Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science
Abstract:
For upscaling CH4 flux estimates in Beringia during the past 20,000 years, we collected 231 present-day CH4 fluxes from coastal wetlands in the Northern Hemisphere. We combined our own flux data (27 plot measurements) from the Kenai Peninsula, Alaska with previously published data. Data were compiled from different sources (e.g. Treat et al. 2018; 2021; Poffenbarger et al. 2011; Liikanen et al. 2009; Holmquist et al. 2018; Kuhn et al. 2021). CH4 fluxes from the literature were calculated in g CH4 m-2 yr-1 for the growing season, which we set to 153 days (May to September). Each CH4 data entry was harmonized by classifying it into one of the six wetland types Saltwater, tidal regularly flooded, Temporarily irregularly flooded, Permanently to semi-permanently flooded, Seasonally flooded, Non-tidal saturated, Water-body. This resulted in a stratified pool of CH4 fluxes and allowed a bootstrapping approach to estimate uncertainty in the CH4 fluxes for Beringian coastal wetlands based on the variability of CH4 fluxes associated to the different wetland types. For each of 258 sites, the dataset includes a site description, calculated CH4 flux from this research, wetland type, wetland class, method of CH4 measurement, major vegetation type, site location, the originally published CH4 value ("orig val") in the referenced paper, original units of measurement, citation and persistent identifier for the original data source, and comments. For some of the data points no coordinates information was given in the original publication, therefore the latitude and longitude fields were left blank.
Keyword(s):
Arctic; Beringia; Methane; paleoreconstruction; sea-level rise
Supplement to:
Fuchs, Matthias; et al. (in review): Methane flux from Beringian coastal wetlands for the past 20,000 years.
Source:
Adams, Christopher A; Andrews, Julian E; Jickells, T (2012): Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Science of the Total Environment, 434, 240-251, https://doi.org/10.1016/j.scitotenv.2011.11.058
Alford, Douglas P; DeLaune, Ronald D; Lindau, Charles W (1997): . Biogeochemistry, 37(3), 227-236, https://doi.org/10.1023/A:1005762023795
Alm, Jukka; Saarnio, Sanna; Nykänen, Hannu; Silvola, Jouko; Martikainen, Perttij (1999): Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry, 44(2), 163-186, https://doi.org/10.1007/BF00992977
Altor, Anne E; Mitsch, William J (2006): Methane flux from created riparian marshes: Relationship to intermittent versus continuous inundation and emergent macrophytes. Ecological Engineering, 28(3), 224-234, https://doi.org/10.1016/j.ecoleng.2006.06.006
Atkinson, Larry P; Hall, John R (1976): Methane distribution and production in the Georgia salt marsh. Estuarine and Coastal Marine Science, 4(6), 677-686, https://doi.org/10.1016/0302-3524(76)90074-8
Bäckstrand, K; Crill, P M; Jackowicz-Korczyñski, M; Mastepanov, Mikhail; Christensen, T R; Bastviken, D (2010): Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences, 7(1), 95-108, https://doi.org/10.5194/bg-7-95-2010
Bartlett, Karen B; Bartlett, David S; Harriss, Robert C; Sebacher, Daniel I (1987): Methane emissions along a salt marsh salinity gradient. Biogeochemistry, 4(3), 183-202, https://doi.org/10.1007/BF02187365
Bartlett, Karen B; Crill, Patrick M; Sass, Ronald L; Harriss, Robert C; Dise, Nancy B (1992): Methane emissions from tundra environments in the Yukon-Kuskokwim delta, Alaska. Journal of Geophysical Research: Atmospheres, 97(D15), 16645, https://doi.org/10.1029/91JD00610
Bartlett, Karen B; Harriss, Robert C; Sebacher, Daniel I (1985): Methane flux from coastal salt marshes. Journal of Geophysical Research, 90(D3), 5710, https://doi.org/10.1029/JD090iD03p05710
Basiliko, N; Yavitt, J B; Dees, P M; Merkel, S M (2003): Methane Biogeochemistry and Methanogen Communities in Two Northern Peatland Ecosystems, New York State. Geomicrobiology Journal, 20(6), 563-577, https://doi.org/10.1080/713851165
Chmura, Gail L; Kellman, Lisa; van Ardenne, Lee; Guntenspergen, Glenn R; Cebrian, Just (2016): Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment. PLoS ONE, 11(2), e0149937, https://doi.org/10.1371/journal.pone.0149937
DeLaune, Ronald D; Smith, Chris J; Patrick, William H Jr (1983): Methane release from Gulf coast wetlands. Tellus Series B-Chemical and Physical Meteorology, 35(1), 8, https://doi.org/10.3402/tellusb.v35i1.14581
Dise, Nancy B (1993): Methane emission from Minnesota peatlands: Spatial and seasonal variability. Global Biogeochemical Cycles, 7(1), 123-142, https://doi.org/10.1029/92GB02299
Fan, S M; Wofsy, S C; Bakwin, P S; Jacob, D J; Anderson, S M; Kebabian, P L; McManus, J B; Kolb, C E; Fitzjarrald, D R (1992): Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra. Journal of Geophysical Research: Atmospheres, 97(D15), 16627, https://doi.org/10.1029/91JD02531
Fiedler, Sabine; Sommer, Michael (2000): Methane emissions, groundwater levels and redox potentials of common wetland soils in a temperate-humid climate. Global Biogeochemical Cycles, 14(4), 1081-1093, https://doi.org/10.1029/1999GB001255
Flessa, Heiner; Rodionov, Andrej; Guggenberger, Georg; Fuchs, Hans; Magdon, Paul; Shibistova, Olga; Zrazhevskaya, Galina; Mikheyeva, Natalia; Kasansky, Oleg A; Blodau, Christian (2008): Landscape controls of CH 4 fluxes in a catchment of the forest tundra ecotone in northern Siberia. Global Change Biology, 14(9), 2040-2056, https://doi.org/10.1111/j.1365-2486.2008.01633.x
Ford, Tim E; Naiman, Robert J (1988): Alteration of carbon cycling by beaver: methane evasion rates from boreal forest streams and rivers. Canadian Journal of Zoology-Revue Canadienne de Zoologie, 66(2), 529-533, https://doi.org/10.1139/z88-076
Hamilton, J David; Kelly, Carol A; Rudd, John W M; Hesslein, Raymond H; Roulet, Nigel T (1994): Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs). Journal of Geophysical Research: Atmospheres, 99(D1), 1495, https://doi.org/10.1029/93JD03020
Heyer, J (2000): Methane Emission from the Coastal Area in the Southern Baltic Sea. Estuarine, Coastal and Shelf Science, 51(1), 13-30, https://doi.org/10.1006/ecss.2000.0616
Holm, Guerry O Jr; Perez, Brian C; McWhorter, David E; Krauss, Ken W; Johnson, Darren J; Raynie, Richard C; Killebrew, Charles J (2016): Ecosystem Level Methane Fluxes from Tidal Freshwater and Brackish Marshes of the Mississippi River Delta: Implications for Coastal Wetland Carbon Projects. Wetlands, 36(3), 401-413, https://doi.org/10.1007/s13157-016-0746-7
Holmquist, James R; Windham-Myers, Lisamarie; Bernal, Blanca; Byrd, Kristin B; Crooks, Steve; Gonneea, Meagan Eagle; Herold, Nate; Knox, Sara H; Kroeger, Kevin D; McCombs, John; Megonigal, Patrick J; Lu, Meng; Morris, James T; Sutton-Grier, Ariana E; Troxler, Tiffany G; Weller, Donald E (2018): Uncertainty in United States coastal wetland greenhouse gas inventorying. Environmental Research Letters, 13(11), 115005, https://doi.org/10.1088/1748-9326/aae157
Hyvönen, T; Ojala, A; Kankaala, P; Martikainen, P J (1998): Methane release from stands of water horsetail ( Equisetum fluviatile ) in a boreal lake. Freshwater Biology, 40(2), 275-284, https://doi.org/10.1046/j.1365-2427.1998.00351.x
Juutinen, Sari; Väliranta, Minna; Kuutti, V; Laine, A M; Virtanen, T; Seppä, Heikki; Weckström, Jan; Tuittila, E S (2013): Short-term and long-term carbon dynamics in a northern peatland-stream-lake continuum: A catchment approach. Journal of Geophysical Research: Biogeosciences, 118(1), 171-183, https://doi.org/10.1002/jgrg.20028
Kang, H; Freeman, C (2002): . Water Air and Soil Pollution, 141(1/4), 263-272, https://doi.org/10.1023/A:1021324326859
Kankaala, Paula; Ojala, Anne; Käki, Tiina (2004): Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake. Biogeochemistry, 68(3), 297-311, https://doi.org/10.1023/B:BIOG.0000031030.77498.1f
Kelley, Cheryl A; Martens, Christopher S; Ussler, William III (1995): Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography, 40(6), 1112-1129, https://doi.org/10.4319/lo.1995.40.6.1112
King, Gary M; Wiebe, William J (1978): Methane release from soils of a Georgia salt marsh. Geochimica et Cosmochimica Acta, 42(4), 343-348, https://doi.org/10.1016/0016-7037(78)90264-8
Koebsch, Franziska; Glatzel, Stephan; Jurasinski, Gerald (2013): Vegetation controls methane emissions in a coastal brackish fen. Wetlands Ecology and Management, 21(5), 323-337, https://doi.org/10.1007/s11273-013-9304-8
Krauss, Ken W; Holm, Guerry O Jr; Perez, Brian C; McWhorter, David E; Cormier, Nicole; Moss, Rebecca F; Johnson, Darren J; Neubauer, Scott C; Raynie, Richard C (2016): Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance. Journal of Geophysical Research: Biogeosciences, 121(6), 1503-1521, https://doi.org/10.1002/2015JG003224
Kuhn, McKenzie A; Varner, Ruth K; Bastviken, David; Crill, Patrick; MacIntyre, Sally; Turetsky, Merritt; Walter Anthony, Katey; McGuire, Anthony D; Olefeldt, David (2021): BAWLD-CH4: a comprehensive dataset of methane fluxes from boreal and arctic ecosystems. Earth System Science Data, 13(11), 5151-5189, https://doi.org/10.5194/essd-13-5151-2021
Laine, Anna; Wilson, David; Kiely, Gerard; Byrne, Kenneth A (2007): Methane flux dynamics in an Irish lowland blanket bog. Plant and Soil, 299(1-2), 181-193, https://doi.org/10.1007/s11104-007-9374-6
Lansdown, John M; Quay, Paul D; King, S L (1992): CH4 production via CO2 reduction in a temperate bog: A source of 13C-depIeted CH4. Geochimica et Cosmochimica Acta, 56(9), 3493-3503, https://doi.org/10.1016/0016-7037(92)90393-W
Leppälä, Mirva; Oksanen, Jari; Tuittila, Eeva-Stiina (2011): Methane flux dynamics during mire succession. Oecologia, 165(2), 489-499, https://doi.org/10.1007/s00442-010-1754-6
Levy, Peter E; Burden, Annette; Cooper, Mark D A; Dinsmore, Kerry J; Drewer, Julia; Evans, Chris D; Fowler, David; Gaiawyn, Jenny; Gray, Alan; Jones, Stephanie K; Jones, Timothy G; McNamara, Niall P; Mills, Robert; Ostle, Nick; Sheppard, Lucy J; Skiba, Ute; Sowerby, Alwyn; Ward, Susan E; Zieliński, Piotr (2012): Methane emissions from soils: synthesis and analysis of a large UK data set. Global Change Biology, 18(5), 1657-1669, https://doi.org/10.1111/j.1365-2486.2011.02616.x
Liikanen, Anu; Silvennoinen, Hanna; Karvo, Anna; Rantakokko, Panu; Martikainen, Pertti J (2009): Methane and nitrous oxide fluxes in two coastal wetlands in the northeastern Gulf of Bothnia, Baltic Sea. Boreal Environment Research 14 (2009). https://www.osti.gov/etdeweb/biblio/964437. 14, 351-358, https://www.borenv.net/BER/archive/pdfs/ber14/ber14-351.pdf
Lipschultz, Fredric (1981): Methane Release from a Brackish Intertidal Salt-Marsh Embayment of Chesapeake Bay, Maryland. Estuaries, 4(2), 143, https://doi.org/10.2307/1351677
Magenheimer, J F; Moore, T R; Chmura, G L; Daoust, R J (1996): Methane and Carbon Dioxide Flux from a Macrotidal Salt Marsh, Bay of Fundy, New Brunswick. Estuaries, 19(1), 139, https://doi.org/10.2307/1352658
Martin, Abra F; Lantz, Trevor C; Humphreys, Elyn R (2017): Ice wedge degradation and CO2 and CH4 emissions in the Tuktoyaktuk Coastlands, NT. Arctic Science, AS-2016-0011, https://doi.org/10.1139/AS-2016-0011
Marushchak, Maija E; Friborg, Thomas; Biasi, Christina; Herbst, M; Johansson, T; Kiepe, I; Liimatainen, M; Lind, Saara E; Martikainen, Pertti J; Virtanen, T; Soegaard, H; Shurpali, Narasinha J (2016): Methane dynamics in the subarctic tundra: combining stable isotope analyses, plot- and ecosystem-scale flux measurements. Biogeosciences, 13(2), 597-608, https://doi.org/10.5194/bg-13-597-2016
Mastepanov, Mikhail; Sigsgaard, C; Tagesson, T; Ström, L; Tamstorf, M P; Lund, Magnus; Christensen, Torben R (2013): Revisiting factors controlling methane emissions from high-Arctic tundra. Biogeosciences, 10(7), 5139-5158, https://doi.org/10.5194/bg-10-5139-2013
Mastepanov, Mikhail; Sigsgaard, Charlotte; Dlugokencky, Edward J; Houweling, Sander; Ström, Lena; Tamstorf, Mikkel P; Christensen, Torben R (2008): Large tundra methane burst during onset of freezing. Nature, 456(7222), 628-630, https://doi.org/10.1038/nature07464
Megonigal, J Patrick; Schlesinger, William H (2002): Methane-limited methanotrophy in tidal freshwater swamps. Global Biogeochemical Cycles, 16(4), 35-1-35-10, https://doi.org/10.1029/2001GB001594
Moore, T R; Heyes, A; Roulet, N T (1994): Methane emissions from wetlands, southern Hudson Bay lowland. Journal of Geophysical Research, 99(D1), 1455, https://doi.org/10.1029/93JD02457
Mueller, Peter; Hager, Rachel N; Meschter, Justin E; Mozdzer, Thomas J; Langley, J Adam; Jensen, Kai; Megonigal, J Patrick (2016): Complex invader-ecosystem interactions and seasonality mediate the impact of non-native Phragmites on CH4 emissions. Biological Invasions, 18(9), 2635-2647, https://doi.org/10.1007/s10530-016-1093-6
Nedwell, David B; Embley, T M; Purdy, K J (2004): Sulphate reduction, methanogenesis and phylogenetics of the sulphate reducing bacterial communities along an estuarine gradient. Aquatic Microbial Ecology, 37, 209-217, https://doi.org/10.3354/ame037209
Neubauer, S C; Miller, W D; Cofman Anderson, I (2000): Carbon cycling in a tidal freshwater marsh ecosystem:a carbon gas flux study. Marine Ecology Progress Series, 199, 13-30, https://doi.org/10.3354/meps199013
Nykänen, Hannu; Alm, Jukka; Silvola, Jouko; Tolonen, Kimmo; Martikainen, Pertti J (1998): Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles, 12(1), 53-69, https://doi.org/10.1029/97GB02732
Nykänen, Hannu; Heikkinen, Juha E P; Pirinen, Leena; Tiilikainen, Karoliina; Martikainen, Pertti J (2003): Annual CO 2 exchange and CH 4 fluxes on a subarctic palsa mire during climatically different years. Global Biogeochemical Cycles, 17(1), https://doi.org/10.1029/2002GB001861
Nykanen, Hannu; Alm, Jukka; Lang, Kristiina; Silvola, Jouko; Martikainen, Pertti J (1995): Emissions of CH4 , N2O and CO2 from a Virgin Fen and a Fen Drained for Grassland in Finland. Journal of Biogeography, 22(2/3), 351, https://doi.org/10.2307/2845930
Panikov, N S; Dedysh, S N (2000): Cold season CH 4 and CO 2 emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics. Global Biogeochemical Cycles, 14(4), 1071-1080, https://doi.org/10.1029/1999GB900097
Pelletier, L; Moore, T R; Roulet, N T; Garneau, M; Beaulieu-Audy, V (2007): Methane fluxes from three peatlands in the La Grande Rivière watershed, James Bay lowland, Canada. Journal of Geophysical Research: Biogeosciences, 112(G1), G01018, https://doi.org/10.1029/2006JG000216
Pelletier, Luc; Strachan, Ian B; Garneau, Michelle; Roulet, Nigel T (2014): Carbon release from boreal peatland open water pools: Implication for the contemporary C exchange. Journal of Geophysical Research: Biogeosciences, 119(3), 207-222, https://doi.org/10.1002/2013JG002423
Poffenbarger, Hanna J; Needelman, Brian A; Megonigal, J Patrick (2011): Salinity Influence on Methane Emissions from Tidal Marshes. Wetlands, 31(5), 831-842, https://doi.org/10.1007/s13157-011-0197-0
Rask, Holly; Schoenau, Jeff; Anderson, Darwin (2002): Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biology and Biochemistry, 34(4), 435-443, https://doi.org/10.1016/S0038-0717(01)00197-3
Reid, M C; Tripathee, R; Schäfer, K V R; Jaffé, P R (2013): Tidal marsh methane dynamics: Difference in seasonal lags in emissions driven by storage in vegetated versus unvegetated sediments. Journal of Geophysical Research: Biogeosciences, 118(4), 1802-1813, https://doi.org/10.1002/2013JG002438
Rouse, Wayne R; Holland, Susan; Moore, T R (1995): Variability in Methane Emissions from Wetlands at Northern Treeline near Churchill, Manitoba, Canada. Arctic and Alpine Research, 27, 146-156
Serikova, Svetlana; Pokrovsky, Oleg S; Laudon, Hjalmar; Krickov, Ivan V; Lim, Artem G; Manasypov, Riman M; Karlsson, Johannes (2019): High carbon emissions from thermokarst lakes of Western Siberia. Nature Communications, 10(1), 1552, https://doi.org/10.1038/s41467-019-09592-1
Shannon, Robert D; White, Jeffrey R (1994): A three-year study of controls on methane emissions from two Michigan peatlands. Biogeochemistry, 27(1), https://doi.org/10.1007/BF00002570
Skeeter, June; Christen, Andreas; Henry, Greg H R (2022): Controls on carbon dioxide and methane fluxes from a low-center polygonal peatland in the Mackenzie River Delta, Northwest Territories. Arctic Science, 8(2), 471-497, https://doi.org/10.1139/as-2021-0034
Sturtevant, Cove S; Oechel, Walter C (2013): Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle. Global Change Biology, 19(9), 2853-2866, https://doi.org/10.1111/gcb.12247
Townsend-Small, Amy; Åkerström, Frida; Arp, Christopher D; Hinkel, Kenneth M (2017): Spatial and Temporal Variation in Methane Concentrations, Fluxes, and Sources in Lakes in Arctic Alaska. Journal of Geophysical Research: Biogeosciences, 122(11), 2966-2981, https://doi.org/10.1002/2017JG004002
Treat, Claire C; Bloom, A Anthony; Marushchak, Maija E (2018): Non-growing season methane emissions - a significant component of annual emissions across northern ecosystems. Global Change Biology, 24(8), 3331-3343, https://doi.org/10.1111/gcb.14137
Treat, Claire C; Jones, Miriam C; Brosius, Laura Susan; Grosse, Guido; Walter Anthony, Katey M; Frolking, Steve (2021): The role of wetland expansion and successional processes in methane emissions from northern wetlands during the Holocene. Quaternary Science Reviews, 257, 106864, https://doi.org/10.1016/j.quascirev.2021.106864
Van der Nat, Frans-Jaco; Middelburg, Jack J (2000): . Biogeochemistry, 49(2), 103-121, https://doi.org/10.1023/A:1006333225100
Walter Anthony, Katey M; Vas, Dragos A; Brosius, Laura Susan; Chapin, F Stuart III; Zimov, Sergey A; Zhuang, Qianlai (2010): Estimating methane emissions from northern lakes using ice-bubble surveys. Limnology and Oceanography-Methods, 8(11), 592-609, https://doi.org/10.4319/lom.2010.8.0592
Wang, Dongqi; Chen, Zhenlou; Xu, Shiyuan (2009): Methane emission from Yangtze estuarine wetland, China. Journal of Geophysical Research: Biogeosciences, 114(G2), https://doi.org/10.1029/2008JG000857
Ward, Susan E; Ostle, Nicholas J; Oakley, Simon; Quirk, Helen; Henrys, Peter A; Bardgett, Richard D; van der Putten, Wim H (2013): Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecology Letters, 16(10), 1285-1293, https://doi.org/10.1111/ele.12167
Whalen, Stephen C; Reeburgh, William S (1988): A methane flux time series for tundra environments. Global Biogeochemical Cycles, 2(4), 399-409, https://doi.org/10.1029/GB002i004p00399
Wilson, Benjamin J; Mortazavi, Behzad; Kiene, Ronald P (2015): Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary. Biogeochemistry, 123(3), 329-347, https://doi.org/10.1007/s10533-015-0085-4
Funding:
European Research Council (ERC), grant/award no. 851181: The role of non-growing season processes in the methane and nitrous oxide budgets in pristine northern ecosystems
National Science Foundation (NSF), grant/award no. 1903623: Collaborative Research: Sea-level rise, coastal wetland expansion, and proglacial lake contributions to abrupt increases in northern atmospheric CH4 during the last deglaciation
National Science Foundation (NSF), grant/award no. 1903735: Collaborative Research: Sea-level rise, coastal wetland expansion, and proglacial lake contributions to abrupt increases in northern atmospheric CH4 during the last deglaciation
National Science Foundation (NSF), grant/award no. 1927553: Collaborative Research: AccelNet: Permafrost Coastal Systems Network (PerCS-Net) -- A Circumpolar Alliance for Arctic Coastal Community Information Exchange
Coverage:
Median Latitude: 57.292354 * Median Longitude: -54.390987 * South-bound Latitude: 29.501330 * West-bound Longitude: -162.015300 * North-bound Latitude: 74.500000 * East-bound Longitude: 161.200000
Minimum ORDINAL NUMBER: 1 * Maximum ORDINAL NUMBER: 258
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1ORDINAL NUMBEROrd NoFuchs, MatthiasGeocode
2SiteSiteFuchs, Matthias
3Methane, fluxCH4 fluxg/m2/aFuchs, Matthias
4TypeTypeFuchs, MatthiasWetland Type
5ClassClassFuchs, MatthiasWetland Class
6Analytical methodMethodFuchs, MatthiasMeasuring method
7Major vegetationMajor vegetationFuchs, MatthiasDominant Vegetation
8LATITUDELatitudeFuchs, MatthiasGeocode
9LONGITUDELongitudeFuchs, MatthiasGeocode
10LocationLocationFuchs, Matthias
11Original valueOrig valFuchs, MatthiasValue reported in reference
12Original unitOrig unitFuchs, MatthiasUnit of reported value
13Reference/sourceReferenceFuchs, Matthias
14Persistent IdentifierPersistent IdentifierFuchs, Matthias
15CommentCommentFuchs, Matthias
License:
Creative Commons Attribution 4.0 International (CC-BY-4.0) (License comes into effect after moratorium ends)
Status:
Curation Level: Enhanced curation (CurationLevelC) * Processing Level: PANGAEA data processing level 4 (ProcLevel4)
Size:
3087 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)