Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Ruben, Manuel Jannis; Hefter, Jens; Schubotz, Florence; Geibert, Walter; Butzin, Martin; Gentz, Torben; Grotheer, Hendrik; Forwick, Matthias; Szczuciński, Witold; Mollenhauer, Gesine (2022): Biogeochemical data of sediment cores taken from Hornsund Fjord, Svalbard, in 2014-2020 [dataset bundled publication]. PANGAEA, https://doi.org/10.1594/PANGAEA.946019

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Between 2019 and 2022 three sediment cores HH14-897-MF-GC (2014), He519_2-3 (2018), and He560_26-2 (2020) were analyzed using biogeochemical markers to assess organic carbon dynamics and its bio-availability in the Hornsund Fjord (Svalbard) sediments.
Depositional history was assessed by 210Pb+137Cs data (obtained by γ-spectrometer) building the basis for associated sedimentary age models (Bruel & Sabatier, 2020), with bulk total organic carbon concentrations (using an element analyzer) and dual C-isotopes of δ13C (obtained by isotope ration mass spectrometer) and F14C (by accelerator mass spectrometry) (Werner & Brand, 2001, Brodie et al. 2011 and Mollenhauer et al., 2021). Additionally, lipid biomarker were extracted, separated, and quantified with wet chemical perpetrations of n-alkanes (Wei, 2020) (quantified with gas chromatography – flame ionization detector), fatty acids (quantified with gas chromatography – flame ionization detector) (Wei, 2020), and GDGTs (Hopmans, 2016) (quantified with gas chromatography – mass spectrometry). Included are datasets of associated biomarker indices of Carbon Preference Index (CPI) (Bray & Evans, 1961), Branched and Isoprenoid Tetraether (BIT) Index (Hopmann et al., 2004), and Terrestrial Aquatic Ratio (TAR) of fatty acids (Meyers, 1997).
Further microbial utilization and bio-availability of petrogenic- and marine organic carbon was assed using Intact Polar Lipid (IPL) based compound specific radiocarbon analysis (CSRA) in combination with a DI14C age model of the local surface waters. IPLs were extracted form sediments with a modified Bligh and Dyer (1959) and subsequently separated with wet-chemical seperations (Slater, 2006). CSRA (Mollenhauer et al., 2021) of IPLs was performed on purified single compound fatty acid (FA) methyl esters of the IPL precursor lipids (Wei et al., 2021). The bio-availability of petrogenic organic carbon was based on CSRA data of IPL-FAs using an isotope mass balance with two endmembers of fossil petrogenic and modern marine primary production (DI14C age model of the local surface waters) (Ruben et al., 2022). For the DI14C age model of the local surface waters simulations were run using the Finite-volumE Sea ice-Ocean Model FESOM2 (Danilov et al., 2017) equipped with radiocarbon (Lohmann et al., 2020). Data validity was assessed by relative concentrations of IPLs in the radiocarbon analyzed PL-fraction (Wörmer et al., 2013).
Detailed dataset interpretation can be found in Ruben et al. (2023).
Keyword(s):
Ancient carbon; arctic fjord; Carbon cycle; compound specific radiocarbon dating; Intact polar lipids
Supplement to:
Ruben, Manuel Jannis; Hefter, Jens; Schubotz, Florence; Geibert, Walter; Butzin, Martin; Gentz, Torben; Grotheer, Hendrik; Forwick, Matthias; Szczuciński, Witold; Mollenhauer, Gesine (2023): Fossil organic carbon utilization in marine Arctic fjord sediments by subsurface micro-organisms. Nature Geoscience, 16(7), 625-630, https://doi.org/10.1038/s41561-023-01198-z
Further details:
Bligh, E G; Dyer, W J (1959): A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917, https://doi.org/10.1139/o59-099
Bray, E E; Evans, E D (1961): Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22(1), 2-15, https://doi.org/10.1016/0016-7037(61)90069-2
Brodie, Chris R; Casford, James SL; Lloyd, Jeremy M; Leng, Melanie J; Heaton, Timothy H E; Kendrick, Christopher P; Zong, Yongqiang (2011): Evidence for bias in C/N, δ13C and δ15N values of bulk organic matter, and on environmental interpretation, from a lake sedimentary sequence by pre-analysis acid treatment methods. Quaternary Science Reviews, 30(21-22), 3076-3087, https://doi.org/10.1016/j.quascirev.2011.07.003
Bruel, Rosalie; Sabatier, Pierre (2020): serac: an R package for ShortlivEd RAdionuclide chronology of recent sediment cores. Journal of Environmental Radioactivity, 225, 106449, https://doi.org/10.1016/j.jenvrad.2020.106449
Danilov, Sergey; Sidorenko, Dmitry; Wang, Qiang; Jung, Thomas (2017): The Finite-volumE Sea ice–Ocean Model (FESOM2). Geoscientific Model Development, 10(2), 765-789, https://doi.org/10.5194/gmd-10-765-2017
Hopmans, Ellen C; Schouten, Stefan; Sinninghe Damsté, Jaap S (2016): The effect of improved chromatography on GDGT-based palaeoproxies. Organic Geochemistry, 93, 1-6, https://doi.org/10.1016/j.orggeochem.2015.12.006
Hopmans, Ellen C; Weijers, Johan W H; Schefuß, Enno; Herfort, L; Sinninghe Damsté, Jaap S; Schouten, Stefan (2004): A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters, 224(1-2), 107-116, https://doi.org/10.1016/j.epsl.2004.05.012
Lohmann, Gerrit; Butzin, Martin; Eissner, Nina; Shi, Xiaoxu; Stepanek, Christian (2020): Abrupt climate and weather changes across time scales. Paleoceanography and Paleoclimatology, 35, e2019PA003782, https://doi.org/10.1029/2019PA003782
Meyers, Philip A (1997): Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27(5-6), 213-250, https://doi.org/10.1016/S0146-6380(97)00049-1
Mollenhauer, Gesine; Grotheer, Hendrik; Gentz, Torben; Bonk, Elizabeth; Hefter, Jens (2021): Standard operation procedures and performance of the MICADAS radiocarbon laboratory at Alfred Wegener Institute (AWI), Germany. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 496, 45-51, https://doi.org/10.1016/j.nimb.2021.03.016
Slater, Gregory F; Nelson, Robert K; Kile, Brian M; Reddy, Christopher M (2006): Intrinsic bacterial biodegradation of petroleum contamination demonstrated in situ using natural abundance, molecular-level 14C analysis. Organic Geochemistry, 37(9), 981-989, https://doi.org/10.1016/j.orggeochem.2006.06.014
Wei, Bingbing; Jia, Guodong; Hefter, Jens; Kang, Manyu; Park, Eunmi; Wang, Shizhu; Mollenhauer, Gesine (2020): Comparison of the U₃₇ᴷ', LDI, TEX₈₆ᴴ, and RI-OH temperature proxies in sediments from the northern shelf of the South China Sea. Biogeosciences, 17(17), 4489-4508, https://doi.org/10.5194/bg-17-4489-2020
Wei, Bingbing; Mollenhauer, Gesine; Hefter, Jens; Kusch, Stephanie; Grotheer, Hendrik; Schefuß, Enno; Jia, Guodong (2021): The nature, timescale, and efficiency of riverine export of terrestrial organic carbon in the (sub)tropics: insights at the molecular level from the Pearl River and adjacent coastal sea. Earth and Planetary Science Letters, 565, 116934, https://doi.org/10.1016/j.epsl.2021.116934
Werner, Roland A; Brand, Willi A (2001): Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry, 15(7), 501-519, https://doi.org/10.1002/rcm.258
Wörmer, Lars; Lipp, Julius S; Schröder, Jan Martin; Hinrichs, Kai-Uwe (2013): Application of two new LC–ESI–MS methods for improved detection of intact polar lipids (IPLs) in environmental samples. Organic Geochemistry, 59, 10-21, https://doi.org/10.1016/j.orggeochem.2013.03.004
Coverage:
Median Latitude: 76.989701 * Median Longitude: 16.285661 * South-bound Latitude: 76.982610 * West-bound Longitude: 15.819900 * North-bound Latitude: 76.992580 * East-bound Longitude: 16.564970
Date/Time Start: 1850-07-16T00:00:00 * Date/Time End: 2020-08-31T07:24:12
Size:
29 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding:

Datasets listed in this bundled publication

  1. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Total organic carbon concentrations and bulk δ13C data of sediment core HE519_2-3. https://doi.org/10.1594/PANGAEA.945884
  2. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Total organic carbon concentrations and bulk δ13C data of sediment core HE560_26-2. https://doi.org/10.1594/PANGAEA.945885
  3. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Total organic carbon concentrations and bulk δ13C data of sediment core HH14-897-GC-MF. https://doi.org/10.1594/PANGAEA.945886
  4. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Total organic carbon bulk radiocarbon data of sediment core HE519_2-3. https://doi.org/10.1594/PANGAEA.945891
  5. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Total organic carbon bulk radiocarbon data of sediment core HE560_26-2. https://doi.org/10.1594/PANGAEA.945892
  6. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Total organic carbon bulk radiocarbon data of sediment core HH14-897-GC-MF. https://doi.org/10.1594/PANGAEA.945893
  7. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Lead 210 and caesium 137 data of sediment core HE519_2-3. https://doi.org/10.1594/PANGAEA.945915
  8. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Lead 210 and caesium 137 data of sediment core HE560_26-2. https://doi.org/10.1594/PANGAEA.945916
  9. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Lead 210 and caesium 137 based age model of sediment core HE519_2-3. https://doi.org/10.1594/PANGAEA.945918
  10. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Lead 210 and caesium 137 based age model of sediment core HE560_26-2. https://doi.org/10.1594/PANGAEA.945922
  11. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Lipid biomarker concentrations of n-alkanes of sediment core HH14-897-GC-MF. https://doi.org/10.1594/PANGAEA.945925
  12. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Fatty acid concentrations of sediment core HH14-897-GC-MF. https://doi.org/10.1594/PANGAEA.948132
  13. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): GDGT concentrations of sediment core HH14-897-GC-MF. https://doi.org/10.1594/PANGAEA.948133
  14. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Lipid biomarker indices of sediment core HE519_2-3. https://doi.org/10.1594/PANGAEA.945990
  15. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Lipid biomarker indices of sediment core HE560_26-2. https://doi.org/10.1594/PANGAEA.945991
  16. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Lipid biomarker indices of sediment core HH14-897-GC-MF. https://doi.org/10.1594/PANGAEA.945992
  17. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Compound specific radiocarbon data of IPL-FAs of sediment core HE519_2-3. https://doi.org/10.1594/PANGAEA.945998
  18. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Compound specific radiocarbon data of IPL-FAs of sediment core HE560_26-2. https://doi.org/10.1594/PANGAEA.946008
  19. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Compound specific radiocarbon data of IPL-FAs of sediment core HH14-897-GC-MF. https://doi.org/10.1594/PANGAEA.946009
  20. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Petrogenic OC used for biosynthesis of sediment core HE519_2-3. https://doi.org/10.1594/PANGAEA.946016
  21. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Petrogenic OC used for biosynthesis of sediment core HE560_26-2. https://doi.org/10.1594/PANGAEA.946017
  22. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Petrogenic OC used for biosynthesis of sediment core HH14-897-GC-MF. https://doi.org/10.1594/PANGAEA.946018
  23. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Surface DIC age model of Hornsund Fjord. https://doi.org/10.1594/PANGAEA.948127
  24. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Intact polar lipid concentrations of sediment core HE519_2-3. https://doi.org/10.1594/PANGAEA.948496
  25. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Intact polar lipid concentrations of sediment core HE560_26-2. https://doi.org/10.1594/PANGAEA.948497
  26. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Intact polar lipid concentrations of sediment core HH14-897-GC-MF. https://doi.org/10.1594/PANGAEA.948498
  27. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Percentage of the polar fraction in intact polar lipids of sediment core HE519_2-3. https://doi.org/10.1594/PANGAEA.948501
  28. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Percentage of the polar fraction in intact polar lipids of sediment core HE560_26-2. https://doi.org/10.1594/PANGAEA.948502
  29. Ruben, MJ; Hefter, J; Schubotz, F et al. (2022): Percentage of the polar fraction in intact polar lipids of sediment core HH14-897-GC-MF. https://doi.org/10.1594/PANGAEA.948503