Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Heidenreich, Elena; Wördenweber, Robin; Kirschhöfer, Frank; Nusser, Michael; Friedrich, Frank; Fahl, Kirsten; Kruse, Olaf; Rost, Björn; Franzreb, Matthias; Brenner-Weiß, Gerald; Rokitta, Sebastian D (2020): Seawater carbonate chemistry and biochemical composition of the coccolithophore Emiliania huxleyi. PANGAEA, https://doi.org/10.1594/PANGAEA.913444

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Owing to the hierarchical organization of biology, from genomes over transcriptomes and proteomes down to metabolomes, there is continuous debate about the extent to which data and interpretations derived from one level, e.g. the transcriptome, are in agreement with other levels, e.g. the metabolome. Here, we tested the effect of ocean acidification (OA; 400 vs. 1000 μatm CO2) and its modulation by light intensity (50 vs. 300 μmol photons m-2 s-1) on the biomass composition (represented by 75 key metabolites) of diploid and haploid life-cycle stages of the coccolithophore Emiliania huxleyi (RCC1216 and RCC1217) and compared these data with interpretations from previous physiological and gene expression screenings. The metabolite patterns showed minor responses to OA in both life-cycle stages. Whereas previous gene expression analyses suggested that the observed increased biomass buildup derived from lipid and carbohydrate storage, this dataset suggests that OA slightly increases overall biomass of cells, but does not significantly alter their metabolite composition. Generally, light was shown to be a more dominant driver of metabolite composition than OA, increasing the relative abundances of amino acids, mannitol and storage lipids, and shifting pigment contents to accommodate increased irradiance levels. The diploid stage was shown to contain vastly more osmolytes and mannitol than the haploid stage, which in turn had a higher relative content of amino acids, especially aromatic ones. Besides the differences between the investigated cell types and the general effects on biomass buildup, our analyses indicate that OA imposes only negligible effects on E. huxleyi's biomass composition.
Keyword(s):
Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (<20 L); Chromista; Emiliania huxleyi; Growth/Morphology; Haptophyta; Laboratory experiment; Laboratory strains; Light; Not applicable; Pelagos; Phytoplankton; Single species
Supplement to:
Heidenreich, Elena; Wördenweber, Robin; Kirschhöfer, Frank; Nusser, Michael; Friedrich, Frank; Fahl, Kirsten; Kruse, Olaf; Rost, Björn; Franzreb, Matthias; Brenner-Weiß, Gerald; Rokitta, Sebastian D (2019): Ocean acidification has little effect on the biochemical composition of the coccolithophore Emiliania huxleyi. PLoS ONE, 14(7), e0218564, https://doi.org/10.1371/journal.pone.0218564
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloise; Orr, James C; Gentili, Bernard; Hagens, Mathilde; Hofmann, Andreas; Mueller, Jens-Daniel; Proye, Aurélien; Rae, James; Soetaert, Karline (2019): seacarb: seawater carbonate chemistry with R. R package version 3.2.12. https://CRAN.R-project.org/package=seacarb
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-03-06.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1TypeTypeHeidenreich, Elenastudy
2SpeciesSpeciesHeidenreich, Elena
3Registration number of speciesReg spec noHeidenreich, Elena
4Uniform resource locator/link to referenceURL refHeidenreich, ElenaWoRMS Aphia ID
5TreatmentTreatHeidenreich, Elena
6AlkenonesAlkarbitrary unitsHeidenreich, Elena
7Alkenones, standard deviationAlk std dev±Heidenreich, Elena
8Temperature, waterTemp°CHeidenreich, Elenaalkenone-derived
9Temperature, water, standard deviationTemp std dev±Heidenreich, Elenaalkenone-derived
10Growth rateµ1/dayHeidenreich, Elena
11Growth rate, standard deviationµ std dev±Heidenreich, Elena
12Cell, diameterCell diamµmHeidenreich, Elena
13Cell, diameter, standard deviationCell diam std dev±Heidenreich, Elena
14NameNameHeidenreich, Elenasubstance
15CategoryCatHeidenreich, Elenaclass and unit
16ConcentrationConcarbitrary unitsHeidenreich, Elenaper cell
17Concentration, standard deviationConc std dev±Heidenreich, Elenaper cell
18ConcentrationConcarbitrary unitsHeidenreich, Elenaper POC
19Concentration, standard deviationConc std dev±Heidenreich, Elenaper POC
20SalinitySalHeidenreich, Elena
21Temperature, waterTemp°CHeidenreich, Elena
22pHpHHeidenreich, ElenaNBS scale, at the beginning
23pH, standard deviationpH std dev±Heidenreich, ElenaNBS scale, at the beginning
24Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmHeidenreich, ElenaCalculated using CO2SYSat the beginning
25Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Heidenreich, ElenaCalculated using CO2SYSat the beginning
26Alkalinity, totalATµmol/kgHeidenreich, ElenaCalculated using CO2SYSat the beginning
27Alkalinity, total, standard deviationAT std dev±Heidenreich, ElenaCalculated using CO2SYSat the beginning
28Carbon, inorganic, dissolvedDICµmol/kgHeidenreich, Elenaat the beginning
29Carbon, inorganic, dissolved, standard deviationDIC std dev±Heidenreich, Elenaat the beginning
30Bicarbonate ion[HCO3]-µmol/kgHeidenreich, ElenaCalculated using CO2SYSat the beginning
31Bicarbonate ion, standard deviation[HCO3]- std dev±Heidenreich, ElenaCalculated using CO2SYSat the beginning
32Carbonate ion[CO3]2-µmol/kgHeidenreich, ElenaCalculated using CO2SYSat the beginning
33Carbonate ion, standard deviation[CO3]2- std dev±Heidenreich, ElenaCalculated using CO2SYSat the beginning
34pHpHHeidenreich, ElenaNBS scale, at the end
35pH, standard deviationpH std dev±Heidenreich, ElenaNBS scale, at the end
36Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmHeidenreich, ElenaCalculated using CO2SYSat the end
37Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Heidenreich, ElenaCalculated using CO2SYSat the end
38Alkalinity, totalATµmol/kgHeidenreich, ElenaCalculated using CO2SYSat the end
39Alkalinity, total, standard deviationAT std dev±Heidenreich, ElenaCalculated using CO2SYSat the end
40Carbon, inorganic, dissolvedDICµmol/kgHeidenreich, Elenaat the end
41Carbon, inorganic, dissolved, standard deviationDIC std dev±Heidenreich, Elenaat the end
42Bicarbonate ion[HCO3]-µmol/kgHeidenreich, ElenaCalculated using CO2SYSat the end
43Bicarbonate ion, standard deviation[HCO3]- std dev±Heidenreich, ElenaCalculated using CO2SYSat the end
44Carbonate ion[CO3]2-µmol/kgHeidenreich, ElenaCalculated using CO2SYSat the end
45Carbonate ion, standard deviation[CO3]2- std dev±Heidenreich, ElenaCalculated using CO2SYSat the end
46Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
47pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale, at the beginning
48Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the beginning
49Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the beginning
50Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the beginning
51Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the beginning
52Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the beginning
53Alkalinity, totalATµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the beginning
54Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the beginning
55Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the beginning
56pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale, at the end
57Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the end
58Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the end
59Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the end
60Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the end
61Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the end
62Alkalinity, totalATµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the end
63Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the end
64Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)at the end
Size:
65256 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)