Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science
Abstract:
For upscaling CH4 flux estimates in Beringia during the past 20,000 years, we collected 231 present-day CH4 fluxes from coastal wetlands in the Northern Hemisphere. We combined our own flux data (27 plot measurements) from the Kenai Peninsula, Alaska with previously published data. Data were compiled from different sources (e.g. Treat et al. 2018; 2021; Poffenbarger et al. 2011; Liikanen et al. 2009; Holmquist et al. 2018; Kuhn et al. 2021). CH4 fluxes from the literature were calculated in g CH4 m-2 yr-1 for the growing season, which we set to 153 days (May to September). Each CH4 data entry was harmonized by classifying it into one of the six wetland types Saltwater, tidal regularly flooded, Temporarily irregularly flooded, Permanently to semi-permanently flooded, Seasonally flooded, Non-tidal saturated, Water-body. This resulted in a stratified pool of CH4 fluxes and allowed a bootstrapping approach to estimate uncertainty in the CH4 fluxes for Beringian coastal wetlands based on the variability of CH4 fluxes associated to the different wetland types. For each of 258 sites, the dataset includes a site description, calculated CH4 flux from this research, wetland type, wetland class, method of CH4 measurement, major vegetation type, site location, the originally published CH4 value ("orig val") in the referenced paper, original units of measurement, citation and persistent identifier for the original data source, and comments. For some of the data points no coordinates information was given in the original publication, therefore the latitude and longitude fields were left blank.
Keyword(s):
Arctic; Beringia; Methane; paleoreconstruction; sea-level rise
Supplement to:
Fuchs, Matthias; et al. (in review): Methane flux from Beringian coastal wetlands for the past 20,000 years.
Source:
Adams, Christopher A; Andrews, Julian E; Jickells, T (2012): Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Science of the Total Environment, 434, 240-251, https://doi.org/10.1016/j.scitotenv.2011.11.058
Alford, Douglas P; DeLaune, Ronald D; Lindau, Charles W (1997): . Biogeochemistry, 37(3), 227-236, https://doi.org/10.1023/A:1005762023795
Alm, Jukka; Saarnio, Sanna; Nykänen, Hannu; Silvola, Jouko; Martikainen, Perttij (1999): Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry, 44(2), 163-186, https://doi.org/10.1007/BF00992977
Altor, Anne E; Mitsch, William J (2006): Methane flux from created riparian marshes: Relationship to intermittent versus continuous inundation and emergent macrophytes. Ecological Engineering, 28(3), 224-234, https://doi.org/10.1016/j.ecoleng.2006.06.006
Atkinson, Larry P; Hall, John R (1976): Methane distribution and production in the Georgia salt marsh. Estuarine and Coastal Marine Science, 4(6), 677-686, https://doi.org/10.1016/0302-3524(76)90074-8
Bäckstrand, K; Crill, P M; Jackowicz-Korczyñski, M; Mastepanov, Mikhail; Christensen, T R; Bastviken, D (2010): Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences, 7(1), 95-108, https://doi.org/10.5194/bg-7-95-2010
Bartlett, Karen B; Bartlett, David S; Harriss, Robert C; Sebacher, Daniel I (1987): Methane emissions along a salt marsh salinity gradient. Biogeochemistry, 4(3), 183-202, https://doi.org/10.1007/BF02187365
Bartlett, Karen B; Crill, Patrick M; Sass, Ronald L; Harriss, Robert C; Dise, Nancy B (1992): Methane emissions from tundra environments in the Yukon-Kuskokwim delta, Alaska. Journal of Geophysical Research: Atmospheres, 97(D15), 16645, https://doi.org/10.1029/91JD00610
Bartlett, Karen B; Harriss, Robert C; Sebacher, Daniel I (1985): Methane flux from coastal salt marshes. Journal of Geophysical Research, 90(D3), 5710, https://doi.org/10.1029/JD090iD03p05710
Basiliko, N; Yavitt, J B; Dees, P M; Merkel, S M (2003): Methane Biogeochemistry and Methanogen Communities in Two Northern Peatland Ecosystems, New York State. Geomicrobiology Journal, 20(6), 563-577, https://doi.org/10.1080/713851165
Chmura, Gail L; Kellman, Lisa; van Ardenne, Lee; Guntenspergen, Glenn R; Cebrian, Just (2016): Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment. PLoS ONE, 11(2), e0149937, https://doi.org/10.1371/journal.pone.0149937
DeLaune, Ronald D; Smith, Chris J; Patrick, William H Jr (1983): Methane release from Gulf coast wetlands. Tellus Series B-Chemical and Physical Meteorology, 35(1), 8, https://doi.org/10.3402/tellusb.v35i1.14581
Dise, Nancy B (1993): Methane emission from Minnesota peatlands: Spatial and seasonal variability. Global Biogeochemical Cycles, 7(1), 123-142, https://doi.org/10.1029/92GB02299
Fan, S M; Wofsy, S C; Bakwin, P S; Jacob, D J; Anderson, S M; Kebabian, P L; McManus, J B; Kolb, C E; Fitzjarrald, D R (1992): Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra. Journal of Geophysical Research: Atmospheres, 97(D15), 16627, https://doi.org/10.1029/91JD02531
Fiedler, Sabine; Sommer, Michael (2000): Methane emissions, groundwater levels and redox potentials of common wetland soils in a temperate-humid climate. Global Biogeochemical Cycles, 14(4), 1081-1093, https://doi.org/10.1029/1999GB001255
Flessa, Heiner; Rodionov, Andrej; Guggenberger, Georg; Fuchs, Hans; Magdon, Paul; Shibistova, Olga; Zrazhevskaya, Galina; Mikheyeva, Natalia; Kasansky, Oleg A; Blodau, Christian (2008): Landscape controls of CH 4 fluxes in a catchment of the forest tundra ecotone in northern Siberia. Global Change Biology, 14(9), 2040-2056, https://doi.org/10.1111/j.1365-2486.2008.01633.x
Ford, Tim E; Naiman, Robert J (1988): Alteration of carbon cycling by beaver: methane evasion rates from boreal forest streams and rivers. Canadian Journal of Zoology-Revue Canadienne de Zoologie, 66(2), 529-533, https://doi.org/10.1139/z88-076
Hamilton, J David; Kelly, Carol A; Rudd, John W M; Hesslein, Raymond H; Roulet, Nigel T (1994): Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs). Journal of Geophysical Research: Atmospheres, 99(D1), 1495, https://doi.org/10.1029/93JD03020
Heyer, J (2000): Methane Emission from the Coastal Area in the Southern Baltic Sea. Estuarine, Coastal and Shelf Science, 51(1), 13-30, https://doi.org/10.1006/ecss.2000.0616
Holm, Guerry O Jr; Perez, Brian C; McWhorter, David E; Krauss, Ken W; Johnson, Darren J; Raynie, Richard C; Killebrew, Charles J (2016): Ecosystem Level Methane Fluxes from Tidal Freshwater and Brackish Marshes of the Mississippi River Delta: Implications for Coastal Wetland Carbon Projects. Wetlands, 36(3), 401-413, https://doi.org/10.1007/s13157-016-0746-7
Holmquist, James R; Windham-Myers, Lisamarie; Bernal, Blanca; Byrd, Kristin B; Crooks, Steve; Gonneea, Meagan Eagle; Herold, Nate; Knox, Sara H; Kroeger, Kevin D; McCombs, John; Megonigal, Patrick J; Lu, Meng; Morris, James T; Sutton-Grier, Ariana E; Troxler, Tiffany G; Weller, Donald E (2018): Uncertainty in United States coastal wetland greenhouse gas inventorying. Environmental Research Letters, 13(11), 115005, https://doi.org/10.1088/1748-9326/aae157
Hyvönen, T; Ojala, A; Kankaala, P; Martikainen, P J (1998): Methane release from stands of water horsetail ( Equisetum fluviatile ) in a boreal lake. Freshwater Biology, 40(2), 275-284, https://doi.org/10.1046/j.1365-2427.1998.00351.x
Juutinen, Sari; Väliranta, Minna; Kuutti, V; Laine, A M; Virtanen, T; Seppä, Heikki; Weckström, Jan; Tuittila, E S (2013): Short-term and long-term carbon dynamics in a northern peatland-stream-lake continuum: A catchment approach. Journal of Geophysical Research: Biogeosciences, 118(1), 171-183, https://doi.org/10.1002/jgrg.20028
Kang, H; Freeman, C (2002): . Water Air and Soil Pollution, 141(1/4), 263-272, https://doi.org/10.1023/A:1021324326859
Kankaala, Paula; Ojala, Anne; Käki, Tiina (2004): Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake. Biogeochemistry, 68(3), 297-311, https://doi.org/10.1023/B:BIOG.0000031030.77498.1f
Kelley, Cheryl A; Martens, Christopher S; Ussler, William III (1995): Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography, 40(6), 1112-1129, https://doi.org/10.4319/lo.1995.40.6.1112
King, Gary M; Wiebe, William J (1978): Methane release from soils of a Georgia salt marsh. Geochimica et Cosmochimica Acta, 42(4), 343-348, https://doi.org/10.1016/0016-7037(78)90264-8
Koebsch, Franziska; Glatzel, Stephan; Jurasinski, Gerald (2013): Vegetation controls methane emissions in a coastal brackish fen. Wetlands Ecology and Management, 21(5), 323-337, https://doi.org/10.1007/s11273-013-9304-8
Krauss, Ken W; Holm, Guerry O Jr; Perez, Brian C; McWhorter, David E; Cormier, Nicole; Moss, Rebecca F; Johnson, Darren J; Neubauer, Scott C; Raynie, Richard C (2016): Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance. Journal of Geophysical Research: Biogeosciences, 121(6), 1503-1521, https://doi.org/10.1002/2015JG003224
Kuhn, McKenzie A; Varner, Ruth K; Bastviken, David; Crill, Patrick; MacIntyre, Sally; Turetsky, Merritt; Walter Anthony, Katey; McGuire, Anthony D; Olefeldt, David (2021): BAWLD-CH4: a comprehensive dataset of methane fluxes from boreal and arctic ecosystems. Earth System Science Data, 13(11), 5151-5189, https://doi.org/10.5194/essd-13-5151-2021
Laine, Anna; Wilson, David; Kiely, Gerard; Byrne, Kenneth A (2007): Methane flux dynamics in an Irish lowland blanket bog. Plant and Soil, 299(1-2), 181-193, https://doi.org/10.1007/s11104-007-9374-6
Lansdown, John M; Quay, Paul D; King, S L (1992): CH4 production via CO2 reduction in a temperate bog: A source of 13C-depIeted CH4. Geochimica et Cosmochimica Acta, 56(9), 3493-3503, https://doi.org/10.1016/0016-7037(92)90393-W
Leppälä, Mirva; Oksanen, Jari; Tuittila, Eeva-Stiina (2011): Methane flux dynamics during mire succession. Oecologia, 165(2), 489-499, https://doi.org/10.1007/s00442-010-1754-6
Levy, Peter E; Burden, Annette; Cooper, Mark D A; Dinsmore, Kerry J; Drewer, Julia; Evans, Chris D; Fowler, David; Gaiawyn, Jenny; Gray, Alan; Jones, Stephanie K; Jones, Timothy G; McNamara, Niall P; Mills, Robert; Ostle, Nick; Sheppard, Lucy J; Skiba, Ute; Sowerby, Alwyn; Ward, Susan E; Zieliński, Piotr (2012): Methane emissions from soils: synthesis and analysis of a large UK data set. Global Change Biology, 18(5), 1657-1669, https://doi.org/10.1111/j.1365-2486.2011.02616.x
Liikanen, Anu; Silvennoinen, Hanna; Karvo, Anna; Rantakokko, Panu; Martikainen, Pertti J (2009): Methane and nitrous oxide fluxes in two coastal wetlands in the northeastern Gulf of Bothnia, Baltic Sea. Boreal Environment Research 14 (2009). https://www.osti.gov/etdeweb/biblio/964437. 14, 351-358, https://www.borenv.net/BER/archive/pdfs/ber14/ber14-351.pdf
Lipschultz, Fredric (1981): Methane Release from a Brackish Intertidal Salt-Marsh Embayment of Chesapeake Bay, Maryland. Estuaries, 4(2), 143, https://doi.org/10.2307/1351677
Magenheimer, J F; Moore, T R; Chmura, G L; Daoust, R J (1996): Methane and Carbon Dioxide Flux from a Macrotidal Salt Marsh, Bay of Fundy, New Brunswick. Estuaries, 19(1), 139, https://doi.org/10.2307/1352658
Martin, Abra F; Lantz, Trevor C; Humphreys, Elyn R (2017): Ice wedge degradation and CO2 and CH4 emissions in the Tuktoyaktuk Coastlands, NT. Arctic Science, AS-2016-0011, https://doi.org/10.1139/AS-2016-0011
Marushchak, Maija E; Friborg, Thomas; Biasi, Christina; Herbst, M; Johansson, T; Kiepe, I; Liimatainen, M; Lind, Saara E; Martikainen, Pertti J; Virtanen, T; Soegaard, H; Shurpali, Narasinha J (2016): Methane dynamics in the subarctic tundra: combining stable isotope analyses, plot- and ecosystem-scale flux measurements. Biogeosciences, 13(2), 597-608, https://doi.org/10.5194/bg-13-597-2016
Mastepanov, Mikhail; Sigsgaard, C; Tagesson, T; Ström, L; Tamstorf, M P; Lund, Magnus; Christensen, Torben R (2013): Revisiting factors controlling methane emissions from high-Arctic tundra. Biogeosciences, 10(7), 5139-5158, https://doi.org/10.5194/bg-10-5139-2013
Mastepanov, Mikhail; Sigsgaard, Charlotte; Dlugokencky, Edward J; Houweling, Sander; Ström, Lena; Tamstorf, Mikkel P; Christensen, Torben R (2008): Large tundra methane burst during onset of freezing. Nature, 456(7222), 628-630, https://doi.org/10.1038/nature07464
Megonigal, J Patrick; Schlesinger, William H (2002): Methane-limited methanotrophy in tidal freshwater swamps. Global Biogeochemical Cycles, 16(4), 35-1-35-10, https://doi.org/10.1029/2001GB001594
Moore, T R; Heyes, A; Roulet, N T (1994): Methane emissions from wetlands, southern Hudson Bay lowland. Journal of Geophysical Research, 99(D1), 1455, https://doi.org/10.1029/93JD02457
Mueller, Peter; Hager, Rachel N; Meschter, Justin E; Mozdzer, Thomas J; Langley, J Adam; Jensen, Kai; Megonigal, J Patrick (2016): Complex invader-ecosystem interactions and seasonality mediate the impact of non-native Phragmites on CH4 emissions. Biological Invasions, 18(9), 2635-2647, https://doi.org/10.1007/s10530-016-1093-6
Nedwell, David B; Embley, T M; Purdy, K J (2004): Sulphate reduction, methanogenesis and phylogenetics of the sulphate reducing bacterial communities along an estuarine gradient. Aquatic Microbial Ecology, 37, 209-217, https://doi.org/10.3354/ame037209
Neubauer, S C; Miller, W D; Cofman Anderson, I (2000): Carbon cycling in a tidal freshwater marsh ecosystem:a carbon gas flux study. Marine Ecology Progress Series, 199, 13-30, https://doi.org/10.3354/meps199013
Nykänen, Hannu; Alm, Jukka; Silvola, Jouko; Tolonen, Kimmo; Martikainen, Pertti J (1998): Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles, 12(1), 53-69, https://doi.org/10.1029/97GB02732
Nykänen, Hannu; Heikkinen, Juha E P; Pirinen, Leena; Tiilikainen, Karoliina; Martikainen, Pertti J (2003): Annual CO 2 exchange and CH 4 fluxes on a subarctic palsa mire during climatically different years. Global Biogeochemical Cycles, 17(1), https://doi.org/10.1029/2002GB001861
Nykanen, Hannu; Alm, Jukka; Lang, Kristiina; Silvola, Jouko; Martikainen, Pertti J (1995): Emissions of CH4 , N2O and CO2 from a Virgin Fen and a Fen Drained for Grassland in Finland. Journal of Biogeography, 22(2/3), 351, https://doi.org/10.2307/2845930
Panikov, N S; Dedysh, S N (2000): Cold season CH 4 and CO 2 emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics. Global Biogeochemical Cycles, 14(4), 1071-1080, https://doi.org/10.1029/1999GB900097
Pelletier, L; Moore, T R; Roulet, N T; Garneau, M; Beaulieu-Audy, V (2007): Methane fluxes from three peatlands in the La Grande Rivière watershed, James Bay lowland, Canada. Journal of Geophysical Research: Biogeosciences, 112(G1), G01018, https://doi.org/10.1029/2006JG000216
Pelletier, Luc; Strachan, Ian B; Garneau, Michelle; Roulet, Nigel T (2014): Carbon release from boreal peatland open water pools: Implication for the contemporary C exchange. Journal of Geophysical Research: Biogeosciences, 119(3), 207-222, https://doi.org/10.1002/2013JG002423
Poffenbarger, Hanna J; Needelman, Brian A; Megonigal, J Patrick (2011): Salinity Influence on Methane Emissions from Tidal Marshes. Wetlands, 31(5), 831-842, https://doi.org/10.1007/s13157-011-0197-0
Rask, Holly; Schoenau, Jeff; Anderson, Darwin (2002): Factors influencing methane flux from a boreal forest wetland in Saskatchewan, Canada. Soil Biology and Biochemistry, 34(4), 435-443, https://doi.org/10.1016/S0038-0717(01)00197-3
Reid, M C; Tripathee, R; Schäfer, K V R; Jaffé, P R (2013): Tidal marsh methane dynamics: Difference in seasonal lags in emissions driven by storage in vegetated versus unvegetated sediments. Journal of Geophysical Research: Biogeosciences, 118(4), 1802-1813, https://doi.org/10.1002/2013JG002438
Rouse, Wayne R; Holland, Susan; Moore, T R (1995): Variability in Methane Emissions from Wetlands at Northern Treeline near Churchill, Manitoba, Canada. Arctic and Alpine Research, 27, 146-156
Serikova, Svetlana; Pokrovsky, Oleg S; Laudon, Hjalmar; Krickov, Ivan V; Lim, Artem G; Manasypov, Riman M; Karlsson, Johannes (2019): High carbon emissions from thermokarst lakes of Western Siberia. Nature Communications, 10(1), 1552, https://doi.org/10.1038/s41467-019-09592-1
Shannon, Robert D; White, Jeffrey R (1994): A three-year study of controls on methane emissions from two Michigan peatlands. Biogeochemistry, 27(1), https://doi.org/10.1007/BF00002570
Skeeter, June; Christen, Andreas; Henry, Greg H R (2022): Controls on carbon dioxide and methane fluxes from a low-center polygonal peatland in the Mackenzie River Delta, Northwest Territories. Arctic Science, 8(2), 471-497, https://doi.org/10.1139/as-2021-0034
Sturtevant, Cove S; Oechel, Walter C (2013): Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle. Global Change Biology, 19(9), 2853-2866, https://doi.org/10.1111/gcb.12247
Townsend-Small, Amy; Åkerström, Frida; Arp, Christopher D; Hinkel, Kenneth M (2017): Spatial and Temporal Variation in Methane Concentrations, Fluxes, and Sources in Lakes in Arctic Alaska. Journal of Geophysical Research: Biogeosciences, 122(11), 2966-2981, https://doi.org/10.1002/2017JG004002
Treat, Claire C; Bloom, A Anthony; Marushchak, Maija E (2018): Non-growing season methane emissions - a significant component of annual emissions across northern ecosystems. Global Change Biology, 24(8), 3331-3343, https://doi.org/10.1111/gcb.14137
Treat, Claire C; Jones, Miriam C; Brosius, Laura Susan; Grosse, Guido; Walter Anthony, Katey M; Frolking, Steve (2021): The role of wetland expansion and successional processes in methane emissions from northern wetlands during the Holocene. Quaternary Science Reviews, 257, 106864, https://doi.org/10.1016/j.quascirev.2021.106864
Van der Nat, Frans-Jaco; Middelburg, Jack J (2000): . Biogeochemistry, 49(2), 103-121, https://doi.org/10.1023/A:1006333225100
Walter Anthony, Katey M; Vas, Dragos A; Brosius, Laura Susan; Chapin, F Stuart III; Zimov, Sergey A; Zhuang, Qianlai (2010): Estimating methane emissions from northern lakes using ice-bubble surveys. Limnology and Oceanography-Methods, 8(11), 592-609, https://doi.org/10.4319/lom.2010.8.0592
Wang, Dongqi; Chen, Zhenlou; Xu, Shiyuan (2009): Methane emission from Yangtze estuarine wetland, China. Journal of Geophysical Research: Biogeosciences, 114(G2), https://doi.org/10.1029/2008JG000857
Ward, Susan E; Ostle, Nicholas J; Oakley, Simon; Quirk, Helen; Henrys, Peter A; Bardgett, Richard D; van der Putten, Wim H (2013): Warming effects on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecology Letters, 16(10), 1285-1293, https://doi.org/10.1111/ele.12167
Whalen, Stephen C; Reeburgh, William S (1988): A methane flux time series for tundra environments. Global Biogeochemical Cycles, 2(4), 399-409, https://doi.org/10.1029/GB002i004p00399
Wilson, Benjamin J; Mortazavi, Behzad; Kiene, Ronald P (2015): Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary. Biogeochemistry, 123(3), 329-347, https://doi.org/10.1007/s10533-015-0085-4
Funding:
European Research Council (ERC), grant/award no. 851181: The role of non-growing season processes in the methane and nitrous oxide budgets in pristine northern ecosystems
National Science Foundation (NSF), grant/award no. 1903623: Collaborative Research: Sea-level rise, coastal wetland expansion, and proglacial lake contributions to abrupt increases in northern atmospheric CH4 during the last deglaciation
National Science Foundation (NSF), grant/award no. 1903735: Collaborative Research: Sea-level rise, coastal wetland expansion, and proglacial lake contributions to abrupt increases in northern atmospheric CH4 during the last deglaciation
National Science Foundation (NSF), grant/award no. 1927553: Collaborative Research: AccelNet: Permafrost Coastal Systems Network (PerCS-Net) -- A Circumpolar Alliance for Arctic Coastal Community Information Exchange
Coverage:
Median Latitude: 57.292354 * Median Longitude: -54.390987 * South-bound Latitude: 29.501330 * West-bound Longitude: -162.015300 * North-bound Latitude: 74.500000 * East-bound Longitude: 161.200000
Minimum ORDINAL NUMBER: 1 * Maximum ORDINAL NUMBER: 258
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
ORDINAL NUMBEROrd NoFuchs, MatthiasGeocode
SiteSiteFuchs, Matthias
Methane, fluxCH4 fluxg/m2/aFuchs, Matthias
TypeTypeFuchs, MatthiasWetland Type
ClassClassFuchs, MatthiasWetland Class
Analytical methodMethodFuchs, MatthiasMeasuring method
Major vegetationMajor vegetationFuchs, MatthiasDominant Vegetation
LATITUDELatitudeFuchs, MatthiasGeocode
LONGITUDELongitudeFuchs, MatthiasGeocode
10 LocationLocationFuchs, Matthias
11 Original valueOrig valFuchs, MatthiasValue reported in reference
12 Original unitOrig unitFuchs, MatthiasUnit of reported value
13 Reference/sourceReferenceFuchs, Matthias
14 Persistent IdentifierPersistent IdentifierFuchs, Matthias
15 CommentCommentFuchs, Matthias
License:
Creative Commons Attribution 4.0 International (CC-BY-4.0) (License comes into effect after moratorium ends)
Status:
Curation Level: Enhanced curation (CurationLevelC) * Processing Level: PANGAEA data processing level 4 (ProcLevel4)
Size:
3087 data points

Data

Download dataset as tab-delimited text — use the following character encoding:


Ord No

Site

CH4 flux [g/m2/a]

Type

Class

Method

Major vegetation

Latitude

Longitude
10 
Location
11 
Orig val
12 
Orig unit
13 
Reference
14 
Persistent Identifier
15 
Comment
1Saltmarsh, Spartina alterniflora, Georgia22.22Salt marshSaltwater, tidal regularly floodedbell jars, GCSpartina alternifloraSapeolo Island, Georgia6.05mg CH4 m-2 h-1King and Wiebe, 1978doi:10.1016/0016-7037(78)90264-8Average values were used to calculate methane flux for growing season (153 days)
2Saltmarsh, midmarsh, Georgia2.42Salt marshSaltwater, tidal regularly floodedbell jars, GCSpartina alternifloraSapeolo Island, Georgia0.66mg CH4 m-2 h-1King and Wiebe, 1978doi:10.1016/0016-7037(78)90264-8Average values were used to calculate methane flux for growing season (153 days)
3Saltmarsh, tall Spartina marsh, Georgia0.18Salt marshSaltwater, tidal regularly floodedbell jars, GCSpartina alternifloraSapeolo Island, Georgia0.05mg CH4 m-2 h-1King and Wiebe, 1978doi:10.1016/0016-7037(78)90264-8Average values were used to calculate methane flux for growing season (153 days)
4Coastal meadow marsh, panne0.76Coastal marshSaltwater, tidal regularly floodedstatic chamber, GCScirpus americanus, Festuca rubra51.48333-80.46667James Bay, Hudson Bay lowlands0.65g CH4 m-2Moore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
5Coastal meadow marsh, sward0.74Coastal marshSaltwater, tidal regularly floodedstatic chamber, GCCarex palacea, Eleocharis palustris, Juncus balticus51.48333-80.46667James Bay, Hudson Bay lowlands0.63g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
6Coastal meadow marsh0.95Coastal marshSaltwater, tidal regularly floodedstatic chamber, GCCarex palacea, Eleocharis palustris51.48333-80.46667James Bay, Hudson Bay lowlands0.81g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
7Coastal meadow marsh, pool margin4.72Coastal marshSaltwater, tidal regularly floodedstatic chamber, GCCarex glareosa, M. trifoliata51.48333-80.46667James Bay, Hudson Bay lowlands4.01g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
8Salt marsh, freshest site7.63Salt marshSaltwater, tidal regularly floodedinfrared gas filter correlation analyzer with aluminum chamberSpartina cynosuroidesQueen´s creek, York river, Williamsburg, Virginia18.20g CH4 m-2 yr-1Bartlett et al. 1987doi:10.1007/BF02187365Annual fluxes reduced to growing season of 153 days
9Salt marsh, intermediate saline9.39Salt marshSaltwater, tidal regularly floodedinfrared gas filter correlation analyzer with aluminum chamberSpartina alterniflora, S. cynosuroidesQueen´s creek, York river, Williamsburg, Virginia22.40g CH4 m-2 yr-1Bartlett et al. 1987doi:10.1007/BF02187365Annual fluxes reduced to growing season of 153 days
10Salt marsh, most saline2.35Salt marshSaltwater, tidal regularly floodedinfrared gas filter correlation analyzer with aluminum chamberSpartina alternifloraQueen´s creek, York river, Williamsburg, Virginia5.60g CH4 m-2 yr-1Bartlett et al. 1987doi:10.1007/BF02187365Annual fluxes reduced to growing season of 153 days
11Salt marsh, salt meadow zone0.18Salt marshSaltwater, tidal regularly floodedinfrared gas filter correlation analyzer with aluminum chamberS. patens, D. spcata, Salicornia spp., Limonium carolinianum37.20000-76.41667Bay Tree Creek, Yorktown, Virginia0.43g CH4 m-2 yr-1Bartlett et al. 1985doi:10.1029/JD090iD03p05710Annual fluxes reduced to growing season of 153 days
12Salt marsh, Spartina alterniflora0.54Salt marshSaltwater, tidal regularly floodedinfrared gas filter correlation analyzer with aluminum chamberSpartina alterniflora38.83333-76.16667Lewes, Delaware1.30g CH4 m-2 yr-1Bartlett et al. 1985doi:10.1029/JD090iD03p05710Annual fluxes reduced to growing season of 153 days
13Salt marsh, tall creek-bank spartina alterniflora0.50Salt marshSaltwater, tidal regularly floodedinfrared gas filter correlation analyzer with aluminum chamberSpartina alterniflora38.08333-75.41667Wallops Island, Virginia1.20g CH4 m-2 yr-1Bartlett et al. 1985doi:10.1029/JD090iD03p05710Annual fluxes reduced to growing season of 153 days
14Salt marsh, Gulf coast1.81Salt marshSaltwater, tidal regularly floodedstatic chamber, GCSpartina alternifloraBarataria Basin, Louisiana11.80mg CH4 m-2 d-1DeLaune et al. 1983doi:10.3402/tellusb.v35i1.14581Average daily emissions from Fig. 2 extrapolated to 153 days
15Tidal salt marsh, low marsh0.09Tidal salt marshSaltwater, tidal regularly floodedstatic chamber, GCSpartina alterniflora45.08333-66.43333Dipper Harbour, Bay of Fundy0.57mg CH4 m-2 d-1Magenheimer et al. 1996doi:10.2307/1352658Average daily fluxes from Table 2 used to extrapolate to 153 days
16Tidal salt marsh, middle marsh0.09Tidal salt marshSaltwater, tidal regularly floodedstatic chamber, GCPlantago maritima, Spartina alterniflora, Spartina patens45.08333-66.43333Dipper Harbour, Bay of Fundy0.60mg CH4 m-2 d-1Magenheimer et al. 1996doi:10.2307/1352658Average daily fluxes from Table 2 used to extrapolate to 153 days
17Tidal salt marsh, high marsh0.07Tidal salt marshSaltwater, tidal regularly floodedstatic chamber, GCS. patens, P. maritima, S. europaea, Triglochin maritima45.08333-66.43333Dipper Harbour, Bay of Fundy0.49mg CH4 m-2 d-1Magenheimer et al. 1996doi:10.2307/1352658Average daily fluxes from Table 2 used to extrapolate to 153 days
18Tidal salt marsh, upland edge0.56Tidal salt marshSaltwater, tidal regularly floodedstatic chamber, GCJuncus gerardi, Juncus balticus, Carex spp.45.08333-66.43333Dipper Harbour, Bay of Fundy3.69mg CH4 m-2 d-1Magenheimer et al. 1996doi:10.2307/1352658Average daily fluxes from Table 2 used to extrapolate to 153 days
19Tidal salt marsh, panne0.24Tidal salt marshSaltwater, tidal regularly floodedstatic chamber, GCSalicornia, S. alterniflora, Triglochin, Plantago, Eleocharis spp.45.08333-66.43333Dipper Harbour, Bay of Fundy1.57mg CH4 m-2 d-1Magenheimer et al. 1996doi:10.2307/1352658Average daily fluxes from Table 2 used to extrapolate to 153 days
20Tidal freshwater swamp, lower0.54Tidal fresh water marshSaltwater, tidal regularly floodedstatic chamber, GCFraxinus caroliniana, Nyssa sylvatica, Taxodium distichum, Orontium aquaticum, Peltandra virginicaWhite Oak River, North Carolina1.30g CH4 m-2 yr-1Megonigal and Schlesinger, 2002doi:10.1029/2001GB001594Very regularly, tidally flooded, therefore in this class. Mean values used from Poffenbarger et al. 2011 and reduced to 153 days
21Tidal freshwater swamp, upper0.75Tidal fresh water marshSaltwater, tidal regularly floodedstatic chamber, GCFraxinus caroliniana, Taxodium distichum, Sorus, AsterWhite Oak River, North Carolina1.80g CH4 m-2 yr-1Megonigal and Schlesinger, 2002doi:10.1029/2001GB001594Very regularly, tidally flooded, therefore in this class. Mean values used from Poffenbarger et al. 2011 and reduced to 153 days
22Estuarine salt marsh, Colne point, top0.17Salt marshSaltwater, tidal regularly floodedPerspex boxes, gas-liquid chromatographyRiver Colne, Essex, UK25.30mmol C m-2 yr-1Nedwell et al. 2004doi:10.3354/ame037209Average annual fluxes (Table 2) reduced to 153 days
23Estuarine salt marsh, Colne point, open mud0.17Salt marshSaltwater, tidal regularly floodedPerspex boxes, gas-liquid chromatographyMudRiver Colne, Essex, UK25.00mmol C m-2 yr-1Nedwell et al. 2004doi:10.3354/ame037209Average annual fluxes (Table 2) reduced to 153 days
24Estuarine salt marsh, Alresford0.12Salt marshSaltwater, tidal regularly floodedPerspex boxes, gas-liquid chromatographyAlresford Creek, Essex, UK17.70mmol C m-2 yr-1Nedwell et al. 2004doi:10.3354/ame037209Average annual fluxes (Table 2) reduced to 153 days
25Estuarine salt marsh, The Hythe0.15Salt marshSaltwater, tidal regularly floodedPerspex boxes, gas-liquid chromatographythe Hythe, Colchester22.30mmol C m-2 yr-1Nedwell et al. 2004doi:10.3354/ame037209Average annual fluxes (Table 2) reduced to 153 days
26Estuarine wetland, bare tidal flat0.15Tidal flatSaltwater, tidal regularly floodedstatic chamber, GCnon vegetated31.49000121.49000Chongming Island, Yangtze estuary0.04mg CH4 m-2 h-1Wang et al. 2009doi:10.1029/2008JG000857Used the annual average CH4 emissions (mg m-2 h-1) from the abstract and calculated it for 153 days
27Estuarine salt marsh0.09Salt marshSaltwater, tidal regularly floodedstatic chamber, GCAtriplex portuacoides, Limonium vulgare, Armeria maritima, Triglochim maritimumBlackwater estuary, Essex, UK0.21g CH4 m-2 yr-1Adams et al. 2012.doi:10.1016/j.scitotenv.2011.11.058Using mean value for NSM in Table 4 to calculate flux for 153 days
28Intertidal mudflat0.17Tidal flatSaltwater, tidal regularly floodedstatic chamber, GCBare mudBlackwater estuary, Essex, UK0.40g CH4 m-2 yr-1Adams et al. 2012.doi:10.1016/j.scitotenv.2011.11.058Using mean value for NSM in Table 4 to calculate flux for 153 days
29Salt marsh0.42Salt marshSaltwater, tidal regularly floodedmanual gas sampling, GCSpartina alternifloraWilmington River, US Atlantic Coast, Georgia1.00g CH4 m-2 yr-1Atkinson and Hall, 1976.doi:10.1016/0302-3524(76)90074-8Annual flux of 1 g CH4 m-2 yr-1 calculated for 153 days
30KEN21-T4-10.00Tidal flatSaltwater, tidal regularly floodedstatic chamber, portable GHG analyzerbare ground, sweet grass60.54116-151.22335Kenai River, Alaska0.00mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156All measurements (12) showed zero fluxes
31KEN21-T4-20.00Tidal flatSaltwater, tidal regularly floodedstatic chamber, portable GHG analyzerbare soil, Triglochin spp., Carex spp.60.54116-151.22160Kenai River, Alaska0.00mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156All measurements (12) showed zero fluxes
32KEN21-T4-30.00Tidal flatSaltwater, tidal regularly floodedstatic chamber, portable GHG analyzerbare soil, Triglochin spp.60.54105-151.21967Kenai River, Alaska0.00mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156All measurements (3) showed zero fluxes
33KEN21-T4-40.00Tidal flatSaltwater, tidal regularly floodedstatic chamber, portable GHG analyzerTriglochin spp., Carex spp.60.54113-151.21782Kenai River, Alaska0.00mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156All measurements (16) showed zero fluxes
34KEN21-T3-70.00Tidal flatSaltwater, tidal regularly floodedstatic chamber, portable GHG analyzerbare ground, Carex spp.60.54666-151.25969Kenai River, Alaska0.00mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156All measurements (3) showed zero fluxes
35KEN21-T1-8A0.00Mud flatSaltwater, tidal regularly floodedstatic chamber, portable GHG analyzerbare ground with Algae60.53953-151.18614Kenai River, Alaska0.00mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156All measurements (3) showed zero fluxes
36KEN21-T1-8B1.73Mud flatSaltwater, tidal regularly floodedstatic chamber, portable GHG analyzerbare ground60.53950-151.18607Kenai River, Alaska0.47mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of two replicate plots
37Intertidal, vegetated low marsh2.41Tidal marshSaltwater, tidal regularly floodedstatic chamber, GCSpartina alterniflora, Phragmites australis40.82000-74.05000Hackensack River estuary, New Jersey0.36mol m-2 yr-1Reid et al. 2013doi:10.1002/2013JG002438Annual flux calculated for 153 days
38Intertidal, mud flat2.15Tidal marshSaltwater, tidal regularly floodedstatic chamber, GCnone40.82000-74.05000Hackensack River estuary, New Jersey0.32mol m-2 yr-1Reid et al. 2013doi:10.1002/2013JG002438Annual flux calculated for 153 days
39Salt marsh2.39Salt marshSaltwater, tidal regularly floodedstatic chamber, GCSpartina alterniflora30.25717-88.12397Mobile Bay estuary, Alabama15.60mg CH4 m-2 d-1Wilson et al. 2015doi:10.1007/s10533-015-0085-4Mean daily flux calculated for 153 days
40Salt marsh, macrotidal0.01Salt marshSaltwater, tidal regularly floodedstatic chamber, GCSpartina patens45.08333-66.43333Dipper Harbour, Bay of Fundy0.13µmol m-2 h-1Chmura et al. 2016doi:10.1371/journal.pone.0149937Mean hourly flux calculated for 153 days
41Salt marsh, microtidal0.01Salt marshSaltwater, tidal regularly floodedstatic chamber, GCSpartina patens46.76667-64.90000Kouchibouguac marsh, Gulf of St. Lawrence0.23µmol m-2 h-1Chmura et al. 2016doi:10.1371/journal.pone.0149937Mean hourly flux calculated for 153 days
42Freshwater marsh, deltaic38.40Freshwater marshTemporarily irregularly floodedplexiglass chambers, GCSagittaria lancifoliaAllemands, Mississippi Delta, Louisiana251.00mg CH4 m-2 d-1Alford et al. 1997doi:10.1023/A:1005762023795Daily average fluxes multiplied with 153 days for growing season/annual fluxes. Could also be in class permanently flooded or non-tidal saturated
43Swamp forest, deltaic22.34Swamp forestTemporarily irregularly floodedplexiglass chambers, GCTaxodium distichum, Nyssa aquaticaBarbary, Mississippi Delta, Louisiana146.00mg CH4 m-2 d-1Alford et al. 1997doi:10.1023/A:1005762023795Daily average fluxes multiplied with 153 days for growing season/annual fluxes. Could also be in class permanently flooded or non-tidal saturated
44intermediate marsh, deltaic139.54MarshTemporarily irregularly floodedplexiglass chambers, GCSpartina patens, Sagittaria lancifoliaMaurepas, Mississippi Delta, Louisiana912.00mg CH4 m-2 d-1Alford et al. 1997doi:10.1023/A:1005762023795Daily average fluxes multiplied with 153 days for growing season/annual fluxes. Could also be in class permanently flooded or non-tidal saturated
45Brakish marsh, Gulf coast30.60Brakish marshTemporarily irregularly floodedstatic chambers, GCSpartina patensBarataria basin, Louisiana200.00mg CH4 m-2 d-1DeLaune et al. 1983doi:10.3402/tellusb.v35i1.14581Average daily emissions from Fig. 3 extrapolated to 153 days
46Tidally flooded near bank area3.44Tidal freshwater marshTemporarily irregularly floodedstatic chamber, GCAcer, Rosa, Chamaecyparis, Pontederia, Sagittaria, Zizania, PeltandraWhite Oak River, North Carolina22.47mg CH4 m-2 d-1Kelley et al. 1995doi:10.4319/lo.1995.40.6.1112Fluxes calculated with weighted average from Table 2 and then upscaled to 153 days
47Tidally flooded near bank area2.38Tidal freshwater marshTemporarily irregularly floodedstatic chamber, GCAcer, Rosa, Chamaecyparis, Pontederia, Sagittaria, Zizania, PeltandraWhite Oak River, North Carolina15.55mg CH4 m-2 d-1Kelley et al. 1995doi:10.4319/lo.1995.40.6.1112Fluxes calculated with weighted average from Table 2 and then upscaled to 153 days
48Tidally flooded far bank area2.06Tidal freshwater marshTemporarily irregularly floodedstatic chamber, GCAcer, Rosa, Chamaecyparis, Pontederia, Sagittaria, Zizania, PeltandraWhite Oak River, North Carolina13.46mg CH4 m-2 d-1Kelley et al. 1995doi:10.4319/lo.1995.40.6.1112Fluxes calculated with weighted average from Table 2 and then upscaled to 153 days
49Tidally flooded far bank area1.42Tidal freshwater marshTemporarily irregularly floodedstatic chamber, GCAcer, Rosa, Chamaecyparis, Pontederia, Sagittaria, Zizania, PeltandraWhite Oak River, North Carolina9.25mg CH4 m-2 d-1Kelley et al. 1995doi:10.4319/lo.1995.40.6.1112Fluxes calculated with weighted average from Table 2 and then upscaled to 153 days
50Oligohaline tidal freshwater marsh1.89Tidal freshwater marshTemporarily irregularly floodedenclosed chamber technique, GCScirpus lacustrisStation Burcht, Scheldt Estuary4.50g CH4 m-2 yr-1van der Nat and Middelburg, 2000doi:10.1023/A:1006333225100Used the numbers from Poffenbarger et al. 2011 and reduced the annual values to 153 days
51Oligohaline tidal freshwater marsh31.61Tidal freshwater marshTemporarily irregularly floodedenclosed chamber technique, GCPhragmites australisStation Burcht, Scheldt Estuary75.40g CH4 m-2 yr-1van der Nat and Middelburg, 2000doi:10.1023/A:1006333225100Used the numbers from Poffenbarger et al. 2011 and reduced the annual values to 153 days
52Estuarine wetland, marsh7.56Tidal flatTemporarily irregularly floodedstatic chambers, GCS. mariqueter31.49000121.49000Chongming Island, Yangtze estuary2.06mg CH4 m-2 h-1Wang et al. 2009doi:10.1029/2008JG000857Used the annual average CH4 emissions (mg m-2 h-1) from the abstract and calculated it for 153 days
53KEN21-T4-54.19Tidal flatTemporarily irregularly floodedstatic chamber, portable GHG analyzerJuncus spp., Triglochin spp.60.54114-151.21590Kenai River, Alaska1.14mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots and four repetitions
54KEN21-T4-685.11Tidal flatTemporarily irregularly floodedstatic chamber, portable GHG analyzerEquisetum spp., Betula, Sphagnum spp.60.54119-151.21413Kenai River, Alaska23.18mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
55KEN21-T4-210.00Tidal flatTemporarily irregularly floodedstatic chamber, portable GHG analyzerCarex spp., Triglochin spp.60.54264-151.21733Kenai River, Alaska0.00mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
56KEN21-T3-20.00Tidal flatTemporarily irregularly floodedstatic chamber, portable GHG analyzerPotentilla spp.60.53550-151.26581Kenai River, Alaska0.00mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
57KEN21-T3-30.00Tidal flatTemporarily irregularly floodedstatic chamber, portable GHG analyzerCarex spp., moss60.53784-151.26469Kenai River, Alaska0.00mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
58KEN21-T3-40.00Tidal flatTemporarily irregularly floodedstatic chamber, portable GHG analyzerCarex spp.60.53991-151.26372Kenai River, Alaska0.00mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
59KEN21-T3-50.00Tidal flatTemporarily irregularly floodedstatic chamber, portable GHG analyzerBare ground, Plantago maritima60.54202-151.26234Kenai River, Alaska0.00mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
60KEN21-T3-60.00Tidal flatTemporarily irregularly floodedstatic chamber, portable GHG analyzerCarex spp. Plantago maritima60.54448-151.26076Kenai River, Alaska0.00mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
61KEN21-T1-8C29.28Mud flatTemporarily irregularly floodedstatic chamber, portable GHG analyzerbare ground, sweet grass60.53945-151.18610Kenai River, Alaska7.97mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
62KEN21-T2-96.98MarshTemporarily irregularly floodedstatic chamber, portable GHG analyzerTriglochin spp, Carex spp.60.53410-151.19354Kenai River, Alaska1.90mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
63Coastal low center peatland5.86Coastal peatlandTemporarily irregularly floodedClosed chamber with protable GHG analyzerSphagnun spp., Equisetum spp., Carex spp.69.37228-134.88109Mackenzie River Delta27.00nmol CH4 m-2 s-1Skeeter et al. 2022doi:10.1139/as-2021-0034Took the net methane exchange of 27.7 nmol CH4 m-2 s-1 and upscaled it to 153 days
64Coastal brakish fen1.33Coastal brakish fenTemporarily irregularly floodedclosed chamber, GCBolboschoeneus maritimus54.2000012.16667Hütelmoor, Rostock, Germany3.18g CH4 m-2 yr-1Koebsch et al. 2013doi:10.1007/s11273-013-9304-8Took annual flux from Table 1 and calculated it for growing season of 153 days
65Coastal brakish fen0.18Coastal brakish fenTemporarily irregularly floodedclosed chamber, GCSchoenoplectus tabernaemontani54.2000012.16667Hütelmoor, Rostock, Germany0.44g CH4 m-2 yr-1Koebsch et al. 2013doi:10.1007/s11273-013-9304-8Took annual flux from Table 1 and calculated it for growing season of 153 days
66Coastal brakish fen0.24Coastal brakish fenTemporarily irregularly floodedclosed chamber, GCCarex acutiformis54.2000012.16667Hütelmoor, Rostock, Germany0.57g CH4 m-2 yr-1Koebsch et al. 2013doi:10.1007/s11273-013-9304-8Took annual flux from Table 1 and calculated it for growing season of 153 days
67Brackish tidal marsh1.30Brackish tidal marshTemporarily irregularly floodedclosed chamber, GCS. patensFox Creek Marsh, Edgewater, Maryland3.10g CH4 m-2 yr-1Mueller et al. 2016doi:10.1007/s10530-016-1093-6Annual fluxes from native plots (Table 2) reduced to 153 days
68Brackish tidal marsh0.42Brackish tidal marshTemporarily irregularly floodedclosed chamber, GCS. patensKirkpatrick Marsh, Edgewater, Maryland1.00g CH4 m-2 yr-1Mueller et al. 2016doi:10.1007/s10530-016-1093-6Annual fluxes from native plots (Table 2) reduced to 153 days
69Brackish water ecosystem, Rügen38.48Coastal marshPermanently, semi-permanently floodedstatic chamber, GCnoneFährinsel, Hiddensee, Germany10.48mg CH4 m-2 h-1Heyer and Berger, 2000doi:10.1006/ecss.2000.0616Mean value of the measurements (Table 3) and extrapolated it to the growing season of 153 days
70brackish tidal marsh which is exposed (unflooded) during low tides4.49Salt marshPermanently, semi-permanently floodedsediment gas samples,GCmud flat, SpartinaHorn Point, Choptank River, Cambridge, Maryland10.70g CH4 m-2 yr-1Lipschultz 1981doi:10.2307/1351677Mean annual CH4 flux reduced to 153 days
71Flooded eriophorum, tundra lake23.49Tundra lakePermanently, semi-permanently floodedstatic chamber, GCEriophorumBethel, YK-Delta, Alaska153.50mg CH4 m-2 d-1Bartlett et al. 1992doi:10.1029/91JD00610Values from Table 3 extrapolated to 153 days
72Unvegetated shore, tundra lake3.02Tundra lakePermanently, semi-permanently floodedstatic chamber, GCnoneBethel, YK-Delta, Alaska19.75mg CH4 m-2 d-1Bartlett et al. 1992doi:10.1029/91JD00610Values from Table 3 extrapolated to 153 days. The two unvegetated shore measurements from Table 3 were averaged
73Flooded carex, tundra lake10.69Tundra lakePermanently, semi-permanently floodedstatic chamber, GCCarexBethel, YK-Delta, Alaska69.90mg CH4 m-2 d-1Bartlett et al. 1992doi:10.1029/91JD00610Values from Table 3 extrapolated to 153 days
74Flooded arctophila, tundra lake9.59Tundra lakePermanently, semi-permanently floodedstatic chamber, GCArctophilaBethel, YK-Delta, Alaska62.70mg CH4 m-2 d-1Bartlett et al. 1992doi:10.1029/91JD00610Values from Table 3 extrapolated to 153 days
75Flooded, exposed Carex10.01Tundra lakePermanently, semi-permanently floodedstatic chamber, GCCarexBethel, YK-Delta, Alaska65.40mg CH4 m-2 d-1Bartlett et al. 1992doi:10.1029/91JD00610Values from Table 3 extrapolated to 153 days
76Littoral zone (horsetail veg) of a boreal lake43.70Boreal lakePermanently, semi-permanently floodedstatic chamber, GCE. fluviatile61.0666725.13333Lake Pääjärvi, Southern Finland43.70g CH4 m-2 yr-1Hyvönen et al. 1998doi:10.1046/j.1365-2427.1998.00351.xMean growing season flux used
77Littoral zone of a boreal lake49.18Boreal lake shorelinePermanently, semi-permanently floodedstatic chamber, GCPhragmites australis, Typha latifolia61.0833325.50000Lake Vesijörvi, Southern Finland49.18g CH4 m-2 yr-1Kankaala et al. 2004doi:10.1023/B:BIOG.0000031030.77498.1fMean value of the seasonal (open-water period) CH4 fluxes (Table 2)
78Fresh marsh, Golf coast67.32Fresh marshPermanently, semi-permanently floodedstatic chamber, GCPanicum hemitomtonBarataria basin, Louisiana440.00mg CH4 m-2 d-1DeLaune et al. 1983doi:10.3402/tellusb.v35i1.14581Average daily emissions from Fig. 4 extrapolated to 153 days
79Tidal freshwater marsh, permanently submerged18.13Tidal freshwater marshPermanently, semi-permanently floodedstatic chamber, GCCeratophyllum, NajasWhite Oak River, North Carolina118.47mg CH4 m-2 d-1Kelley et al. 1995doi:10.4319/lo.1995.40.6.1112Fluxes calculated with weighted average from Table 2 and then upscaled to 153 days
80Tidal freshwater marsh, permanently submerged11.74Tidal freshwater marshPermanently, semi-permanently floodedstatic chamber, GCCeratophyllum, NajasWhite Oak River, North Carolina76.73mg CH4 m-2 d-1Kelley et al. 1995doi:10.4319/lo.1995.40.6.1112Fluxes calculated with weighted average from Table 2 and then upscaled to 153 days
81Tidal freshwater marsh, permanently submerged near bank13.77Tidal freshwater marshPermanently, semi-permanently floodedstatic chamber, GCCeratophyllum, NajasWhite Oak River, North Carolina90.02mg CH4 m-2 d-1Kelley et al. 1995doi:10.4319/lo.1995.40.6.1112Fluxes calculated with weighted average from Table 2 and then upscaled to 153 days
82Tidal freshwater marsh, semi-permanently flooded30.18Tidal freshwater marshPermanently, semi-permanently floodedstatic chamber, GCPeltandra virginica, Pontederia cordata, Ziania aquaticaSweet Hall marsh, Pamunkey River, Virginia72.00g CH4 m-2 yr-1Neubauer et al. 2000doi:10.3354/meps199013Annual flux reduced to 153 days
83Riparian marsh, permanently inundated18.86Riparian marshPermanently, semi-permanently floodednon-steady state chamber, GCPotamogeton spp.Schiermeier Olentangy River Wetland Research Park, Columbus, Ohio45.00g CH4 m-2 yr-1Aitor and Mitsch 2006doi:10.1016/j.ecoleng.2006.06.006Flux calculated from the annual CH4 flux (page 229) for the 153 days
84Coastal, estuarine brakish marsh, standing water, T126.01Freshwater-Brakish marshPermanently, semi-permanently floodedstatic chamber, GCCarex acuta, Carex aquatilis, Equisetum fluviatile64.8666725.35000Temmesjoki, Finland170.00mg CH4 m-2 d-1Liikanen et al. 2009osti.govFlux calculated from Table 3 with the mean daily rates for the 153 days
85Coastal, estuarine brakish marsh, standing, waterT234.12Freshwater-Brakish marshPermanently, semi-permanently floodedstatic chamber, GCCarex acuta, Carex aquatilis, Phragmites australis, Equisetum fluviatile64.8666725.35000Temmesjoki, Finland223.00mg CH4 m-2 d-1Liikanen et al. 2009osti.govFlux calculated from Table 3 with the mean daily rates for the 153 days
86Coastal, estuarine brakish marsh, standing water, T318.05Freshwater-Brakish marshPermanently, semi-permanently floodedstatic chamber, GCPhragmites australis, Carex aquatilis64.8666725.35000Temmesjoki, Finland118.00mg CH4 m-2 d-1Liikanen et al. 2009osti.govFlux calculated from Table 3 with the mean daily rates for the 153 days
87Coastal, estuarine brakish marsh, standing water, L136.57Freshwater-Brakish marshPermanently, semi-permanently floodedstatic chamber, GCCarex rostrata, Equisetum palustre, Eleocharis palustris, Carex canescens64.8666725.35000Lumijoki, Finland239.00mg CH4 m-2 d-1Liikanen et al. 2009osti.govFlux calculated from Table 3 with the mean daily rates for the 153 days
88Coastal, estuarine brakish marsh, standing water, L237.48Freshwater-Brakish marshPermanently, semi-permanently floodedstatic chamber, GCCarex nigra, Carex rostrata64.8666725.35000Lumijoki, Finland245.00mg CH4 m-2 d-1Liikanen et al. 2009osti.govFlux calculated from Table 3 with the mean daily rates for the 153 days
89Freshwater deltaic plain marsh26.11Freshwater tidal marshPermanently, semi-permanently floodedEddy covariance towersSagittaria lancifolia, Lersia orzoides, Typha domingensis29.85869-90.28689Mississippi Delta, Louisiana62.30g CH4 m-2 yr-1Holm et al. 2016doi:10.1007/s13157-016-0746-7Eddy covariance measurements, annual fluxes reduced to 153 days
90Brackish, deltaic plain marsh5.78Brakish tidal marshPermanently, semi-permanently floodedEddy covariance towersSpartina patens, Schoenoplectus americanus29.50133-90.44490Houma, Mississippi Delta, Louisiana13.80g CH4 m-2 yr-1Holm et al. 2016doi:10.1007/s13157-016-0746-7Eddy covariance measurements, annual fluxes reduced to 153 days
91Brackish deltaic marsh20.79Brakish tidal marshPermanently, semi-permanently floodedstatic chamber, GCSpartina patens29.50133-90.44490Houma, Mississippi Delta, Louisiana49.60g CH4 m-2 yr-1Krauss et al. 2016doi:10.1002/2015JG003224Chamber measurements (Table 3) reduced to 153 days
92Freshwater deltaic marsh38.52Freshwater tidal marshPermanently, semi-permanently floodedstatic chamber, GCSagittaria lancifolia, Lersia orzoides, Typha domingensis29.85869-90.28689Mississippi Delta, Louisiana91.90g CH4 m-2 yr-1Krauss et al. 2016doi:10.1002/2015JG003224Chamber measurements (Table 3) reduced to 153 days
93Open low-shrub fen, coastal0.49Coastal fenSeasonally floodedstatic chambers, GCB. pumila, Morella gale, Andromeda glaucophylla, Sphagnum warnstorfii51.46667-80.61667James Bay, Hudson Bay lowlands0.42g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
94Open graminoid fen, coastal1.69Coastal fenSeasonally floodedstatic chambers, GCS. caespitosus, C. limosa, C. chorhorhizza, S. scorpioides51.46667-80.61667James Bay, Hudson Bay lowlands1.44g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
95Tamarack coastal fen, hummock0.15Coastal fenSeasonally floodedstatic chambers, GCL. laricina, B. pumila, C. calyculata, S. fuscum51.46667-80.61667James Bay, Hudson Bay lowlands0.13g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
96Tamarack coastal fen, hollow0.53Coastal fenSeasonally floodedstatic chambers, GCM. gale, Equisetum fluviatile, S. warnstorfii51.46667-80.61667James Bay, Hudson Bay lowlands0.45g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
97Riparian marsh with macrophytes5.45Riparian marshSeasonally floodednon-steady state chamber, GCSchoenoplectus tabernaemontani, Leersia oryzoidesSchiermeier Olentangy River Wetland Research Park, Columbus, Ohio13.01g CH4 m-2 yr-1Aitor and Mitsch 2006doi:10.1016/j.ecoleng.2006.06.006Flux calculated from the annual CH4 flux (page 229) for the 153 days
98Riparian marsh without macrophytes5.67Riparian marshSeasonally floodednon-steady state chamber, GCLemna major, Ludwigia palustrisSchiermeier Olentangy River Wetland Research Park, Columbus, Ohio13.52g CH4 m-2 yr-1Aitor and Mitsch 2006doi:10.1016/j.ecoleng.2006.06.006Flux calculated from the annual CH4 flux (page 229) for the 153 days
99KEN21-T1-133.64Tundra fenSeasonally floodedstatic chamber, portable GHG analyzerCarex spp., Menyanthes trifoliata60.52367-151.19150Kenai River, Alaska9.16mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of seven replicate plots
100KEN21-T1-215.65TundraSeasonally floodedstatic chamber, portable GHG analyzerCarex spp.60.52589-151.19073Kenai River, Alaska4.26mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
101KEN21-T1-314.60TundraSeasonally floodedstatic chamber, portable GHG analyzerSphagnum spp., Carex spp.60.52810-151.18987Kenai River, Alaska3.98mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
102KEN21-T1-418.09TundraSeasonally floodedstatic chamber, portable GHG analyzerSphagnum spp.60.53028-151.18927Kenai River, Alaska4.93mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of seven replicate plots
103KEN21-T1-569.20TundraSeasonally floodedstatic chamber, portable GHG analyzerSphagnum spp.60.53242-151.18845Kenai River, Alaska18.84mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
104KEN21-T1-6212.79TundraSeasonally floodedstatic chamber, portable GHG analyzerCarex spp., Sphagnum spp.60.53460-151.18764Kenai River, Alaska57.95mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of four replicate plots
105KEN21-T1-723.49TundraSeasonally floodedstatic chamber, portable GHG analyzerSphagnum spp., Carex spp.60.53675-151.18690Kenai River, Alaska6.40mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Flux of one plot only because two replicates were discarded due to low r square
106KEN21-T2-1024.70TundraSeasonally floodedstatic chamber, portable GHG analyzerCalamagrostis spp., Grasses60.53427-151.19161Kenai River, Alaska6.73mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
107KEN21-T2-1110.11TundraSeasonally floodedstatic chamber, portable GHG analyzerSphagnum spp.60.53433-151.18957Kenai River, Alaska2.75mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of two replicate plots
108KEN21-T3-194.97TundraSeasonally floodedstatic chamber, portable GHG analyzerCalamagrostis spp., Empetrum nigrum60.53329-151.26689Kenai River, Alaska25.86mg CH4 m-2 h-1Fuchs et al. (2023)doi:10.1594/PANGAEA.960156Mean linear flux of three replicate plots
109Freshwater marsh4.41Freshwater marshSeasonally floodedstatic chambers, GCCladium jamaicense30.44267-87.80867Mobile Bay estuary, Alabama28.80mg CH4 m-2 d-1Wilson et al. 2015doi:10.1007/s10533-015-0085-4Mean daily flux calculated for 153 days
110Brackish marsh2.20Brakish marshSeasonally floodedstatic chambers, GCC. jamaicense30.58550-88.11750Mobile Bay estuary, Alabama14.40mg CH4 m-2 d-1Wilson et al. 2015doi:10.1007/s10533-015-0085-4Mean daily flux calculated for 153 days
111Tamarack low-shrub fen, hummock0.73Tamarack fenNon-tidal saturatedstatic chambers, GCL. laricina, Picea mariana, S. fuscum51.30000-80.63333James Bay, Hudson Bay lowlands0.62g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
112Tamarack low-shrub fen, hollow2.60Tamarack fenNon-tidal saturatedstatic chambers, GCL. laricina, Picea mariana, S. fuscum51.30000-80.63333James Bay, Hudson Bay lowlands2.21g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
113Treed low-shrub fen, hummock0.69Tamarack fenNon-tidal saturatedstatic chambers, GCAlnus rugosa, Larix laricina51.30000-80.63333James Bay, Hudson Bay lowlands0.59g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
114Treed low-shrub fen, hollow2.39Tamarack fenNon-tidal saturatedstatic chambers, GCAlnus rugosa, Larix laricina51.30000-80.63333James Bay, Hudson Bay lowlands2.03g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
115Treed low-shrub bog0.06Interior fenNon-tidal saturatedstatic chambers, GCP. mariana, L groenlandicum51.51667-80.45000James Bay, Hudson Bay lowlands0.05g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
116Open low-shrub fen0.97Interior fenNon-tidal saturatedstatic chambers, GCB. pumila, Salix pedicellaris, P. mariana51.51667-80.45000James Bay, Hudson Bay lowlands0.82g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
117Open graminoid fen1.05Interior fenNon-tidal saturatedstatic chambers, GCC. lasiocarpa, S. ceaspitosus, S. pedicellaris, M. gale51.51667-80.45000James Bay, Hudson Bay lowlands0.89g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
118Open graminoid fen1.97Interior fenNon-tidal saturatedstatic chambers, GCC. chordorhizza, C. livida, C. limosa, M. trifoliata51.51667-80.45000James Bay, Hudson Bay lowlands1.67g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
119Incipient palsa0.52Interior fenNon-tidal saturatedstatic chambers, GCDark brown peat surface51.51667-80.45000James Bay, Hudson Bay lowlands0.44g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
120Conifer feather-moss forest0.39BogNon-tidal saturatedstatic chambers, GCP. mariana, L. groenlandicum, Pleurozium schreberiKinosheo Lake, Hudson Bay lowlands0.33g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
121Open lichen-rich low-shrub bog, hummock0.54BogNon-tidal saturatedstatic chambers, GCC. calyculata, S. fuscum, Cladina styiaKinosheo Lake, Hudson Bay lowlands0.46g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
122Open lichen-rich low-shrub bog, hollow0.44BogNon-tidal saturatedstatic chambers, GCS. capillifolium, C. stellarisKinosheo Lake, Hudson Bay lowlands0.37g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
123Treed low-shrub lichen-rich bog0.95BogNon-tidal saturatedstatic chambers, GCP. mariana, L. groenlandicum, C. sellarisKinosheo Lake, Hudson Bay lowlands0.81g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
124Open lichen-rich, low-shrub bog, hummock1.24BogNon-tidal saturatedstatic chambers, GCC. calyculata, S.fuscumKinosheo Lake, Hudson Bay lowlands1.05g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
125Open lichen-rich, low-shrub bog, hollow2.35BogNon-tidal saturatedstatic chambers, GCS. capillifolium, C. stellarisKinosheo Lake, Hudson Bay lowlands2.00g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
126Open sphagnum bog4.85BogNon-tidal saturatedstatic chambers, GCS. capillifolium, S. tenellum, C. oligospermaKinosheo Lake, Hudson Bay lowlands4.12g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
127Open graminoid bog16.03BogNon-tidal saturatedstatic chambers, GCScheuchzeria palustris, C. oligosperma, S. capillifoliumKinosheo Lake, Hudson Bay lowlands13.62g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
128Open graminoid bog at pool edge8.39BogNon-tidal saturatedstatic chambers, GCC. limosa, Kalmia polifoliaKinosheo Lake, Hudson Bay lowlands7.13g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
129Wet meadow habitat30.91TundraNon-tidal saturatedstatic chambers, GCCarex aquatilis, Eriophorum angustifolium, Potentilla palustris, Calamagrostis canadensis, Polemonium acutiflorum, Equisetum spp.Bethel, YK-Delta, Alaska202.00mg CH4 m-2 d-1Bartlett et al. 1992doi:10.1029/91JD00610Values from Table 1 extrapolated to 153 days
130Wet meadow habitat33.68TundraNon-tidal saturatedstatic chambers, GCCarex aquatilis, Eriophorum angustifolium, Potentilla palustris, Calamagrostis canadensis, Polemonium acutiflorum, Equisetum spp.Bethel, YK-Delta, Alaska220.10mg CH4 m-2 d-1Bartlett et al. 1992doi:10.1029/91JD00610Values from Table 1 extrapolated to 153 days
131Wet meadow habitat11.86TundraNon-tidal saturatedstatic chambers, GCCarex aquatilis, Eriophorum angustifolium, Potentilla palustris, Calamagrostis canadensis, Polemonium acutiflorum, Equisetum spp.Bethel, YK-Delta, Alaska77.50mg CH4 m-2 d-1Bartlett et al. 1992doi:10.1029/91JD00610Values from Table 2 extrapolated to 153 days
132Ombrogenous bog12.75BogNon-tidal saturatedclosed chamber, GCEmpetrum nigrum, Eriophorum vaginatum, Betula nana, Scheuchzeria palustris, C. lasiocarpa, Rubus chamaemorus, Andromeda polifolia61.7833324.30000Lakkasuo peatland, Orivesi, Finland12.75g CH4 m-2 yr-1Nykänen et al. 1998doi:10.1029/97GB02732Mean values for seasonal fluxes from Table 4
133Ombrogenous bog6.09BogNon-tidal saturatedclosed chamber, GCEmpetrum nigrum, Rubus chamaemorus, Eriophorum vaginatum, S. russowii, Vaccinium uliginosum, Andromeda polifolia61.7833324.30000Lakkasuo peatland, Orivesi, Finland6.09g CH4 m-2 yr-1Nykänen et al. 1998doi:10.1029/97GB02732Mean values for seasonal fluxes from Table 4
134Ombrogenous bog5.89BogNon-tidal saturatedclosed chamber, GCEmpetrum nigrum, Rubus chamaemorus, Ledum palustre, Calamagrostis canescens61.7833324.30000Lakkasuo peatland, Orivesi, Finland5.89g CH4 m-2 yr-1Nykänen et al. 1998doi:10.1029/97GB02732Mean values for seasonal fluxes from Table 4
135Minerogenous fen27.07FenNon-tidal saturatedclosed chamber, GCBetula nana, C. lasiocarpa, Dryopteris carthusiana, Agrostis capillaris, Eriophorum vaginatum, Trientalis europaea, Scheuchzeria palustrisVaccinium myrtillus, Vaccinium vitis-idaea, Calamagrostis canescens62.7666729.83333Mekrijärvi peatland, Ilomantsi, Finland27.07g CH4 m-2 yr-1Nykänen et al. 1998doi:10.1029/97GB02732Mean values for seasonal fluxes from Table 4
136Minerogenous fen10.91FenNon-tidal saturatedclosed chamber, GCCarex dioica, Trichophorum cespitosum, Betula nana, Picea abies, Empetrum nigrum62.7666729.83333Mekrijärvi peatland, Ilomantsi, Finland10.91g CH4 m-2 yr-1Nykänen et al. 1998doi:10.1029/97GB02732Mean values for seasonal fluxes from Table 4
137Boreal Taiga Bog2.18BogNon-tidal saturatedstatic chambers, GCSphagnum fuscum bog62.8166730.88333Ahvensalo, Finland5.20g CH4 m-2 yr-1Alm et al. 1999doi:10.1007/BF00992977Mean annual values basen on Treat et al. (2018) data base reduced to growing season
138Boreal Taiga Bog2.85BogNon-tidal saturatedstatic chambers, GCSphagnum fuscum pine bog62.7833330.95000Ahvensalo, Finland6.80g CH4 m-2 yr-1Alm et al. 1999doi:10.1007/BF00992977Mean annual values basen on Treat et al. (2018) data base reduced to growing season
139Boreal Taiga Bog2.85BogNon-tidal saturatedstatic chambers, GCcottongrass pine bog with S. fuscum hummocks61.8000024.31667Ahvensalo, Finland6.80g CH4 m-2 yr-1Alm et al. 1999doi:10.1007/BF00992977Mean annual values basen on Treat et al. (2018) data base reduced to growing season
140Boreal Taiga Fen20.09FenNon-tidal saturatedstatic chambers, GCCarex rostrata lagg fen62.7833330.93333Salmisuo, Finland47.92g CH4 m-2 yr-1Alm et al. 1999doi:10.1007/BF00992977Mean annual values basen on Treat et al. (2018) data base reduced to growing season
141Boreal Taiga Bog2.18BogNon-tidal saturatedstatic chambers, GCS. fuscum, sedge, herbs, low shrubs, hummocks with larger shrubs62.8166730.88333Salmisuo, Finland5.20g CH4 m-2 yr-1Alm et al. 1999doi:10.1007/BF00992977Mean annual values basen on Treat et al. (2018) data base reduced to growing season
142Boreal Taiga Fen13.46FenNon-tidal saturatedstatic chambers, GCS. papillosum pine fine, Carex lag fen, E. vaginatum with S. fuscum62.7833330.93333Salmisuo, Finland32.10g CH4 m-2 yr-1Alm et al. 1999doi:10.1007/BF00992977Mean annual values basen on Treat et al. (2018) data base reduced to growing season
143Fen15.11FenNon-tidal saturatedAutochamberEriophorum spp.68.3500019.05000Stordalen, Sweden36.04g CH4 m-2 yr-1Backstrand et al. 2010doi:10.5194/bg-7-95-2010Mean annual values basen on Treat et al. (2018) data base reduced to growing season
144Fen2.60FenNon-tidal saturatedAutochamberSphagnum, Carex spp.68.3333319.05000Stordalen, Sweden6.20g CH4 m-2 yr-1Backstrand et al. 2010doi:10.5194/bg-7-95-2010Mean annual values basen on Treat et al. (2018) data base reduced to growing season
145Bog22.27BogNon-tidal saturatedstatic chambers, GCShrubs (andromeda, chamaedaphne), sedge, Sphagnum, Eriophorum spp.42.75000-76.16667Mc Lean Bog, New York53.13g CH4 m-2 yr-1Basiliko et al. 2003doi:10.1080/713851165Mean annual values basen on Treat et al. (2018) data base reduced to growing season
146Bog1.47BogNon-tidal saturatedstatic chambers, GCforested with black spruce; Sphagnum spp., Ledum, Chamaedaphne, Eriophorum, Sarracenia, Smilecena trifoliata47.53333-93.93333Marcell, Minnesota, USA3.50g CH4 m-2 yr-1Dise 1993doi:10.1029/92GB02299Mean annual values basen on Treat et al. (2018) data base reduced to growing season
147Bog18.07BogNon-tidal saturatedstatic chambers, GCforested with black spruce; Sphagnum spp., Ledum, Chamaedaphne, Eriophorum, Sarracenia, Smilecena trifoliata47.53333-93.93333Marcell, Minnesota, USA43.10g CH4 m-2 yr-1Dise 1993doi:10.1029/92GB02299Mean annual values basen on Treat et al. (2018) data base reduced to growing season
148Bog5.78BogNon-tidal saturatedstatic chambers, GCforested with black spruce; Sphagnum spp., Ledum, Chamaedaphne, Eriophorum, Sarracenia, Smilecena trifoliata47.53333-93.93333Marcell, Minnesota, USA13.80g CH4 m-2 yr-1Dise 1993doi:10.1029/92GB02299Mean annual values basen on Treat et al. (2018) data base reduced to growing season
149poor fen27.54poor fenNon-tidal saturatedstatic chambers, GCAlnus, Sphagnum spp., Equisetum, Carex, Sceuchezeria, Vaccinium oxycocu47.53333-93.93333Marcell, Minnesota, USA65.70g CH4 m-2 yr-1Dise 1993doi:10.1029/92GB02299Mean annual values basen on Treat et al. (2018) data base reduced to growing season
150Fen5.49FenNon-tidal saturatedstatic chambers, GCCarex, Pleurozium, other mosses47.675009.83333Allgäu, Southwest Germany13.10g CH4 m-2 yr-1Fiedler and Sommer, 2000doi:10.1029/1999GB001255Mean annual values basen on Treat et al. (2018) data base reduced to growing season
151Fen4.90FenNon-tidal saturatedstatic chambers, GCCarex, Pleurozium, other mosses47.675009.83333Allgäu, Southwest Germany11.70g CH4 m-2 yr-1Fiedler and Sommer, 2000doi:10.1029/1999GB001255Mean annual values basen on Treat et al. (2018) data base reduced to growing season
152Bog Plateau-0.02BogNon-tidal saturatedstatic chambers, GCLedum, Betula nana, Polytricum, Sphagnum67.4983386.42389Grawijka Cree, Russia-0.04g CH4 m-2 yr-1Flessa et al. 2008doi:10.1111/j.1365-2486.2008.01633.xMean annual values basen on Treat et al. (2018) data base reduced to growing season
153Rich Fen1.83Rich FenNon-tidal saturatedstatic chambers, GCBetula nana, Cladonia spp., Andromeda polifolia, Aulacomnium palustre, Eriophorum vaginatum69.1833327.30000Lake Kipojärvi catchment, Northern Finland4.37g CH4 m-2 yr-1Juutinen et al. 2013doi:10.1002/jgrg.20028Mean annual values basen on Treat et al. (2018) data base reduced to growing season
154Rich Fen4.80Rich FenNon-tidal saturatedstatic chambers, GCS. warnstorfii, Menyanthes trifoliata, B.nana, Carex chordorhiza, A. polifolia69.1833327.30000Lake Kipojärvi catchment, Northern Finland11.46g CH4 m-2 yr-1Juutinen et al. 2013doi:10.1002/jgrg.20028Mean annual values basen on Treat et al. (2018) data base reduced to growing season
155Rich Fen3.72Rich FenNon-tidal saturatedstatic chambers, GCScorpidium scorpiodes, S. revolvens, Carex rostrata, C. limosa, E. angustifolium69.1833327.30000Lake Kipojärvi catchment, Northern Finland8.88g CH4 m-2 yr-1Juutinen et al. 2013doi:10.1002/jgrg.20028Mean annual values basen on Treat et al. (2018) data base reduced to growing season
156Rich Fen5.17Rich FenNon-tidal saturatedstatic chambers, GCS. scorpiodes, C. livida, M. trifoliata, C. limosa, C. lasiocarpa69.1833327.30000Lake Kipojärvi catchment, Northern Finland12.34g CH4 m-2 yr-1Juutinen et al. 2013doi:10.1002/jgrg.20028Mean annual values basen on Treat et al. (2018) data base reduced to growing season
157Rich Fen9.03Rich FenNon-tidal saturatedstatic chambers, GCCampylium stellatum, Warnstorfia exannulata, C. lasiocarpa, C. livida, C. rostrata69.1833327.30000Lake Kipojärvi catchment, Northern Finland21.54g CH4 m-2 yr-1Juutinen et al. 2013doi:10.1002/jgrg.20028Mean annual values basen on Treat et al. (2018) data base reduced to growing season
158Rich Fen9.72Rich FenNon-tidal saturatedstatic chambers, GCC. chordohiza, C. lasioscarpa, M. trifoliata, W. exannulata, Palludella squarrosa69.1833327.30000Lake Kipojärvi catchment, Northern Finland23.19g CH4 m-2 yr-1Juutinen et al. 2013doi:10.1002/jgrg.20028Mean annual values basen on Treat et al. (2018) data base reduced to growing season
159Bog0.46BogNon-tidal saturatedclosed chamber, GCSphagnum52.99614-3.78195Migneint, UK1.10mg CH4 m-2 d-1Kang and Freeman 2002doi:10.1023/A:1021324326859Mean annual values basen on Treat et al. (2018) data base reduced to growing season
160Bog1.38Blanket BogNon-tidal saturatedclosed chamber, GCMosses, including Sphagnum, Calluna vulgaris, Erica, Molina51.91667-9.91667Glenkar, Ireland3.30mg CH4 m-2 d-1Laine et al. 2007doi:10.1007/s11104-007-9374-6Mean annual values basen on Treat et al. (2018) data base reduced to growing season
161Bog4.12Blanket BogNon-tidal saturatedclosed chamber, GCSphganum spp., Menyanthes, Schoenis, Carex limosa, Eriophorum angustifolium51.91667-9.91667Glenkar, Ireland9.83mg CH4 m-2 d-1Laine et al. 2007doi:10.1007/s11104-007-9374-6Mean annual values basen on Treat et al. (2018) data base reduced to growing season
162Bog2.43Blanket BogNon-tidal saturatedclosed chamber, GCSchoenus nigricans, Molinia, Erica, Rhynchospora alba51.91667-9.91667Glenkar, Ireland5.80mg CH4 m-2 d-1Laine et al. 2007doi:10.1007/s11104-007-9374-6Mean annual values basen on Treat et al. (2018) data base reduced to growing season
163Bog2.56Blanket BogNon-tidal saturatedclosed chamber, GCRhynchospora alba51.91667-9.91667Glenkar, Ireland6.10mg CH4 m-2 d-1Laine et al. 2007doi:10.1007/s11104-007-9374-6Mean annual values basen on Treat et al. (2018) data base reduced to growing season
164Bog14.89Peat bogNon-tidal saturatedclosed chamber, GCSphagnum spp., Rhyncospora alba, Vaccinium ocycocusKings Lake Bog, Washington35.53mg CH4 m-2 d-1Lansdown et al. 1992doi:10.1016/0016-7037(92)90393-WMean annual values basen on Treat et al. (2018) data base reduced to growing season
165Fen0.73FenNon-tidal saturatedclosed chamber, GCCarex spp., Sphagnum, Potentilla palustris, Menyanthes64.7500024.70000Gulf of Bothnia, Finland1.73g CH4 m-2 season-1Leppala et al. 2011doi:10.1007/s00442-010-1754-6Mean annual values basen on Treat et al. (2018) data base reduced to growing season
166Fen10.56FenNon-tidal saturatedclosed chamber, GCCarex spp., Sphagnum, Potentilla palustris, Menyanthes64.7500024.70000Gulf of Bothnia, Finland25.20g CH4 m-2 season-1Leppala et al. 2011doi:10.1007/s00442-010-1754-6Mean annual values basen on Treat et al. (2018) data base reduced to growing season
167Fen5.87FenNon-tidal saturatedclosed chamber, GCCarex spp., Sphagnum, Potentilla palustris, Menyanthes64.7500024.70000Gulf of Bothnia, Finland14.00g CH4 m-2 season-1Leppala et al. 2011doi:10.1007/s00442-010-1754-6Mean annual values basen on Treat et al. (2018) data base reduced to growing season
168Fen13.19FenNon-tidal saturatedclosed chamber, GCCarex spp., Sphagnum, Potentilla palustris, Menyanthes64.7500024.70000Gulf of Bothnia, Finland31.47g CH4 m-2 season-1Leppala et al. 2011doi:10.1007/s00442-010-1754-6Mean annual values basen on Treat et al. (2018) data base reduced to growing season
169Fen-Bog10.06FenNon-tidal saturatedclosed chamber, GCdwarf shrubs (Rubus chamaemorus, Empetrum nigrum, Vaccinium oxycoccos) together with abundant Eriophorum vaginatum. Scheuchzeria palustris and Carex limosa dominate the wetter surfaces (fen stage)64.7500024.70000Gulf of Bothnia, Finland24.00g CH4 m-2 season-1Leppala et al. 2011doi:10.1007/s00442-010-1754-6Mean annual values basen on Treat et al. (2018) data base reduced to growing season
170Fen-Bog10.34FenNon-tidal saturatedclosed chamber, GCdwarf shrubs (Rubus chamaemorus, Empetrum nigrum, Vaccinium oxycoccos) together with abundant Eriophorum vaginatum. Scheuchzeria palustris and Carex limosa dominate the wetter surfaces (fen stage)64.7500024.70000Gulf of Bothnia, Finland24.67g CH4 m-2 season-1Leppala et al. 2011doi:10.1007/s00442-010-1754-6Mean annual values basen on Treat et al. (2018) data base reduced to growing season
171Bog2.39BogNon-tidal saturatedclosed chamber, GC54.65000-2.45000Moor House, UK5.70nmol m-2 s-1Levy et al. 2012doi:10.1111/j.1365-2486.2011.02616.xMean annual values basen on Treat et al. (2018) data base reduced to growing season
172Fen-0.08FenNon-tidal saturatedclosed chamber, GC51.16000-2.81000Tadham, UK-0.20nmol m-2 s-1Levy et al. 2012doi:10.1111/j.1365-2486.2011.02616.xMean annual values basen on Treat et al. (2018) data base reduced to growing season
173Peat Plateau0.04BogNon-tidal saturatedstatic chambers, GCLedum decumbens, Rubus chamaemorus, mosses (e.g. Dicranum), lichens (e.g. Cladonia)67.0558362.94583Seida, Russia0.10g CH4 m-2 yr-1Maruschak et al. 2016doi:10.5194/bg-13-597-2016Mean annual values basen on Treat et al. (2018) data base reduced to growing season
174Peat Plateau0.13BogNon-tidal saturatedstatic chambers, GCRubus chamaemorus, Vaccinium uliginosum, Sphagnum spp.67.0558362.94583Seida, Russia0.32g CH4 m-2 yr-1Maruschak et al. 2016doi:10.5194/bg-13-597-2016Mean annual values basen on Treat et al. (2018) data base reduced to growing season
175Peat Plateau0.28BogNon-tidal saturatedstatic chambers, GCunvegetated67.0558362.94583Seida, Russia0.66g CH4 m-2 yr-1Maruschak et al. 2016doi:10.5194/bg-13-597-2016Mean annual values basen on Treat et al. (2018) data base reduced to growing season
176Fen22.38FenNon-tidal saturatedstatic chambers, GCSalix lapponum, Carex aquatilis Wahl., Betula nana L., Eriophorum russeolum Fries67.0558362.94583Seida, Russia53.40g CH4 m-2 yr-1Maruschak et al. 2016doi:10.5194/bg-13-597-2016Mean annual values basen on Treat et al. (2018) data base reduced to growing season
177Fen15.51FenNon-tidal saturatedstatic chambers, GCCarex aquatilis Wahl., Sphagnum sp.67.0558362.94583Seida, Russia37.00g CH4 m-2 yr-1Maruschak et al. 2016doi:10.5194/bg-13-597-2016Mean annual values basen on Treat et al. (2018) data base reduced to growing season
178Fen4.53FenNon-tidal saturatedstatic chambers, GCEriophorum russeolum Fries, Sphagnum sp.67.0558362.94583Seida, Russia10.80g CH4 m-2 yr-1Maruschak et al. 2016doi:10.5194/bg-13-597-2016Mean annual values basen on Treat et al. (2018) data base reduced to growing season
179PermafrostFen4.05FenNon-tidal saturatedautomatic chamber, spectroscopy laserEriophorum, Carex, Dupontia, Tomenthypnum, Scorpidium, Aulacomnium, Drepanocladus74.50000-21.00000Zackenberg, Greenland9.67mg CH4 m-2 h-1Mastepanov et al. 2008doi:10.1038/nature07464Mean annual values basen on Treat et al. (2018) data base reduced to growing season
180PermafrostFen0.80FenNon-tidal saturatedautomatic chambers, nondestructive CH4 analyzerEriophorum, Carex, Dupontia, Tomenthypnum, Scorpidium, Aulacomnium, Drepanocladus74.50000-21.00000Zackenberg, Greenland1.92mg CH4 m-2 h-1Mastepanov et al. 2013doi:10.5194/bg-10-5139-2013Mean annual values basen on Treat et al. (2018) data base reduced to growing season
181PermafrostFen1.08FenNon-tidal saturatedautomatic chambers, nondestructive CH4 analyzerEriophorum, Carex, Dupontia, Tomenthypnum, Scorpidium, Aulacomnium, Drepanocladus74.50000-21.00000Zackenberg, Greenland2.57mg CH4 m-2 h-1Mastepanov et al. 2013doi:10.5194/bg-10-5139-2013Mean annual values basen on Treat et al. (2018) data base reduced to growing season
182PermafrostFen1.64FenNon-tidal saturatedautomatic chambers, nondestructive CH4 analyzerEriophorum, Carex, Dupontia, Tomenthypnum, Scorpidium, Aulacomnium, Drepanocladus74.50000-21.00000Zackenberg, Greenland3.91mg CH4 m-2 h-1Mastepanov et al. 2013doi:10.5194/bg-10-5139-2013Mean annual values basen on Treat et al. (2018) data base reduced to growing season
183PermafrostFen4.39FenNon-tidal saturatedautomatic chambers, nondestructive CH4 analyzerEriophorum, Carex, Dupontia, Tomenthypnum, Scorpidium, Aulacomnium, Drepanocladus74.50000-21.00000Zackenberg, Greenland10.47mg CH4 m-2 h-1Mastepanov et al. 2013doi:10.5194/bg-10-5139-2013Mean annual values basen on Treat et al. (2018) data base reduced to growing season
184PermafrostFen1.79FenNon-tidal saturatedautomatic chambers, nondestructive CH4 analyzerEriophorum, Carex, Dupontia, Tomenthypnum, Scorpidium, Aulacomnium, Drepanocladus74.50000-21.00000Zackenberg, Greenland4.28mg CH4 m-2 h-1Mastepanov et al. 2013doi:10.5194/bg-10-5139-2013Mean annual values basen on Treat et al. (2018) data base reduced to growing season
185herb-rich flark Fen8.33FenNon-tidal saturatedclosed chamber, GCMolina, Carex, Trichosperma, S. papillosum, M. trifoliata, Rynchospera alba62.7500031.05000Ilomantsi, Finland19.87kg CH4 ha-1 yr-1Nykanen et al. 1995doi:10.2307/2845930Mean annual values basen on Treat et al. (2018) data base reduced to growing season
186herb-rich flark Fen14.48FenNon-tidal saturatedclosed chamber, GCMolina, Carex, Trichosperma, S. papillosum, M. trifoliata, Rynchospera alba62.7500031.05000Ilomantsi, Finland34.53kg CH4 ha-1 yr-1Nykanen et al. 1995doi:10.2307/2845930Mean annual values basen on Treat et al. (2018) data base reduced to growing season
187CollapseScarBog5.20BogNon-tidal saturatedclosed chamber, GCS. lindbergii, S. riparium, Eriophorum, Vaccinium, C. limosa69.8166727.16667Vaisjeäggi, Finland12.40g CH4 m-2 yr-1Nykanen et al. 2003doi:10.1029/2002GB001861Mean annual values basen on Treat et al. (2018) data base reduced to growing season
188CollapseScarBog8.27BogNon-tidal saturatedclosed chamber, GCS. lindbergii, S. riparium, Eriophorum, Vaccinium, C. limosa69.8166727.16667Vaisjeäggi, Finland19.73g CH4 m-2 yr-1Nykanen et al. 2003doi:10.1029/2002GB001861Mean annual values basen on Treat et al. (2018) data base reduced to growing season
189CollapseScarBog5.25BogNon-tidal saturatedclosed chamber, GCS. lindbergii, S. riparium, Eriophorum, Vaccinium, C. limosa69.8166727.16667Vaisjeäggi, Finland12.53g CH4 m-2 yr-1Nykanen et al. 2003doi:10.1029/2002GB001861Mean annual values basen on Treat et al. (2018) data base reduced to growing season
190CollapseScarBog11.07BogNon-tidal saturatedclosed chamber, GCS. lindbergii, S. riparium, Eriophorum, Vaccinium, C. limosa69.8166727.16667Vaisjeäggi, Finland26.40g CH4 m-2 yr-1Nykanen et al. 2003doi:10.1029/2002GB001861Mean annual values basen on Treat et al. (2018) data base reduced to growing season
191CollapseScarBog8.33BogNon-tidal saturatedclosed chamber, GCS. riparium, E. angusitfolium69.8166727.16667Vaisjeäggi, Finland19.87g CH4 m-2 yr-1Nykanen et al. 2003doi:10.1029/2002GB001861Mean annual values basen on Treat et al. (2018) data base reduced to growing season
192Palsa0.56PalsaNon-tidal saturatedclosed chamber, GCVaccinium, Betula nana, Empetrum nigrum, Rubus, Ledum, Dicranum, Andromeda, Cladina, Cladonia69.8166727.16667Vaisjeäggi, Finland1.33g CH4 m-2 yr-1Nykanen et al. 2003doi:10.1029/2002GB001861Mean annual values basen on Treat et al. (2018) data base reduced to growing season
193CollapseScarBog13.80BogNon-tidal saturatedclosed chamber, GCS. riparium, E. angusitfolium69.8166727.16667Vaisjeäggi, Finland32.93g CH4 m-2 yr-1Nykanen et al. 2003doi:10.1029/2002GB001861Mean annual values basen on Treat et al. (2018) data base reduced to growing season
194Palsa0.61PalsaNon-tidal saturatedclosed chamber, GCVaccinium, Betula nana, Empetrum nigrum, Rubus, Ledum, Dicranum, Andromeda, Cladina, Cladonia69.8166727.16667Vaisjeäggi, Finland1.47g CH4 m-2 yr-1Nykanen et al. 2003doi:10.1029/2002GB001861Mean annual values basen on Treat et al. (2018) data base reduced to growing season
195Fen7.50FenNon-tidal saturatedStatic chamber, GCdwarf pine, Ledum, Andromeda, Chamadaphne, Sphagnum fuscum, E. vaginatum, sedges, hollows, Equisetum and fen type veg57.0000082.00000Bakchar Bog, Tomsk, Russia17.90g CH4 m-2 yr-1Panikov & Dedysh 2000doi:10.1029/1999GB900097Mean values based on Treat et al. (2018) who used 1994 summer values and 90 day grwoing season
196Bog1.59BogNon-tidal saturatedclosed chamber, GCtreed island with Sphagnum, shrubs; also sedges and vascular53.63333-77.71667La Grand Riviere, James Bay, Canada3.80mg CH4 m-2 d-1Pelletier et al. 2007doi:10.1029/2006JG000216Mean annual values basen on Treat et al. (2018) data base reduced to growing season
197Bog0.25BogNon-tidal saturatedstatic chambers, GCPicea, Pleurozium, Sphagnum, Equisetum53.76667-104.60000Saskatchewan, Canada0.61nmol CH4 m-2 yr-1Rask et al. 2002doi:10.1016/S0038-0717(01)00197-3Mean annual values basen on Treat et al. (2018) data base reduced to growing season
198RichFen15.09minerotrophic fenNon-tidal saturatedstatic chambers, GCCarex, mosses, Betula, Salix, Larix53.76667-104.60000Saskatchewan, Canada36.00nmol CH4 m-2 yr-1Rask et al. 2002doi:10.1016/S0038-0717(01)00197-3Mean annual values basen on Treat et al. (2018) data base reduced to growing season
199RichFen4.12minerotrophic fenNon-tidal saturatedstatic chambers, GCCarex, mosses, Betula, Salix, Larix53.76667-104.60000Saskatchewan, Canada9.84nmol CH4 m-2 yr-1Rask et al. 2002doi:10.1016/S0038-0717(01)00197-3Mean annual values basen on Treat et al. (2018) data base reduced to growing season
200RichFen8.12minerotrophic fenNon-tidal saturatedstatic chambers, GCPicea, Pleurozium, Sphagnum, Equisetum53.76667-104.60000Saskatchewan, Canada19.36nmol CH4 m-2 yr-1Rask et al. 2002doi:10.1016/S0038-0717(01)00197-3Mean annual values basen on Treat et al. (2018) data base reduced to growing season
201RichFen13.13minerotrophic fenNon-tidal saturatedstatic chambers, GCCarex, mosses, Betula, Salix, Larix53.76667-104.60000Saskatchewan, Canada31.31nmol CH4 m-2 yr-1Rask et al. 2002doi:10.1016/S0038-0717(01)00197-3Mean annual values basen on Treat et al. (2018) data base reduced to growing season
202Bog0.66ombotrophic bogNon-tidal saturatedstatic chambers, GCSphagnum, Polytrichum, C. caluculata42.45000-84.01667Big Cassandra Bog, Michigan, US1.57mg CH4 m-2 d-1Shannon & White 1994doi:10.1007/BF00002570Mean annual values basen on Treat et al. (2018) data base reduced to growing season
203Bog1.74ombotrophic bogNon-tidal saturatedstatic chambers, GCSphagnum, Polytrichum, C. caluculata42.45000-84.01667Big Cassandra Bog, Michigan, US4.16mg CH4 m-2 d-1Shannon & White 1994doi:10.1007/BF00002570Mean annual values basen on Treat et al. (2018) data base reduced to growing season
204Bog10.47ombotrophic bogNon-tidal saturatedstatic chambers, GCSphagnum, Polytrichum, C. caluculata42.45000-84.01667Big Cassandra Bog, Michigan, US24.97mg CH4 m-2 d-1Shannon & White 1994doi:10.1007/BF00002570Mean annual values basen on Treat et al. (2018) data base reduced to growing season
205Bog1.76ombotrophic bogNon-tidal saturatedstatic chambers, GCCarex oligosperma, Sphagnum spp.42.45000-84.01667Big Cassandra Bog, Michigan, US4.20mg CH4 m-2 d-1Shannon & White 1994doi:10.1007/BF00002570Mean annual values basen on Treat et al. (2018) data base reduced to growing season
206Bog4.51ombotrophic bogNon-tidal saturatedstatic chambers, GCCarex oligosperma, Sphagnum spp.42.45000-84.01667Big Cassandra Bog, Michigan, US10.77mg CH4 m-2 d-1Shannon & White 1994doi:10.1007/BF00002570Mean annual values basen on Treat et al. (2018) data base reduced to growing season
207Bog19.89ombotrophic bogNon-tidal saturatedstatic chambers, GCCarex oligosperma, Sphagnum spp.42.45000-84.01667Big Cassandra Bog, Michigan, US47.45mg CH4 m-2 d-1Shannon & White 1994doi:10.1007/BF00002570Mean annual values basen on Treat et al. (2018) data base reduced to growing season
208Bog28.00ombotrophic bogNon-tidal saturatedstatic chambers, GCSphganum, Scheuchzeria palustris42.45000-84.01667Big Cassandra Bog, Michigan, US66.80mg CH4 m-2 d-1Shannon & White 1994doi:10.1007/BF00002570Mean annual values basen on Treat et al. (2018) data base reduced to growing season
209Bog28.61ombotrophic bogNon-tidal saturatedstatic chambers, GCSphganum, Scheuchzeria palustris42.45000-84.01667Big Cassandra Bog, Michigan, US68.25mg CH4 m-2 d-1Shannon & White 1994doi:10.1007/BF00002570Mean annual values basen on Treat et al. (2018) data base reduced to growing season
210Bog31.98ombotrophic bogNon-tidal saturatedstatic chambers, GCSphganum, Scheuchzeria palustris42.45000-84.01667Big Cassandra Bog, Michigan, US76.28mg CH4 m-2 d-1Shannon & White 1994doi:10.1007/BF00002570Mean annual values basen on Treat et al. (2018) data base reduced to growing season
211Blanket Bog0.13ombotrophic bogNon-tidal saturatedstatic chambers, GCCalluna vulgaris, E. vaginatum, Hypnum, Pleurozium, Sphagnum54.65000-2.45000Moor House, UK0.30mg CH4 m-2 h-1Ward et al. 2013doi:10.1111/ele.12167Mean annual values basen on Treat et al. (2018) data base reduced to growing season
212PermafrostFen3.37permafrost bogNon-tidal saturatedstatic chambers, GCEriophorum tussock64.86667-146.15000Smith Lake, Alaska8.05g CH4 m-2 yr-1Whalen &Reeburgh 1988doi:10.1029/GB002i004p00399Mean annual values basen on Treat et al. (2018) data base reduced to growing season
213PermafrostFen4.77permafrost bogNon-tidal saturatedstatic chambers, GCEriophorum tussock64.86667-146.15000Smith Lake, Alaska11.38g CH4 m-2 yr-1Whalen &Reeburgh 1988doi:10.1029/GB002i004p00399Mean annual values basen on Treat et al. (2018) data base reduced to growing season
214PermafrostFen3.40permafrost bogNon-tidal saturatedstatic chambers, GCEriophorum tussock64.86667-146.15000Smith Lake, Alaska8.11g CH4 m-2 yr-1Whalen &Reeburgh 1988doi:10.1029/GB002i004p00399Mean annual values basen on Treat et al. (2018) data base reduced to growing season
215PermafrostFen5.72permafrost bogNon-tidal saturatedstatic chambers, GCEriophorum tussock64.86667-146.15000Smith Lake, Alaska13.64g CH4 m-2 yr-1Whalen &Reeburgh 1988doi:10.1029/GB002i004p00399Mean annual values basen on Treat et al. (2018) data base reduced to growing season
216PermafrostFen0.20permafrost bogNon-tidal saturatedstatic chambers, GCMoss (Aulacomnium etc)64.86667-146.15000Smith Lake, Alaska0.47g CH4 m-2 yr-1Whalen &Reeburgh 1988doi:10.1029/GB002i004p00399Mean annual values basen on Treat et al. (2018) data base reduced to growing season
217PermafrostFen1.84permafrost bogNon-tidal saturatedstatic chambers, GCMoss (Aulacomnium etc)64.86667-146.15000Smith Lake, Alaska4.38g CH4 m-2 yr-1Whalen &Reeburgh 1988doi:10.1029/GB002i004p00399Mean annual values basen on Treat et al. (2018) data base reduced to growing season
218PermafrostFen2.00permafrost bogNon-tidal saturatedstatic chambers, GCMoss (Aulacomnium etc)64.86667-146.15000Smith Lake, Alaska4.78g CH4 m-2 yr-1Whalen &Reeburgh 1988doi:10.1029/GB002i004p00399Mean annual values basen on Treat et al. (2018) data base reduced to growing season
219PermafrostFen0.23permafrost bogNon-tidal saturatedstatic chambers, GCMoss (Aulacomnium etc)64.86667-146.15000Smith Lake, Alaska0.54g CH4 m-2 yr-1Whalen &Reeburgh 1988doi:10.1029/GB002i004p00399Mean annual values basen on Treat et al. (2018) data base reduced to growing season
220Coastal meadow marsh, pool6.43Coastal fenWater bodystatic chambers, GCM. Trifoliata, C. Palacea51.48333-80.46667James Bay, Hudson Bay lowlands5.46g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
221Pool fen, coastal1.14Coastal fenWater bodystatic chambers, GCM. Trifoliata, C. Limosa, C. Chordorhizza, S. Scorpioides51.46667-80.61667James Bay, Hudson Bay lowlands0.97g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
222Pool fen, coastal2.45Coastal fenWater bodystatic chambers, GCM. Trifoliata, C. Limosa, C. Chordorhizza, S. Scorpioides51.46667-80.61667James Bay, Hudson Bay lowlands2.08g CH4 m-2 per seasonMoore et al. 1994doi:10.1029/93JD02457Seasonal flux (130 days) extrapolated to 153 days
223Tidal salt marsh, pool0.17Salt marshWater bodystatic chambers, GCNone reported45.08333-66.43333Dipper Harbour, Bay of Fundy1.13mg CH4 m-2 d-1Magenheimer et al. 1996doi:10.2307/1352658Average daily fluxes from Table 2 used to extrapolate to 153 days
224Open water, salt0.55Salt marshWater bodystatic chambers, GCNone reportedBarataria Basin, Louisiana3.60mg CH4 m-2 d-1DeLaune et al. 1983doi:10.3402/tellusb.v35i1.14581Average daily flux from Table 2 extrapolated to 153 days
225Open water, brackish1.99Salt marshWater bodystatic chambers, GCNone reportedBarataria Basin, Louisiana13.00mg CH4 m-2 d-1DeLaune et al. 1983doi:10.3402/tellusb.v35i1.14581Average daily flux from Table 2 extrapolated to 153 days
226Open water, fresh5.66Salt marshWater bodystatic chambers, GCNone reportedBarataria Basin, Louisiana37.00mg CH4 m-2 d-1DeLaune et al. 1983doi:10.3402/tellusb.v35i1.14581Average daily flux from Table 2 extrapolated to 153 days
227Open water tundra lake2.25TundraWater bodystatic chambers, GCArctophila fulva, Carex rostrataBethel, YK-Delta, Alaska14.70mg CH4 m-2 d-1Bartlett et al. 1992doi:10.1029/91JD00610Daily flux from Table 3 extrapolated to 153 days
228Open water tundra lake0.31TundraWater bodystatic chambers, GCArctophila fulva, Carex rostrataBethel, YK-Delta, Alaska2.00mg CH4 m-2 d-1Bartlett et al. 1992doi:10.1029/91JD00610Daily flux from Table 3 extrapolated to 153 days
229Tidal creek waters0.34Salt marshWater bodyinfrared gas filter correlation analyzer with aluminum chamberNone reportedBay Tree Creek, Yorktown, Virginia0.82g CH4 m-2 yr-1Bartlett et al. 1985doi:10.1029/JD090iD03p05710Annual flux calculated for 153 days
230Wet sub-arctic meadow6.73Wet meadowWater bodyEddy covariancelake, upland and wet meadow tundra61.09017-162.01530Yukon-Kuskokwim Delta, Alaska44.00mg CH4 m-2 d-1Fan et al. 1992doi:10.1029/91JD02531Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
231Beaver pond0.06sub-arctic boreal wetlandWater bodyfloating chamber50.25000-66.00000Matamek River drainag network, Quebec, Canada0.40mg CH4 m-2 d-1Ford and Naiman 1988doi:10.1139/z88-076Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
232Beaver pond0.15sub-arctic boreal wetlandWater bodyfloating chamber50.25000-66.00000Matamek River drainag network, Quebec, Canada1.00mg CH4 m-2 d-1Ford and Naiman 1988doi:10.1139/z88-076Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
233Beaver pond4.12sub-arctic boreal wetlandWater bodyfloating chamber50.25000-66.00000Matamek River drainag network, Quebec, Canada26.90mg CH4 m-2 d-1Ford and Naiman 1988doi:10.1139/z88-076Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
234Pool fen24.48Coastal fenWater bodywater sampleNone reported51.46667-80.61666Hudson Bay lowlands, Canada160.00mg CH4 m-2 d-1Hamilton et al. 1994doi:10.1029/93JD03020Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
235Pool fen27.54Interior fenWater bodywater sampleNone reported51.51000-80.88000Hudson Bay lowlands, Canada180.00mg CH4 m-2 d-1Hamilton et al. 1994doi:10.1029/93JD03020Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
236Melt pond21.01coastal tundraWater bodyfloating chamber69.36613-133.03508Tuktoyakturk Coastlands, Northwest Territories137.33mg CH4 m-2 d-1Martin_et_al_2017doi:10.1139/AS-2016-0011Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
237Peatland pond22.95boreal maritime peatlandWater bodywater sampleNo vegetation49.13333-68.28333Baie Comeau, Quebec, Canada150.00mg CH4 m-2 d-1Pelletier_et_al_2014doi:10.1002/2013JG002423Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
238Peatland pond22.95boreal maritime peatlandWater bodywater sampleNo vegetation49.13333-68.28333Baie Comeau, Quebec, Canada150.00mg CH4 m-2 d-1Pelletier_et_al_2014doi:10.1002/2013JG002423Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
239Peatland pond22.95boreal maritime peatlandWater bodywater sampleNo vegetation49.13333-68.28333Baie Comeau, Quebec, Canada150.00mg CH4 m-2 d-1Pelletier_et_al_2014doi:10.1002/2013JG002423Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
240Peatland pond22.95boreal maritime peatlandWater bodywater sampleNo vegetation49.13333-68.28333Baie Comeau, Quebec, Canada150.00mg CH4 m-2 d-1Pelletier_et_al_2014doi:10.1002/2013JG002423Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
241Peatland pond22.95boreal maritime peatlandWater bodywater sampleNo vegetation49.13333-68.28333Baie Comeau, Quebec, Canada150.00mg CH4 m-2 d-1Pelletier_et_al_2014doi:10.1002/2013JG002423Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
242Inland pond10.60coastal wetlandWater bodyfloating chamberNo vegetation58.75000-94.15000Churchill, Manitoba, Canada69.25mg CH4 m-2 d-1Rouse_et_al_1995tandfonline.comDaily flux from Kuhn et al. 2021 data base extrapolated to 153 days
243Coastal pond15.84FenWater bodyfloating chamberNo vegetation58.75000-94.15000Churchill, Manitoba, Canada103.55mg CH4 m-2 d-1Rouse_et_al_1995tandfonline.comDaily flux from Kuhn et al. 2021 data base extrapolated to 153 days
244Thermokarst lake16.98Tundra wetlandWater bodywater sampleNone reported67.4161178.70194Taz river delta area, West Siberian Lowland111.00mg CH4 m-2 d-1Serikova_et_al_2019doi:10.1038/s41467-019-09592-1Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
245Thermokarst lake16.98Tundra wetlandWater bodywater sampleNone reported67.5130678.64361Taz river delta area, West Siberian Lowland111.00mg CH4 m-2 d-1Serikova_et_al_2019doi:10.1038/s41467-019-09592-1Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
246Thermokarst lake4.90Tundra wetlandWater bodyEddy covarianceNone reported71.13000-156.34000Arctic coastal plain, Alaska32.00mg CH4 m-2 d-1Sturtevant and Oechel 2013doi:10.1111/gcb.12247Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
247Thermokarst lake5.92Tundra wetlandWater bodyEddy covarianceNone reported71.13000-156.34000Arctic coastal plain, Alaska38.70mg CH4 m-2 d-1Sturtevant and Oechel 2013doi:10.1111/gcb.12247Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
248Thermokarst lake6.73Tundra wetlandWater bodyEddy covarianceNone reported71.13000-156.34000Arctic coastal plain, Alaska44.00mg CH4 m-2 d-1Sturtevant and Oechel 2013doi:10.1111/gcb.12247Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
249Thermokarst lake0.01Tundra wetlandWater bodyfloating chamberNone reported71.18000-156.89700Arctic coastal plain, Alaska0.08mg CH4 m-2 d-1Townsend-Small_et_al_2017doi:10.1002/2017JG004002Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
250Thermokarst lake0.07Tundra wetlandWater bodyfloating chamberNone reported70.75000-156.72000Arctic coastal plain, Alaska0.46mg CH4 m-2 d-1Townsend-Small_et_al_2017doi:10.1002/2017JG004002Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
251Thermokarst lake0.23Tundra wetlandWater bodyfloating chamberNone reported71.20000-156.66500Arctic coastal plain, Alaska1.48mg CH4 m-2 d-1Townsend-Small_et_al_2017doi:10.1002/2017JG004002Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
252Thermokarst lake0.24Tundra wetlandWater bodyfloating chamberNone reported71.19000-156.50200Arctic coastal plain, Alaska1.54mg CH4 m-2 d-1Townsend-Small_et_al_2017doi:10.1002/2017JG004002Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
253Thermokarst lake0.42Tundra wetlandWater bodyfloating chamberNone reported70.78000-156.66800Arctic coastal plain, Alaska2.73mg CH4 m-2 d-1Townsend-Small_et_al_2017doi:10.1002/2017JG004002Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
254Thermokarst lake0.75Tundra wetlandWater bodyfloating chamberNone reported71.27000-156.49700Arctic coastal plain, Alaska4.91mg CH4 m-2 d-1Townsend-Small_et_al_2017doi:10.1002/2017JG004002Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
255Thermokarst lake0.87Tundra wetlandWater bodyfloating chamberNone reported71.24000-156.77400Arctic coastal plain, Alaska5.67mg CH4 m-2 d-1Townsend-Small_et_al_2017doi:10.1002/2017JG004002Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
256Thermokarst lake1.25Sub-Arctic boreal lakeWater bodywater sampleNone reported68.45000161.20000Kolyma Lowland, Siberia8.20mg CH4 m-2 d-1Walter_Anthony_et_al_2010doi:10.4319/lom.2010.8.0592Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
257Thermokarst lake1.81Sub-Arctic boreal lakeWater bodywater sampleNone reported68.45000161.20000Kolyma Lowland, Siberia11.80mg CH4 m-2 d-1Walter_Anthony_et_al_2010doi:10.4319/lom.2010.8.0592Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days
258Thermokarst lake7.91Sub-Arctic boreal lakeWater bodywater sampleNone reported68.45000161.20000Kolyma Lowland, Siberia51.70mg CH4 m-2 d-1Walter_Anthony_et_al_2010doi:10.4319/lom.2010.8.0592Daily flux from Kuhn et al. 2021 data base extrapolated to 153 days