Heidenreich, Elena; Wördenweber, Robin; Kirschhöfer, Frank; Nusser, Michael; Friedrich, Frank; Fahl, Kirsten; Kruse, Olaf; Rost, Björn; Franzreb, Matthias; Brenner-Weiß, Gerald; Rokitta, Sebastian D (2019): Seawater carbonate chemistry and biochemical composition of the coccolithophore Emiliania huxleyi [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.913444
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
Owing to the hierarchical organization of biology, from genomes over transcriptomes and proteomes down to metabolomes, there is continuous debate about the extent to which data and interpretations derived from one level, e.g. the transcriptome, are in agreement with other levels, e.g. the metabolome. Here, we tested the effect of ocean acidification (OA; 400 vs. 1000 μatm CO2) and its modulation by light intensity (50 vs. 300 μmol photons m-2 s-1) on the biomass composition (represented by 75 key metabolites) of diploid and haploid life-cycle stages of the coccolithophore Emiliania huxleyi (RCC1216 and RCC1217) and compared these data with interpretations from previous physiological and gene expression screenings. The metabolite patterns showed minor responses to OA in both life-cycle stages. Whereas previous gene expression analyses suggested that the observed increased biomass buildup derived from lipid and carbohydrate storage, this dataset suggests that OA slightly increases overall biomass of cells, but does not significantly alter their metabolite composition. Generally, light was shown to be a more dominant driver of metabolite composition than OA, increasing the relative abundances of amino acids, mannitol and storage lipids, and shifting pigment contents to accommodate increased irradiance levels. The diploid stage was shown to contain vastly more osmolytes and mannitol than the haploid stage, which in turn had a higher relative content of amino acids, especially aromatic ones. Besides the differences between the investigated cell types and the general effects on biomass buildup, our analyses indicate that OA imposes only negligible effects on E. huxleyi's biomass composition.
Keyword(s):
Supplement to:
Heidenreich, Elena; Wördenweber, Robin; Kirschhöfer, Frank; Nusser, Michael; Friedrich, Frank; Fahl, Kirsten; Kruse, Olaf; Rost, Björn; Franzreb, Matthias; Brenner-Weiß, Gerald; Rokitta, Sebastian D (2019): Ocean acidification has little effect on the biochemical composition of the coccolithophore Emiliania huxleyi. PLoS ONE, 14(7), e0218564, https://doi.org/10.1371/journal.pone.0218564
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James C; Gentili, Bernard; Hagens, Mathilde; Hofmann, Andreas; Mueller, Jens-Daniel; Proye, Aurélien; Rae, James; Soetaert, Karline (2019): seacarb: seawater carbonate chemistry with R. R package version 3.2.12. https://CRAN.R-project.org/package=seacarb
Project(s):
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-03-06.
Parameter(s):
License:
Creative Commons Attribution 4.0 International (CC-BY-4.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
65256 data points
Download Data
View dataset as HTML (shows only first 2000 rows)