Durland, Evan; de Wit, Pierre; Meyer, Eli; Langdon, Chris (2021): Seawater carbonate chemistry and bioinformatic quality statistics [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.937391
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
The adaptive capacity of marine calcifiers to ocean acidification (OA) is a topic of great interest to evolutionary biologists and ecologists. Previous studies have provided evidence to suggest that larval resilience to high pCO2 seawater for these species is a trait with a genetic basis and variability in natural populations. To date, however, it remains unclear how the selective effects of OA occur within the context of complex genetic interactions underpinning larval development in many of the most vulnerable taxa. Here we evaluated phenotypic and genetic changes during larval development of Pacific oysters (Crassostrea gigas) reared in ambient (400 µatm) and high (1600 µatm) pCO2 conditions, both in domesticated and naturalized 'wild' oysters from the Pacific Northwest, USA. Using pooled DNA samples, we determined changes in allele frequencies across larval development, from early “D-stage” larvae to metamorphosed juveniles (spat), in both groups and environments. Domesticated larvae had 26% fewer loci with changing allele frequencies across developmental stages and < 50% as many loci affected by acidified culture conditions, compared to larvae from wild brood stock. Functional enrichment analyses of genetic markers with significant changes in allele frequency revealed that the structure and function of cellular membranes were disproportionately affected by high pCO2 conditions in both groups. These results indicate the potential for a rapid adaptive response of oyster populations to OA conditions; however, underlying genetic changes associated with larval development differ between these wild and domesticated oyster stocks and influence their adaptive responses to OA conditions.
Keyword(s):
Related to:
Durland, Evan; de Wit, Pierre; Meyer, Eli; Langdon, Chris (2021): Larval development in the Pacific oyster and the impacts of ocean acidification: Differential genetic effects in wild and domesticated stocks. Evolutionary Applications, 14(9), 2258-2272, https://doi.org/10.1111/eva.13289
Source:
Durland, Evan; de Wit, Pierre; Meyer, Eli; Langdon, Chris (2021): Full output of functional enrichment analyses and gene annotations for membrane functions [dataset]. Durlan_etal_2021_Raw_Data.rar
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James (2021): seacarb: seawater carbonate chemistry with R. R package version 3.2.16. https://cran.r-project.org/web/packages/seacarb/index.html
Project(s):
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-10-14.
Parameter(s):
License:
Creative Commons Attribution 4.0 International (CC-BY-4.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
1950 data points