Bausch, Alexandra Renee; Gallego, M Angeles; Harianto, Januar; Thibodeau, Patricia; Bednaršek, Nina; Havenhand, Jonathan N; Klinger, Terrie (2018): Seawater carbonate chemistry and shell dissolution in dead gastropod larvae and adult Limacina helicina pteropods [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.899574, Supplement to: Bausch, AR et al. (2018): Influence of bacteria on shell dissolution in dead gastropod larvae and adult Limacina helicina pteropods under ocean acidification conditions. Marine Biology, 165(2), https://doi.org/10.1007/s00227-018-3293-3
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
Ocean acidification (OA) increases aragonite shell dissolution in calcifying marine organisms. It has been proposed that bacteria associated with molluscan shell surfaces in situ could damage the periostracum and reduce its protective function against shell dissolution. However, the influence of bacteria on shell dissolution under OA conditions is unknown. In this study, dissolution in dead shells from gastropod larvae and adult pteropods (Limacina helicina) was examined following a 5-day incubation under a range of aragonite saturation states (Ωarag; values ranging from 0.5 to 1.8) both with and without antibiotics. Gastropod and pteropod specimens were collected from Puget Sound, Washington (48°33′19″N, 122°59′49″W and 47°41′11″N, 122°25′23″W, respectively), preserved, stored, and then treated in August 2015. Environmental scanning electron microscopy (ESEM) was used to determine the severity and extent of dissolution, which was scored as mild, severe, or summed (mild + severe) dissolution. Shell dissolution increased with decreasing Ωarag. In gastropod larvae, there was a significant interaction between the effects of antibiotics and Ωarag on severe dissolution, indicating that microbes could mediate certain types of dissolution among shells under low Ωarag. In L. helicina, there were no significant interactions between the effects of antibiotics and Ωarag on dissolution. These findings suggest that bacteria may differentially influence the response of some groups of shelled planktonic gastropods to OA conditions. This is the first assessment of the microbial–chemical coupling of dissolution in shells of either gastropod larvae or adult L. helicina under OA.
Keyword(s):
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James C; Gentili, Bernard; Proye, Aurélien; Soetaert, Karline; Rae, James (2016): seacarb: seawater carbonate chemistry with R. R package version 3.1. https://cran.r-project.org/package=seacarb
Project(s):
Coverage:
Median Latitude: 48.120835 * Median Longitude: -122.710000 * South-bound Latitude: 47.686390 * West-bound Longitude: -122.996940 * North-bound Latitude: 48.555280 * East-bound Longitude: -122.423060
Date/Time Start: 2014-10-30T00:00:00 * Date/Time End: 2015-08-15T00:00:00
Event(s):
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2016) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2019-03-25.
Parameter(s):
License:
Creative Commons Attribution 4.0 International (CC-BY-4.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
1754 data points