Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Schram, Julie B; Schoenrock, Kathryn M; McClintock, James B; Amsler, Charles D; Angus, Robert A (2016): Testing Antarctic resilience: the effects of elevated seawater temperature and decreased pH on two gastropod species [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.868351

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Ocean acidification has been hypothesized to increase stress and decrease shell calcification in gastropods, particularly in cold water habitats like the western Antarctic Peninsula (WAP). There is limited information on how calcified marine benthic invertebrates in this region will respond to these rapidly changing conditions. The present study investigated the effects of elevated seawater temperature and decreased pH on growth (wet mass and shell morphometrics), net calcification, and proximate body composition (protein and lipid) of body tissues in two common benthic gastropods. Individuals of the limpet Nacella concinna and the snail Margarella antarctica collected from the WAP were exposed to seawater in one of four treatment combinations: current ambient conditions (1.5°C, pH 8.0), near-future decreased pH (1.5°C, pH 7.8), near-future elevated temperature (3.5°C, pH 8.0), or combination of decreased pH and elevated temperature (3.5°C, pH 7.8). Following a 6-week exposure, limpets showed no temperature or pH effects on whole body mass or net calcification. Despite no significant differences in whole body mass, the shell length and width of limpets at elevated temperature tended to grow less than those at ambient temperature. There was a significant interaction between the sex of limpets and pH. There were no significant temperature or pH effects on growth, net calcification, shell morphologies, or proximate body composition of snails. Our findings suggest that both gastropod species demonstrate resilience to initial exposure to temperature and pH changes predicted to occur over the next several hundred years globally and perhaps sooner along the WAP. Despite few significant impacts of elevated temperature or decreased pH, any response to either abiotic variable in species with relatively slow growth and long lifespan is of note. In particular, we detected modest impacts of reduced pH on lipid allocation in the reproductive organs of the limpet N. concinna that warrants further study.
Keyword(s):
Animalia; Antarctic; Benthic animals; Benthos; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (<20 L); Calcification/Dissolution; Coast and continental shelf; Growth/Morphology; Laboratory experiment; Margarella antarctica; Mollusca; Nacella concinna; Polar; Reproduction; Single species; Temperature
Related to:
Schram, Julie B; Schoenrock, Kathryn M; McClintock, James B; Amsler, Charles D; Angus, Robert A (2016): Testing Antarctic resilience: the effects of elevated seawater temperature and decreased pH on two gastropod species. ICES Journal of Marine Science, 73(3), 739-752, https://doi.org/10.1093/icesjms/fsv233
Original version:
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse (2015): seacarb: seawater carbonate chemistry with R. R package version 3.0.8. https://cran.r-project.org/package=seacarb
Coverage:
Latitude: -64.766670 * Longitude: -64.050000
Event(s):
Palmer_station * Latitude: -64.766670 * Longitude: -64.050000 * Method/Device: Monitoring station (MONS)
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2015) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation is 2016-11-11.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1TypeTypeSchram, Julie Bstudy
2SpeciesSpeciesSchram, Julie B
3Registration number of speciesReg spec noSchram, Julie B
4Uniform resource locator/link to referenceURL refSchram, Julie BWoRMS Aphia ID
5Sample IDSample IDSchram, Julie B
6SexSexSchram, Julie B
7Temperature, waterTemp°CSchram, Julie Btreatment
8pHpHSchram, Julie Btreatment
9Buoyant massM buoyantmgSchram, Julie Btime zero
10Wet massWet mgSchram, Julie Btime zero
11Wet massWet mgSchram, Julie Btime zero, corrected
12Buoyant massM buoyantmgSchram, Julie B
13Wet massWet mgSchram, Julie B
14Wet massWet mgSchram, Julie Bcorrected
15Mass changeMass chn%Schram, Julie Bbuoyant weight
16Mass changeMass chn%Schram, Julie Bwet mass
17Mass changeMass chn%Schram, Julie Bwet mass, corrected
18Shell lengthShell lmmSchram, Julie Btime zore
19Shell widthShell wmmSchram, Julie Btime zore
20Shell heightShell hmmSchram, Julie Btime zore
21Shell lengthShell lmmSchram, Julie Bend point
22Shell widthShell wmmSchram, Julie Bend point
23Shell heightShell hmmSchram, Julie Bend point
24ChangeChange%Schram, Julie Bshell length
25ChangeChange%Schram, Julie Bshell width
26ChangeChange%Schram, Julie Bshell height
27Wet massWet mgSchram, Julie Bshell
28Tissue, wet massTis WMgSchram, Julie Ball
29Muscle, wet massMuscle wmgSchram, Julie B
30Gut, wet massGut WMgSchram, Julie B
31Gonad, wet massGon WMgSchram, Julie B
32Muscle, dry massMuscle dmgSchram, Julie B
33Gut, dry massGut dmgSchram, Julie B
34Gonad, dry massGon dmgSchram, Julie B
35DateDateSchram, Julie Bweighed
36DateDateSchram, Julie Bprotein analyzed
37ProteinsProteinmg/mlSchram, Julie B1
38ProteinsProteinmg/mlSchram, Julie B2
39ProteinsProteinmg/mlSchram, Julie B3
40ProteinsProtein%Schram, Julie B1
41ProteinsProtein%Schram, Julie B2
42ProteinsProtein%Schram, Julie B3
43ProteinsProtein%Schram, Julie Bmean
44Wet massWet mgSchram, Julie Bvial, before
45Wet massWet mgSchram, Julie Bvial, after
46LipidsLipidsµgSchram, Julie B
47LipidsLipids%Schram, Julie B
48Wet massWet mgSchram, Julie Bshell+operculum
49Wet massWet mgSchram, Julie Bmuscle/Gonad
50Dry massDry mgSchram, Julie Bmuscle/Gonad
51Shell lengthShell lmmSchram, Julie Btime zore mean
52Shell widthShell wmmSchram, Julie Btime zore mean
53Aspect ratioAspect ratioSchram, Julie Btime zore
54Shell lengthShell lmmSchram, Julie Bend point mean
55Shell widthShell wmmSchram, Julie Bend point mean
56Aspect ratioAspect ratioSchram, Julie Bend point
57ChangeChange%Schram, Julie Bshell length
58ChangeChange%Schram, Julie Bshell width
59ChangeChange%Schram, Julie Baspect ratio
60Aperture lengthAperture lmmSchram, Julie Btime zore
61Aperture widthAperture wmmSchram, Julie Btime zore
62Aperture ratioAperture ratioSchram, Julie Btime zore
63Aperture lengthAperture lmmSchram, Julie Bend point
64Aperture widthAperture wmmSchram, Julie Bend point
65Aperture ratioAperture ratioSchram, Julie Bend point
66ChangeChange%Schram, Julie Baperture length
67ChangeChange%Schram, Julie Baperture width
68ChangeChange%Schram, Julie Baperture ratio
69pHpHSchram, Julie BPotentiometrictotal scale
70pH, standard deviationpH std dev±Schram, Julie BPotentiometrictotal scale
71Alkalinity, totalATµmol/kgSchram, Julie BPotentiometric titration
72Alkalinity, total, standard deviationAT std dev±Schram, Julie BPotentiometric titration
73Temperature, waterTemp°CSchram, Julie B
74Temperature, water, standard deviationTemp std dev±Schram, Julie B
75SalinitySalSchram, Julie B
76Salinity, standard deviationSal std dev±Schram, Julie B
77Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmSchram, Julie BPotentiometric titration
78Partial pressure of carbon dioxide, standard deviationpCO2 std dev±Schram, Julie BPotentiometric titration
79Aragonite saturation stateOmega ArgSchram, Julie BPotentiometric titration
80Aragonite saturation state, standard deviationOmega Arg std dev±Schram, Julie BPotentiometric titration
81Calcite saturation stateOmega CalSchram, Julie BPotentiometric titration
82Calcite saturation state, standard deviationOmega Cal std dev±Yang, YanCalculated using seacarb after Nisumaa et al. (2010)
83Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
84Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
85Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
86Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
87Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
88Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
89Carbon, inorganic, dissolvedDICµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
90Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
91Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
42118 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)