Niedzwiedz, Sarina; Schmidt, Claudia Elena; Yang, Yunlan; Burgunter-Delamare, Bertille; Andersen, Sebastian; Hildebrandt, Lars; Pröfrock, Daniel; Thomas, Helmuth; Zhang, Rui; Damsgård, Børge; Bischof, Kai (2024): Kelp holobiont responses to run-off in Billefjorden, Svalbard in August 2022 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.968627
Always quote citation above when using data! You can download the citation in several formats below.
Published: 2024-12-19 • DOI registered: 2025-01-17
Abstract:
Kelps act as ecosystem engineers and foundation species, providing the food web basis for Arctic coastal, rocky shore ecosystems. Arctic fjords are undergoing large climatic changes, with the consequences of glacial and terrestrial run-off on kelp holobionts largely being unknown. We compared areas being influenced by either glacial or terrestrial run-off with a control area in Billefjorden, Svalbard in August 2022. Kelps were collected from three sampling stations (A-I) per area, with a plant rake (Plant rake 19.000, acc. to Sigurd Olsen, KC Denmark, Silkeborg, Denmark) on 5±2 m water depth. Silica-dried meristematic tissue was used for biochemical (pigment, antioxidant activity) analyses. The tissue above the meristem was rinsed with ultrapure water and freeze-dried, before elements were measured of homogenized, digested material with a triple quadrupole ICP-MS/MS system (Agilent 8800, Agilent Technologies; Tokyo, Japan). For microbial analyses, an area of 10×10 cm above the meristem was swabbed with a sterile cotton swab. The V4-V5 regions (515F: 5'-GTGCCAGCMGCCGCGGTAA-3' and 907R: 5'-CCGTCAATTCMTTTRAGTTT-3') of the bacterial 16S rRNA gene from DNA extracts were amplified and sequenced using the Illumina Nova platform (Shanghai Hanyu Biotech lab, Shanghai, China).
Keyword(s):
Related to:
Niedzwiedz, Sarina; Schmidt, Claudia Elena; Yang, Yunlan; Burgunter-Delamare, Bertille; Andersen, Sebastian; Hildebrandt, Lars; Pröfrock, Daniel; Thomas, Helmuth; Zhang, Rui; Damsgård, Børge; Bischof, Kai (2024): Run-off impacts on Arctic kelp holobionts have strong implications on ecosystem functioning and bioeconomy. Scientific Reports, 14(1), 30506, https://doi.org/10.1038/s41598-024-82287-w
Project(s):
Arctic Biodiversity & Livelihoods (FACE-IT)
Funding:
Horizon 2020 (H2020), grant/award no. 869383: Arctic biodiversity change and its consequences: Assessing, monitoring and predicting the effects of ecosystem tipping cascades on marine ecosystem services and dependent human systems (ECOTIP)
Coverage:
Median Latitude: 78.647108 * Median Longitude: 16.624513 * South-bound Latitude: 78.601361 * West-bound Longitude: 16.398833 * North-bound Latitude: 78.691111 * East-bound Longitude: 16.902333
Date/Time Start: 2022-08-22T00:00:00 * Date/Time End: 2022-08-29T00:00:00
Event(s):
Parameter(s):
# | Name | Short Name | Unit | Principal Investigator | Method/Device | Comment |
---|---|---|---|---|---|---|
1 | Sample ID | Sample ID | Niedzwiedz, Sarina | |||
2 | Sample position | Samp pos | Niedzwiedz, Sarina | Sampling area | ||
3 | Station label | Station | Niedzwiedz, Sarina | |||
4 | Replicates | Repl | # | Niedzwiedz, Sarina | ||
5 | DATE/TIME | Date/Time | Niedzwiedz, Sarina | Geocode | ||
6 | LATITUDE | Latitude | Niedzwiedz, Sarina | Geocode | ||
7 | LONGITUDE | Longitude | Niedzwiedz, Sarina | Geocode | ||
8 | Chlorophyll c2, per dry mass | Chl c2/dm | µg/g | Niedzwiedz, Sarina | High Performance Liquid Chromatography (HPLC) | |
9 | Fucoxanthin, per dry mass | Fuco dm | µg/g | Niedzwiedz, Sarina | High Performance Liquid Chromatography (HPLC) | |
10 | Violaxanthin, per dry mass | Viola/dm | µg/g | Niedzwiedz, Sarina | High Performance Liquid Chromatography (HPLC) | |
11 | Antheraxanthin, per dry mass | Anthera/dm | µg/g | Niedzwiedz, Sarina | High Performance Liquid Chromatography (HPLC) | |
12 | Zeaxanthin, per dry mass | Zea/dm | µg/g | Niedzwiedz, Sarina | High Performance Liquid Chromatography (HPLC) | |
13 | Chlorophyll a, per dry mass | Chl a/dm | µg/g | Niedzwiedz, Sarina | High Performance Liquid Chromatography (HPLC) | |
14 | beta-Carotene, per dry mass | b-Car/dm | µg/g | Niedzwiedz, Sarina | High Performance Liquid Chromatography (HPLC) | |
15 | Violaxanthin + Antheraxanthin + Zeaxanthin, per dry mass | VAZ/dm | µg/g | Niedzwiedz, Sarina | High Performance Liquid Chromatography (HPLC) | |
16 | Xanthophyll cycle pigments/chlorophyll a | VAZ/chl a | Niedzwiedz, Sarina | High Performance Liquid Chromatography (HPLC) | ||
17 | De-expoxidation state of xanthophyll cycle | DPS | Niedzwiedz, Sarina | High Performance Liquid Chromatography (HPLC) | ||
18 | Pigments, accessory, per dry mass | Pigm acc/dm | µg/g | Niedzwiedz, Sarina | High Performance Liquid Chromatography (HPLC) | |
19 | Pigments, accessory/chlorophyll a ratio | Pigm acc/chl a | Niedzwiedz, Sarina | High Performance Liquid Chromatography (HPLC) | ||
20 | Antioxidant capacity, in Trolox Equivalents, per dry mass | TEAC/dm | mmol/g | Niedzwiedz, Sarina | According to the ABTS method | |
21 | Calcium | Ca | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
22 | Cadmium | Cd | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
23 | 2,6,11,15-tetramethylhexadecane | Crocetane | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
24 | Copper | Cu | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
25 | Iron | Fe | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
26 | Mercury | Hg | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
27 | Potassium | K | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
28 | Magnesium | Mg | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
29 | Manganese | Mn | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
30 | Molybdenum | Mo | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
31 | Sodium | Na | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
32 | Lead | Pb | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
33 | Zinc | Zn | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
34 | Aluminium | Al | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
35 | Barium | Ba | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
36 | Bismuth | Bi | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
37 | Beryllium | Be | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
38 | Cerium | Ce | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
39 | Cobalt | Co | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
40 | Dysprosium | Dy | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
41 | Erbium | Er | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
42 | Europium | Eu | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
43 | Gadolinium | Gd | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
44 | Holmium | Ho | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
45 | Lanthanum | La | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
46 | Lithium | Li | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
47 | Lutetium | Lu | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
48 | Neodymium | Nd | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
49 | Nickel | Ni | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
50 | Phosphorus | P | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
51 | Palladium | Pd | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
52 | Praseodymium | Pr | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
53 | Rubidium | Rb | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
54 | Ruthenium | Ru | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
55 | Antimony | Sb | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
56 | Samarium | Sm | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
57 | Tin | Sn | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
58 | Strontium | Sr | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
59 | Scandium | Sc | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
60 | Terbium | Tb | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
61 | Thorium | Th | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
62 | Titanium | Ti | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
63 | Thulium | Tm | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
64 | Uranium | U | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
65 | Vanadium | V | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
66 | Ytterbium | Yb | µg/g | Niedzwiedz, Sarina | Tandem Mass Spectrometry (ICP-MS/MS) | |
67 | Amplicon sequence variant | ASV | Niedzwiedz, Sarina | Calculated | Observed features | |
68 | Pielou evenness index | J' | Niedzwiedz, Sarina | Calculated | ||
69 | Phylogenetic diversity | P div | Niedzwiedz, Sarina | Calculated | ||
70 | Bacteroidetes | Bacteroidetes | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
71 | Planctomycetes | Planctomycetes | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
72 | Proteobacteria | Proteobacteria | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
73 | Alphaproteobacteria | Alphaproteobacteria | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
74 | Flavobacteria | Flavobacteria | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
75 | Gammaproteobacteria | Gammaproteobacteria | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
76 | Planctomycetia | Planctomycetia | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
77 | Saprospiraceae | Saprospiraceae | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
78 | Bacteria, unclassified | Bac unclassif | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | Order |
79 | Flavobacteriales | Flavobacteriales | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
80 | Pirellulales | Pirellulales | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
81 | Rhodobacteraceae | Rhodobacteraceae | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
82 | Saprospirales | Saprospirales | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
83 | Thiotrichales | Thiotrichales | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
84 | Bacteria, unclassified | Bac unclassif | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | Family |
85 | Flavobacteriaceae | Flavobacteriaceae | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
86 | Pirellulaceae | Pirellulaceae | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
87 | Rhodobacteraceae | Rhodobacteraceae | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
88 | Saprospiraceae | Saprospiraceae | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
89 | Thiotrichaceae | Thiotrichaceae | % | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] | |
90 | Shannon Diversity Index | H' | Niedzwiedz, Sarina | 16S rRNA gene sequencing [V4-V5 variable regions] |
License:
Creative Commons Attribution 4.0 International (CC-BY-4.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
6005 data points
Download Data
View dataset as HTML (shows only first 2000 rows)