affected by temperature or CO2, and increases in photosynthesis at 9 °C could be partially related to a higher dissolved organic carbon release rate. The photochemical performance of both species was not altered by any of the treatments. These results suggest that S. latissima might be more benefited than L. solidungula in a future warmer Arctic, while both populations seem to be resilient to higher CO2 concentrations.
Keyword(s):
Arctic; Benthos; Bottles or small containers/Aquaria (<20 L); Chromista; Coast and continental shelf; Growth/Morphology; Laboratory experiment; Laminaria solidungula; Macroalgae; Ochrophyta; Other metabolic rates; Polar; Primary production/Photosynthesis; Respiration; Saccharina latissima; Single species; Temperature
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloise; Orr, James C; Gentili, Bernard; Proye, Aurélien; Soetaert, Karline; Rae, James (2016): seacarb: seawater carbonate chemistry with R. R package version 3.1. https://cran.r-project.org/package=seacarb
Coverage:
Latitude: 78.916670 * Longitude: 11.933330
Event(s):
KongsfjordenOA * Latitude: 78.916670 * Longitude: 11.933330 * Method/Device: Experiment (EXP)
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2017-01-12.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1TypeTypeIñiguez, Concepcionstudy
2SpeciesSpeciesIñiguez, Concepcion
3Registration number of speciesReg spec noIñiguez, Concepcion
4Uniform resource locator/link to referenceURL refIñiguez, ConcepcionWoRMS Aphia ID
5Temperature, waterTemp°CIñiguez, Concepciontreatment
6Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmIñiguez, Concepciontreatment
7Growth rateµ%/dayIñiguez, Concepcion
8Growth rate, standard deviationµ std dev±Iñiguez, Concepcion
9Net photosynthesis rate, oxygenPN O2µmol/g/hIñiguez, Concepcion
10Net photosynthesis rate, standard deviationPN std dev±Iñiguez, Concepcion
11Gross photosynthesis rate, oxygenPG O2µmol/g/hIñiguez, Concepcion
12Gross photosynthesis rate, standard deviationPG std dev±Iñiguez, Concepcion
13Respiration rate, oxygenResp O2µmol/g/hIñiguez, Concepcion
14Respiration rate, standard deviationResp std dev±Iñiguez, Concepcion
15Carbon fixation rateC fixµmol/g/hIñiguez, Concepcion
16Carbon fixation rate, standard deviationC fix std dev±Iñiguez, Concepcion
17Dissolved organic carbon release rateDOC relµmol/g/hIñiguez, Concepcion
18Dissolved organic carbon release rate, standard deviationDOC rel std dev±Iñiguez, Concepcion
19Inhibition of oxygen evolutionInhib O2 ev%Iñiguez, Concepciondextran-bound sulfonamide (DBS)inhibition
20Inhibition of oxygen evolution, standard deviationInhib O2 ev std dev±Iñiguez, Concepciondextran-bound sulfonamide (DBS)inhibition
21Inhibition of carbon fixationInhib C fix%Iñiguez, Concepciondextran-bound sulfonamide (DBS)inhibition
22Inhibition of carbon fixation, standard deviationInhib C fix std dev±Iñiguez, Concepciondextran-bound sulfonamide (DBS)inhibition
23Inhibition of oxygen evolutionInhib O2 ev%Iñiguez, Concepcionethoxyzolamide (EZ) inhibition
24Inhibition of oxygen evolution, standard deviationInhib O2 ev std dev±Iñiguez, Concepcionethoxyzolamide (EZ) inhibition
25Inhibition of carbon fixationInhib C fix%Iñiguez, Concepcionethoxyzolamide (EZ) inhibition
26Inhibition of carbon fixation, standard deviationInhib C fix std dev±Iñiguez, Concepcionethoxyzolamide (EZ) inhibition
27Temperature, waterTemp°CIñiguez, Concepcion
28Temperature, water, standard deviationTemp std dev±Iñiguez, Concepcion
29SalinitySalIñiguez, Concepcion
30Salinity, standard deviationSal std dev±Iñiguez, Concepcion
31pHpHIñiguez, ConcepcionPotentiometricNBS scale
32pH, standard deviationpH std dev±Iñiguez, ConcepcionPotentiometricNBS scale
33Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmIñiguez, ConcepcionCalculated using CO2calc
34Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Iñiguez, ConcepcionCalculated using CO2calc
35Carbon dioxideCO2µmol/kgIñiguez, ConcepcionCalculated using CO2calc
36Carbon dioxide, standard deviationCO2 std dev±Iñiguez, ConcepcionCalculated using CO2calc
37Bicarbonate ion[HCO3]-µmol/kgIñiguez, ConcepcionCalculated using CO2calc
38Bicarbonate ion, standard deviation[HCO3]- std dev±Iñiguez, ConcepcionCalculated using CO2calc
39Carbonate ion[CO3]2-µmol/kgIñiguez, ConcepcionCalculated using CO2calc
40Carbonate ion, standard deviation[CO3]2- std dev±Iñiguez, ConcepcionCalculated using CO2calc
41Carbon, inorganic, dissolvedDICµmol/kgIñiguez, ConcepcionCalculated using CO2calc
42Carbon, inorganic, dissolved, standard deviationDIC std dev±Iñiguez, ConcepcionCalculated using CO2calc
43Alkalinity, totalATµmol/kgIñiguez, ConcepcionPotentiometric titration
44Alkalinity, total, standard deviationAT std dev±Iñiguez, ConcepcionPotentiometric titration
45Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
46pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale
47Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
48Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
49Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
50Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
51Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
52Carbon, inorganic, dissolvedDICµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
53Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
54Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Size:
432 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML