Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Spisla, Carsten; Taucher, Jan; Sswat, Michael; Wunderow, Hennrike; Kohnert, Peter; Clemmesen, Catriona; Riebesell, Ulf (2022): Seawater carbonate chemistry and Hydrozoa, Copepoda abundances and biomasses, and Clupea harengus biomass, survival, condition [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.949380

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Anthropogenic CO2 emissions cause a drop in seawater pH and shift the inorganic carbon speciation. Collectively, the term ocean acidification (OA) summarizes these changes. Few studies have examined OA effects on predatory plankton, e.g. Hydrozoa and fish larvae as well as their interaction in complex natural communities. Because Hydrozoa can seriously compete with and prey on other higher-level predators such as fish, changes in their abundances may have significant consequences for marine food webs and ecosystem services. To investigate the interaction between Hydrozoa and fish larvae influenced by OA, we enclosed a natural plankton community in Raunefjord, Norway, for 53 days in eight ≈ 58 m³ pelagic mesocosms. CO2 levels in four mesocosms were increased to ≈ 2000 µatm pCO2, whereas the other four served as untreated controls. We studied OA-induced changes at the top of the food web by following ≈2000 larvae of Atlantic herring (Clupea harengus) hatched inside each mesocosm during the first week of the experiment, and a Hydrozoa population that had already established inside the mesocosms. Under OA, we detected 20% higher abundance of hydromedusae staged jellyfish, but 25% lower biomass. At the same time, survival rates of Atlantic herring larvae were higher under OA (control pCO2: 0.1%, high pCO2: 1.7%) in the final phase of the study. These results indicate that a decrease in predation pressure shortly after hatch likely shaped higher herring larvae survival, when hydromedusae abundance was lower in the OA treatment compared to control conditions. We conclude that indirect food-web mediated OA effects drove the observed changes in the Hydrozoa – fish relationship, based on significant changes in the phyto-, micro-, and mesoplankton community under high pCO2. Ultimately, the observed immediate consequences of these changes for fish larvae survival and the balance of the Hydrozoa – fish larvae predator – prey relationship has important implications for the functioning of oceanic food webs.
Keyword(s):
Biomass/Abundance/Elemental composition; Coast and continental shelf; Entire community; Field experiment; Growth/Morphology; Mesocosm or benthocosm; Mortality/Survival; North Atlantic; Pelagos; Temperate
Related to:
Spisla, Carsten; Taucher, Jan; Sswat, Michael; Wunderow, Hennrike; Kohnert, Peter; Clemmesen, Catriona; Riebesell, Ulf (2022): Ocean Acidification Alters the Predator – Prey Relationship Between Hydrozoa and Fish Larvae. Frontiers in Marine Science, 9, 831488, https://doi.org/10.3389/fmars.2022.831488
Source:
Spisla, Carsten; Taucher, Jan; Sswat, Michael; Clemmesen, Catriona; Riebesell, Ulf (2022): KOSMOS Bergen 2015 mesocosm study: C. harengus biomass [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.945308
Spisla, Carsten; Taucher, Jan; Sswat, Michael; Clemmesen, Catriona; Riebesell, Ulf (2022): KOSMOS Bergen 2015 mesocosm study: C. harengus condition [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.945315
Spisla, Carsten; Taucher, Jan; Sswat, Michael; Clemmesen, Catriona; Riebesell, Ulf (2022): KOSMOS Bergen 2015 mesocosm study: C. harengus survival [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.945312
Spisla, Carsten; Taucher, Jan; Sswat, Michael; Clemmesen, Catriona; Riebesell, Ulf (2022): KOSMOS Bergen 2015 mesocosm study: Hydrozoa, C. harengus, and Copepoda abundances and biomasses [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.945306
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James (2021): seacarb: seawater carbonate chemistry with R. R package version 3.2.16. https://cran.r-project.org/web/packages/seacarb/index.html
Spisla, Carsten; Bach, Lennart Thomas; Taucher, Jan; Boxhammer, Tim; Yong, Jaw-Chuen (2020): KOSMOS Bergen 2015 mesocosm study: Environmental data, carbonate chemistry and nutrients [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.911638
Coverage:
Latitude: 60.265000 * Longitude: 5.205830
Date/Time Start: 2015-05-09T00:00:00 * Date/Time End: 2015-06-30T00:00:00
Event(s):
KOSMOS_2015_Mesocosm-M1 * Latitude: 60.265000 * Longitude: 5.205830 * Date/Time Start: 2015-05-03T00:00:00 * Date/Time End: 2015-06-30T00:00:00 * Campaign: KOSMOS_2015 (KOSMOS Bergen) * Method/Device: Mesocosm experiment (MESO)
KOSMOS_2015_Mesocosm-M2 * Latitude: 60.265000 * Longitude: 5.205830 * Date/Time Start: 2015-05-03T00:00:00 * Date/Time End: 2015-06-30T00:00:00 * Campaign: KOSMOS_2015 (KOSMOS Bergen) * Method/Device: Mesocosm experiment (MESO)
KOSMOS_2015_Mesocosm-M3 * Latitude: 60.265000 * Longitude: 5.205830 * Date/Time Start: 2015-05-03T00:00:00 * Date/Time End: 2015-06-30T00:00:00 * Campaign: KOSMOS_2015 (KOSMOS Bergen) * Method/Device: Mesocosm experiment (MESO)
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-10-04.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Event labelEventSpisla, Carsten
2TypeTypeSpisla, CarstenStudy
3DATE/TIMEDate/TimeSpisla, CarstenGeocode
4Day of experimentDOEdaySpisla, Carsten
5Mesocosm labelMeso labelSpisla, Carsten
6Treatment: partial pressure of carbon dioxideT:pCO2µatmSpisla, Carsten
7SalinitySalSpisla, Carsten
8Temperature, waterTemp°CSpisla, Carsten
9Chlorophyll aChl aµg/lSpisla, Carsten
10Aglantha digitaleA. digitale#/m3Spisla, Carsten55 µm Apstein net
11Clytia sp.Clytia sp.#/m3Spisla, Carsten55 µm Apstein net
12Obelia geniculataO. geniculata#/m3Spisla, Carsten55 µm Apstein net
13Rathkea octopunctataR. octopunctata#/m3Spisla, Carsten55 µm Apstein net
14Sarsia tubulosaS. tubulosa#/m3Spisla, Carsten55 µm Apstein net
15Tomopteris sp.Tomopteris sp.#/m3Spisla, Carsten55 µm Apstein net
16IndeterminataIndet#/m3Spisla, Carsten55 µm Apstein net
17Aglantha digitaleA. digitale#/m3Spisla, Carsten500 µm Apstein net
18Clytia sp.Clytia sp.#/m3Spisla, Carsten500 µm Apstein net
19Obelia geniculataO. geniculata#/m3Spisla, Carsten500 µm Apstein net
20Rathkea octopunctataR. octopunctata#/m3Spisla, Carsten500 µm Apstein net
21Sarsia tubulosaS. tubulosa#/m3Spisla, Carsten500 µm Apstein net
22Tomopteris sp.Tomopteris sp.#/m3Spisla, Carsten500 µm Apstein net
23IndeterminataIndet#/m3Spisla, Carsten500 µm Apstein net
24Mass per volumeMass vµg/m3Spisla, CarstenAcartia spp. copepodites (cop)
25Mass per volumeMass vµg/m3Spisla, CarstenAcartia spp. Adults
26Mass per volumeMass vµg/m3Spisla, CarstenCalanus spp. Cop
27Mass per volumeMass vµg/m3Spisla, CarstenCalanus spp. Adults
28Mass per volumeMass vµg/m3Spisla, CarstenCentropages spp. cop
29Mass per volumeMass vµg/m3Spisla, CarstenCentropages spp. Adults
30Mass per volumeMass vµg/m3Spisla, CarstenCopepod nauplii larvae
31Mass per volumeMass vµg/m3Spisla, CarstenOithona spp. cop
32Mass per volumeMass vµg/m3Spisla, CarstenOithona spp. adults
33Mass per volumeMass vµg/m3Spisla, CarstenTemora spp. cop
34Mass per volumeMass vµg/m3Spisla, CarstenTemora spp. adults
35Mass per volumeMass vµg/m3Spisla, CarstenSum Copepodites
36Mass per volumeMass vµg/m3Spisla, CarstenSum Copepods
37Mass per volumeMass vµg/m3Spisla, CarstenOikopleura
38Mass per volumeMass vµg/m3Spisla, CarstenAglantha digitale (2)
39Mass per volumeMass vµg/m3Spisla, CarstenClytia sp. (2)
40Mass per volumeMass vµg/m3Spisla, CarstenObelia sp. (2)
41Mass per volumeMass vµg/m3Spisla, CarstenSarsia tubulosa (2)
42Mass per volumeMass vµg/m3Spisla, CarstenTomopteris sp. (2) [ µgC/m_]
43TreatmentTreatSpisla, CarstenpCO2
44IdentificationIDSpisla, Carsten
45FishFish#Spisla, CarstenTotal abundance per mesocosm
46VolumeVolm3Spisla, CarstenMesocosm volume
47Abundance per volumeAbund v#/m3Spisla, Carsten
48Dry mass per individualdm/indmg/#Spisla, Carsten
49Dry massDry mgSpisla, CarstenDW dead cod (recalculated from mg)
50StatusStatusSpisla, Carsten
51Number of individualsInd No#Spisla, Carsten
52FractionFrac%Spisla, Carstenof all hatched larvae
53Time in daysTimedaysSpisla, CarstenDays post hatch
54Sample code/labelSample labelSpisla, Carsten
55OriginOriginSpisla, Carsten
56Method commentMethod commSpisla, Carstenstorage
57SpeciesSpeciesSpisla, Carsten
58IndividualsInd#Spisla, Carsten
59Length, standardI stdmmSpisla, CarstenLarvae standard length fresh
60TreatmentTreatSpisla, CarstenOtolith removed
61Individual dry massInd dmmgSpisla, Carsten
62RatioRatioSpisla, CarstenRNA:DNA
63RatioRatioSpisla, CarstenRNA:DNA standardised
64Temperature, waterTemp°CSielaff, David
65Temperature, water, standard deviationTemp std dev±Sielaff, David
66SalinitySalSielaff, David
67Salinity, standard deviationSal std dev±Sielaff, David
68Carbon, inorganic, dissolvedDICµmol/kgSielaff, David
69Carbon, inorganic, dissolved, standard deviationDIC std dev±Sielaff, David
70Alkalinity, totalATµmol/kgSielaff, DavidPotentiometric titration
71Alkalinity, total, standard deviationAT std dev±Sielaff, DavidPotentiometric titration
72Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmSielaff, DavidCalculated using seacarb
73Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Sielaff, DavidCalculated using seacarb
74Bicarbonate ion[HCO3]-µmol/kgSielaff, DavidCalculated using seacarb
75Bicarbonate ion, standard deviation[HCO3]- std dev±Sielaff, DavidCalculated using seacarb
76Carbonate ion[CO3]2-µmol/kgSielaff, DavidCalculated using seacarb
77Carbonate ion, standard deviation[CO3]2- std dev±Sielaff, DavidCalculated using seacarb
78Calcite saturation stateOmega CalSielaff, DavidCalculated using seacarb
79Calcite saturation state, standard deviationOmega Cal std dev±Sielaff, DavidCalculated using seacarb
80Chlorophyll aChl aµg/lSielaff, David
81Chlorophyll a, standard deviationChl a std dev±Sielaff, David
82Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
83pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale
84pH, standard deviationpH std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)total scale
85Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
86Carbon dioxide, standard deviationCO2 std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
87Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
88Fugacity of carbon dioxide in seawater, standard deviationfCO2 std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
89Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
90Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
91Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
92Bicarbonate ion, standard deviation[HCO3]- std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
93Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
94Carbonate ion, standard deviation[CO3]2- std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
95Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
96Aragonite saturation state, standard deviationOmega Arg std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
97Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
98Calcite saturation state, standard deviationOmega Cal std dev±Yang, YanCalculated using seacarb after Orr et al. (2018)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
32668 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)