Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Liu, Pi-Jen; Chang, Hong-Fong; Mayfield, Anderson B; Lin, Hsing-Juh (2022): Seawater carbonate chemistry and the physiological response variables of the high and ambient (i.e., control) CO2 mesocosms at different temperatures [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.946381

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Seagrass beds serve as important carbon sinks, and it is thought that increasing the quantity and quality of such sinks could help to slow the rate of global climate change. Therefore, it will be important to (1) gain a better understanding of seagrass bed metabolism and (2) document how these high-productivity ecosystems are impacted by climate change-associated factors, such as ocean acidification (OA) and ocean warming (OW). A mesocosm-based approach was taken herein in which a tropical, Western Pacific seagrass species Thalassia hemprichii was cultured under either control or OA-simulating conditions; the temperature was gradually increased from 25 to 31 °C for both CO2 enrichment treatments, and it was hypothesized that this species would respond positively to OA and elevated temperature. After 12 weeks of exposure, OA (~1200 ppm) led to (1) increases in underground biomass and root C:N ratios and (2) decreases in root nitrogen content. Rising temperatures (25 to 31 °C) increased the maximum quantum yield of photosystem II (Fv:Fm), productivity, leaf growth rate, decomposition rate, and carbon sequestration, but decreased the rate of shoot density increase and the carbon content of the leaves; this indicates that warming alone does not increase the short-term carbon sink capacity of this seagrass species. Under high CO2 and the highest temperature employed (31 °C), this seagrass demonstrated its highest productivity, Fv:Fm, leaf growth rate, and carbon sequestration. Collectively, then, it appears that high CO2 levels offset the negative effects of high temperature on this seagrass species. Whether this pattern is maintained at temperatures that actually induce marked seagrass stress (likely beginning at 33–34 °C in Southern Taiwan) should be the focus of future research.
Keyword(s):
Animalia; Benthic animals; Benthos; Biomass/Abundance/Elemental composition; Cnidaria; Coast and continental shelf; Growth/Morphology; Laboratory experiment; Mesocosm or benthocosm; North Pacific; Primary production/Photosynthesis; Single species; Temperature; Thalassia hemprichii; Tropical
Supplement to:
Liu, Pi-Jen; Chang, Hong-Fong; Mayfield, Anderson B; Lin, Hsing-Juh (2022): Assessing the Effects of Ocean Warming and Acidification on the Seagrass Thalassia hemprichii. Journal of Marine Science and Engineering, 10(6), 714, https://doi.org/10.3390/jmse10060714
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James (2021): seacarb: seawater carbonate chemistry with R. R package version 3.2.16. https://cran.r-project.org/web/packages/seacarb/index.html
Coverage:
Latitude: 21.950000 * Longitude: 120.730000
Date/Time Start: 2014-04-15T00:00:00 * Date/Time End: 2014-04-15T00:00:00
Event(s):
Dakwan * Latitude: 21.950000 * Longitude: 120.730000 * Date/Time: 2014-04-15T00:00:00 * Method/Device: Experiment (EXP)
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2022-07-15.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1TypeTypeLiu, Pi-JenStudy
2Species, unique identificationSpecies UIDLiu, Pi-Jen
3Species, unique identification (URI)Species UID (URI)Liu, Pi-Jen
4Species, unique identification (Semantic URI)Species UID (Semantic URI)Liu, Pi-Jen
5Treatment: temperatureT:temp°CLiu, Pi-Jen
6TreatmentTreatLiu, Pi-Jen
7Maximum photochemical quantum yield of photosystem IIFv/FmLiu, Pi-Jen
8Maximum photochemical quantum yield of photosystem II, standard deviationFv/Fm std dev±Liu, Pi-Jen
9Seagrass productivity, per shootSeagr prod dm/shootmg/#/dayLiu, Pi-Jen
10Seagrass productivity, per shoot, standard deviationSeagr prod dm/shoot std dev±Liu, Pi-Jen
11Growth rateµmg/g/dayLiu, Pi-JenRelative
12Growth rate, standard deviationµ std dev±Liu, Pi-JenRelative
13Leaf growth rate, per shootLeaf growth rate/shootmm/#/dayLiu, Pi-Jen
14Growth rate, standard deviationµ std dev±Liu, Pi-Jen
15Shoot densityShoot den#/m2Liu, Pi-Jen
16Shoot density, standard deviationShoot den±Liu, Pi-Jen
17Shoot density increase rateShoot dens incr%/weekLiu, Pi-Jen
18Shoot density increase rate, standard deviationShoot dens incr std dev±Liu, Pi-Jen
19Biomass, dry massBiom dmgLiu, Pi-JenAboveground
20Biomass, dry mass, standard deviationBiom dm std dev±Liu, Pi-JenAboveground
21Biomass, dry massBiom dmgLiu, Pi-JenUnderground
22Biomass, dry mass, standard deviationBiom dm std dev±Liu, Pi-JenUnderground
23RatioRatioLiu, Pi-JenUnderground/ aboveground
24RatioRatioLiu, Pi-JenUnderground/ aboveground
25Decomposition rateDecomp%/dayLiu, Pi-JenAboveground
26Decomposition rate, standard deviationDecomp std dev±Liu, Pi-JenAboveground
27Decomposition rateDecomp%/dayLiu, Pi-JenUnderground
28Decomposition rate, standard deviationDecomp std dev±Liu, Pi-JenUnderground
29CarbonC%Liu, Pi-JenRoot
30Carbon, standard deviationC std dev±Liu, Pi-JenRoot
31NitrogenN%Liu, Pi-JenRoot
32Nitrogen, standard deviationN std dev±Liu, Pi-JenRoot
33Carbon/Nitrogen ratioC/NLiu, Pi-JenRoot
34Carbon/Nitrogen ratio, standard deviationC/N std dev±Liu, Pi-JenRoot
35CarbonC%Liu, Pi-JenRhizome
36Carbon, standard deviationC std dev±Liu, Pi-JenRhizome
37NitrogenN%Liu, Pi-JenRhizome
38Nitrogen, standard deviationN std dev±Liu, Pi-JenRhizome
39Carbon/Nitrogen ratioC/NLiu, Pi-JenRhizome
40Carbon/Nitrogen ratio, standard deviationC/N std dev±Liu, Pi-JenRhizome
41CarbonC%Liu, Pi-JenLeaf
42Carbon, standard deviationC std dev±Liu, Pi-JenLeaf
43NitrogenN%Liu, Pi-JenLeaf
44Nitrogen, standard deviationN std dev±Liu, Pi-JenLeaf
45Carbon/Nitrogen ratioC/NLiu, Pi-JenLeaf
46Carbon/Nitrogen ratio, standard deviationC/N std dev±Liu, Pi-JenLeaf
47Carbon sequestration, per shootC seq/shootmg/#/dayLiu, Pi-Jen
48Carbon sequestration, per shoot, standard deviationC seq/shoot std dev±Liu, Pi-Jen
49Carbon, per shootC/shootg/#Liu, Pi-Jen
50Carbon, per shoot, standard deviationC/shoot std dev±Liu, Pi-Jen
51pHpHLiu, Pi-JenPotentiometricAquaController, NBS scale
52pH, standard deviationpH std dev±Liu, Pi-JenPotentiometricAquaController, NBS scale
53Temperature, waterTemp°CLiu, Pi-JenAquaController
54Temperature, water, standard deviationTemp std dev±Liu, Pi-JenAquaController
55Temperature, waterTemp°CLiu, Pi-JenHOBO
56Temperature, water, standard deviationTemp std dev±Liu, Pi-JenHOBO
57IrradianceEµmol/m2/sLiu, Pi-Jen
58Irradiance, standard deviationE std dev±Liu, Pi-Jen
59pHpHLiu, Pi-JenPotentiometricYSI, NBS scale
60pH, standard deviationpH std dev±Liu, Pi-JenPotentiometricYSI, NBS scale
61Temperature, waterTemp°CLiu, Pi-JenYSI
62Temperature, water, standard deviationTemp std dev±Liu, Pi-JenYSI
63Oxygen, dissolvedDOmg/lLiu, Pi-JenYSI
64Oxygen, dissolved, standard deviationDO std dev±Liu, Pi-JenYSI
65SalinitySalLiu, Pi-JenYSI
66Salinity, standard deviationSal std dev±Liu, Pi-JenYSI
67Alkalinity, totalATµmol/kgLiu, Pi-JenPotentiometric titration
68Alkalinity, total, standard deviationAT std dev±Liu, Pi-JenPotentiometric titration
69Carbon dioxideCO2µmol/kgLiu, Pi-JenCalculated using CO2SYS
70Carbon dioxide, standard deviationCO2 std dev±Liu, Pi-JenCalculated using CO2SYS
71Bicarbonate ion[HCO3]-µmol/kgLiu, Pi-JenCalculated using CO2SYS
72Bicarbonate ion, standard deviation[HCO3]- std dev±Liu, Pi-JenCalculated using CO2SYS
73Aragonite saturation stateOmega ArgLiu, Pi-JenCalculated using CO2SYS
74Aragonite saturation state, standard deviationOmega Arg std dev±Liu, Pi-JenCalculated using CO2SYS
75Phosphate[PO4]3-mg/lLiu, Pi-Jen
76Phosphate, standard deviation[PO4]3- std dev±Liu, Pi-Jen
77Ammonium[NH4]+mg/lLiu, Pi-Jen
78Ammonium, standard deviation[NH4]+ std dev±Liu, Pi-Jen
79Nitrite[NO2]-mg/lLiu, Pi-Jen
80Nitrite, standard deviation[NO2]- std dev±Liu, Pi-Jen
81Nitrate[NO3]-mg/lLiu, Pi-Jen
82Nitrate, standard deviationNO3 std dev±Liu, Pi-Jen
83Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
84pHpHYang, YanCalculated using seacarb after Nisumaa et al. (2010)total scale
85Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
86Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
87Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
88Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
89Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
90Carbon, inorganic, dissolvedDICµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
91Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
92Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
540 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML