Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Lehmann, Nele; Mears, Chantal; Thomas, Helmuth (2022): 10Be erosion rates and riverine alkalinity concentration globally [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.940522

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
The erosional influence on terrestrial alkalinity generation globally has been discussed over the last decades. In regional studies, long-term catchment-average denudation rates, determined from the concentration of the cosmogenic nuclide 10Be, have proven to be a powerful tool to quantify how physical erosion rates impact chemical weathering rates. Despite this, little research has been done relating 10Be-derived physical erosion rates with riverine alkalinity concentrations at a global scale. Our dataset aims to fill this gap by matching 10Be erosion rates with alkalinity measurements from 233 locations on six continents, covering latitudes from 44 °S to 51 °N. The locations of published 10Be erosion rates were extracted from the OCTOPUS database (doi:10.5194/essd-10-2123-2018) and either assigned alkalinity concentrations from published manuscripts, the GLORICH database (doi:10.1594/PANGAEA.902360), governmental agencies, or sampled ourselves. Our dataset comprises erosion rates spanning 4 orders of magnitude (2-9829 mm ka-1) and single and time-series measurements of alkalinity (1-3940 measurements per location) covering a large concentration range (4-4626 μmol L-1). We complemented the point sampling measurements of erosion rate and alkalinity concentration with the spatial description of runoff, lithology, temperature, precipitation, permanent snow and ice cover, forest cover, soil thickness and area affected by dams, of the respective catchment upstream from the erosion rate measurement location.
Related to:
Federal Ministry of Agriculture, Regions and Tourism (BMLRT), Austria. https://www.bml.gv.at/
Andermann, Christoff (2011): Climate, topography and erosion in the Nepal Himalayas. Geomorphology. Universit  Rennes 1, https://theses.hal.science/tel-00674919
Arino, Olivier; Ramos Perez, Jose Julio; Kalogirou, Vasileios; Bontemps, Sophie; Defourny, Pierre; Van Bogaert, Eric (2012): Global Land Cover Map for 2009 (GlobCover 2009). © European Space Agency (ESA) & Université catholique de Louvain (UCL), PANGAEA, https://doi.org/10.1594/PANGAEA.787668
Bierman, Paul R; Coppersmith, Ryan; Hanson, Kathryn; Neveling, Johann; Portenga, Eric W (2014): A cosmogenic view of erosion, relief generation, and the age of faulting in southern Africa. GSA Today, 24(9), 4-11, https://doi.org/10.1130/GSATG206A.1
Chittenden, Hannah; Delunel, Romain; Schlunegger, Fritz; Akçar, Naki; Kubik, Peter W (2014): The influence of bedrock orientation on the landscape evolution, surface morphology and denudation (10Be) at the Niesen, Switzerland. Earth Surface Processes and Landforms, 39(9), 1153-1166, https://doi.org/10.1002/esp.3511
Codilean, Akexandru T; Munack, Henry; Cohen, Timothy J; Saktura, Wanchese M; Gray, Andrew B; Mudd, Simon M (2018): OCTOPUS: an open cosmogenic isotope and luminescence database. Earth System Science Data, 10(4), 2123-2139, https://doi.org/10.5194/essd-10-2123-2018
Cyr, Andrew J; Granger, Darryl E; Olivetti, Valerio; Molin, Paola (2014): Distinguishing between tectonic and lithologic controls on bedrock channel longitudinal profiles using cosmogenic 10Be erosion rates and channel steepness index. Geomorphology, 209, 27-38, https://doi.org/10.1016/j.geomorph.2013.12.010
Delunel, Romain; van der Beek, Peter A; Carcaillet, Julien; Bourlès, Didier L; Valla, Pierre (2010): Frost-cracking control on catchment denudation rates: Insights from in situ produced 10Be concentrations in stream sediments (Ecrins–Pelvoux massif, French Western Alps). Earth and Planetary Science Letters, 293(1-2), 72-83, https://doi.org/10.1016/j.epsl.2010.02.020
Derrieux, Florence; Siame, Lionel L; Bourlès, Didier L; Chen, Rou-Fei; Braucher, Régis; Léanni, Laetitia; Lee, Jian-Cheng; Chu, Hao-Tsu; Byrne, Timothy (2014): How fast is the denudation of the Taiwan mountain belt? Perspectives from in situ cosmogenic 10Be. Journal of Asian Earth Sciences, 88, 230-245, https://doi.org/10.1016/j.jseaes.2014.03.012
Dixon, Jean L; von Blanckenburg, Friedhelm; Stüwe, Kurt; Christl, Marcus (2016): Glaciation's topographic control on Holocene erosion at the eastern edge of the Alps. Earth Surface Dynamics, 4(4), 895-909, https://doi.org/10.5194/esurf-4-895-2016
Elbaz-Poulichet, F; Seyler, Patrick; Maurice-Bourgoin, Laurence; Guyot, Jean-Loup; Dupuy, C (1999): Trace element geochemistry in the upper Amazon drainage basin (Bolivia). Chemical Geology, 157(3-4), 319-334, https://doi.org/10.1016/S0009-2541(99)00015-7
Evans, Matthew J; Derry, Louis A; France-Lanord, Christian (2004): Geothermal fluxes of alkalinity in the Narayani river system of central Nepal. Geochemistry, Geophysics, Geosystems, 5(8), https://doi.org/10.1029/2004GC000719
Fekete, Balázs M; Vörösmarty, Charles J; Grabs, W (2002): High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochemical Cycles, 16(3), 15-1-15-10, https://doi.org/10.1029/1999GB001254
Fick, Stephen E; Hijmans, Robert J (2017): WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. http://worldclim.org/version2, International Journal of Climatology, 37(12), 4302-4315, https://doi.org/10.1002/joc.5086
Finnegan, Noah J; Hallet, Bernard; Montgomery, David R; Zeitler, Peter K; Stone, John O; Anders, Alison M; Yuping, Liu (2008): Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet. Geological Society of America Bulletin, 120(1-2), 142-155, https://doi.org/10.1130/B26224.1
France-Lanord, Christian; Evans, Matthew J; Hurtrez, Jean-Emmanuel; Riotte, Jean (2003): Annual dissolved fluxes from Central Nepal rivers: budget of chemical erosion in the Himalayas. Comptes Rendus Geoscience, 335(16), 1131-1140, https://doi.org/10.1016/j.crte.2003.09.014
Galy, Albert; France-Lanord, Christian (1999): Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 159(1-4), 31-60, https://doi.org/10.1016/S0009-2541(99)00033-9
Glotzbach, C; Röttjer, Markus; Hampel, Andrea; Hetzel, Ralf; Kubik, Peter W (2014): Quantifying the impact of former glaciation on catchment-wide denudation rates derived from cosmogenic 10Be. Terra Nova, 26(3), 186-194, https://doi.org/10.1111/ter.12085
Glotzbach, C; van der Beek, Peter A; Carcaillet, Julien; Delunel, Romain (2013): Deciphering the driving forces of erosion rates on millennial to million-year timescales in glacially impacted landscapes: An example from the Western Alps. Journal of Geophysical Research-Earth Surface, 118(3), 1491-1515, https://doi.org/10.1002/jgrf.20107
Godard, Vincent; Bourlès, Didier L; Spinabella, Francoise; Burbank, D W; Bookhagen, Bodo; Fisher, G Burch; Moulin, Adrien; Léanni, Laetitia (2014): Dominance of tectonics over climate in Himalayan denudation. Geology, 42(3), 243-246, https://doi.org/10.1130/G35342.1
Godard, Vincent; Burbank, D W; Bourlès, Didier L; Bookhagen, Bodo; Braucher, Régis; Fisher, G Burch (2012): Impact of glacial erosion on 10Be concentrations in fluvial sediments of the Marsyandi catchment, central Nepal. Journal of Geophysical Research-Earth Surface, 117(F3), n/a-n/a, https://doi.org/10.1029/2011JF002230
Goldsmith, Steven T (2009): Physical and Chemical Weathering Processes and Associated CO2 Consumption from Small Mountainous Rivers on High-Standing Islands. OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=osu1250531903
Gonzalez, Veronica Sosa; Bierman, Paul R; Fernandez, Nelson; Rood, Dylan H (2016): Long-term background denudation rates of southern and southeastern Brazilian watersheds estimated with cosmogenic 10Be. Geomorphology, 268, 54-63, https://doi.org/10.1016/j.geomorph.2016.05.024
Gonzalez, Veronica Sosa; Bierman, Paul R; Nichols, Kyle K; Rood, Dylan H (2016): Long-term erosion rates of Panamanian drainage basins determined using in situ 10 Be. Geomorphology, 275, 1-15, https://doi.org/10.1016/j.geomorph.2016.04.025
Gruber, A; Scanlon, Tracy; van der Schalie, Robin; Wagner, Wolfgang; Dorigo, Wouter (2019): Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth System Science Data, 11(2), 717-739, https://doi.org/10.5194/essd-11-717-2019
Harmon, R S; Wörner, Gerhard; Goldsmith, Steven T; Harmon, Brendan A; Gardner, Christopher B; Lyons, William B; Ogden, Fred L; Kern, Zoltán; Fórizs, Istvan (2016): Linking silicate weathering to riverine geochemistry—A case study from a mountainous tropical setting in west-central Panama. Geological Society of America Bulletin, 128(11-12), 1780-1812, https://doi.org/10.1130/B31388.1
Hartmann, Jens; Lauerwald, Ronny; Moosdorf, Nils (2014): A Brief Overview of the GLObal RIver Chemistry Database, GLORICH. Procedia Earth and Planetary Science, 10, 23-27, https://doi.org/10.1016/j.proeps.2014.08.005
Hartmann, Jens; Moosdorf, Nils (2012): The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochemistry, Geophysics, Geosystems, 13, Q12004, https://doi.org/10.1029/2012GC004370
Horan, K; Hilton, R G; McCoy-West, A J; Selby, David; Tipper, Edward T; Hawley, S; Burton, Kevin W (2020): Unravelling the controls on the molybdenum isotope ratios of river waters. Geochemical Perspectives, 1-6, https://doi.org/10.7185/geochemlet.2005
Kim, Dong Eun; Seong, Yeong Bae; Choi, Kwang Hee; Yu, Byung Yong (2017): Role of debris flow on the change of 10Be concentration in rapidly eroding watersheds: a case study on the Seti River, central Nepal. Journal of Mountain Science, 14(4), 716-730, https://doi.org/10.1007/s11629-016-4282-y
Kirchner, James W; Finkel, Robert C; Riebe, Clifford S; Granger, Darryl E; Clayton, James L; King, John G; Megahan, Walter F (2001): Mountain erosion over 10 yr, 10 k.y., and 10 m.y. time scales. Geology, 29(7), 591, https://doi.org/10.1130/0091-7613(2001)029%3C0591:MEOYKY%3E2.0.CO;2
Kober, F; Zeilinger, G; Hippe, K; Marc, O; Lendzioch, T; Grischott, R; Christl, Marcus; Kubik, Peter W; Zola, R (2015): Tectonic and lithological controls on denudation rates in the central Bolivian Andes. Tectonophysics, 657, 230-244, https://doi.org/10.1016/j.tecto.2015.06.037
Kotnala, Gunjan; Dobhal, Srishti; Chauhan, Jaspal Singh (2016): Monitoring the self-purification capacity of the River Alaknanda stretch at Srinagar, Uttarakhand, India. International Journal of River Basin Management, 14(4), 491-498, https://doi.org/10.1080/15715124.2016.1193506
Larsen, Peter C; Almond, Peter C; Eger, Andre; Stone, John O; Montgomery, David R; Malcom, Brendon (2014): Rapid Soil Production and Weathering in the Southern Alps, New Zealand. Science, 343(6171), 637-640, https://doi.org/10.1126/science.1244908
Lin, Guan-Wei; Chen, Hanbing; Lin, Saulwood; Lien, Kai-Li (2013): Implications of river chemistry variations on an orogenic, subtropical island - a preliminary study. Episodes, 36(4), 270-274, https://doi.org/10.18814/epiiugs/2013/v36i4/004
Lyons, William B; Carey, Anne E; Hicks, D Murray; Nezat, Carmen A (2005): Chemical weathering in high-sediment-yielding watersheds, New Zealand. Journal of Geophysical Research, 110(F1), https://doi.org/10.1029/2003JF000088
Meyer, Hannah; Hetzel, Ralf; Fügenschuh, B; Strauss, H (2010): Determining the growth rate of topographic relief using in situ-produced 10Be: A case study in the Black Forest, Germany. Earth and Planetary Science Letters, 290(3-4), 391-402, https://doi.org/10.1016/j.epsl.2009.12.034
Meyer, Hannah; Hetzel, Ralf; Strauss, H (2010): Erosion rates on different timescales derived from cosmogenic 10Be and river loads: implications for landscape evolution in the Rhenish Massif, Germany. International Journal of Earth Sciences, 99(2), 395-412, https://doi.org/10.1007/s00531-008-0388-y
Morel, Philippe; von Blanckenburg, Friedhelm; Schaller, Mirjam; Kubik, Peter W; Hinderer, Matthias (2003): Lithology, landscape dissection and glaciation controls on catchment erosion as determined by cosmogenic nuclides in river sediment (the Wutach Gorge, Black Forest). Terra Nova, 15(6), 398-404, https://doi.org/10.1046/j.1365-3121.2003.00519.x
Moustapha, Moussa; Deirmendjian, Loris; Sebag, David; Braun, Jean-Jacques; Audry, Stéphane; Bessa, Henriette Ateba; Adatte, Thierry; Causserand, Carole; Adamou, Ibrahima; Ngatcha, Benjamin Ngounou; Guerin, Frédéric (2022): Partitioning carbon sources between wetland and well-drained ecosystems to a tropical first-order stream – implications for carbon cycling at the watershed scale (Nyong, Cameroon). Biogeosciences, 19(1), 137-163, https://doi.org/10.5194/bg-19-137-2022
Mulligan, Mark; van Soesbergen, Arnout; Sáenz, Leonardo (2020): GOODD, a global dataset of more than 38,000 georeferenced dams. Scientific Data, 7(1), 31, https://doi.org/10.1038/s41597-020-0362-5
Nichols, Kyle K; Bierman, Paul R; Finkel, Robert C; Larsen, Jennifer (2005): Long-Term Sediment Generation Rates for the Upper Río Chagres Basin. In: Harmon R S (eds) The Río Chagres, Panama. Water Science and Technology Library. Springer, Dordrecht, 52, https://doi.org/10.1007/1-4020-3297-8_20
Norton, Kevin P; von Blanckenburg, Friedhelm; DiBiase, Roman; Schlunegger, Fritz; Kubik, Peter W (2011): Cosmogenic 10Be-derived denudation rates of the Eastern and Southern European Alps. International Journal of Earth Sciences, 100(5), 1163-1179, https://doi.org/10.1007/s00531-010-0626-y
Norton, Kevin P; von Blanckenburg, Friedhelm; Kubik, Peter W (2010): Cosmogenic nuclide-derived rates of diffusive and episodic erosion in the glacially sculpted upper Rhone Valley, Swiss Alps. Earth Surface Processes and Landforms, n/a-n/a, https://doi.org/10.1002/esp.1961
Olivetti, Valerio; Godard, Vincent; Bellier, Olivier; ASTER Team (2016): Cenozoic rejuvenation events of Massif Central topography (France): Insights from cosmogenic denudation rates and river profiles. Earth and Planetary Science Letters, 444, 179-191, https://doi.org/10.1016/j.epsl.2016.03.049
Regard, Vincent; Carretier, Sébastian; Boeglin, Jean-Loup; Ngoupayou, Jules-Rémy Ndam; Dzana, Jean-Guy; Bedimo Bedimo, Jean-Pierre; Riotte, Jean; Braun, Jean-Jacques (2016): Denudation rates on cratonic landscapes: comparison between suspended and dissolved fluxes, and 10Be analysis in the Nyong and Sanaga River basins, south Cameroon. Earth Surface Processes and Landforms, 41(12), 1671-1683, https://doi.org/10.1002/esp.3939
Reusser, Lucas J; Bierman, Paul R; Rood, Dylan H (2015): Quantifying human impacts on rates of erosion and sediment transport at a landscape scale. Geology, 43(2), 171-174, https://doi.org/10.1130/G36272.1
Schaller, Mirjam; von Blanckenburg, Friedhelm; Hovius, Niels; Kubik, Peter W (2001): Large-scale erosion rates from in situ-produced cosmogenic nuclides in European river sediments. Earth and Planetary Science Letters, 188(3-4), 441-458, https://doi.org/10.1016/S0012-821X(01)00320-X
Shangguan, Wei; Hengl, Tomislav; Mendes de Jesus, Jorge; Yuan, Hua; Dai, Yongjiu (2017): Mapping the global depth to bedrock for land surface modeling. Journal of Advances in Modeling Earth Systems, 9(1), 65-88, https://doi.org/10.1002/2016MS000686
Vance, Derek; Bickle, Mike; Ivy-Ochs, Susan D; Kubik, Peter W (2003): Erosion and exhumation in the Himalaya from cosmogenic isotope inventories of river sediments. Earth and Planetary Science Letters, 206(3-4), 273-288, https://doi.org/10.1016/S0012-821X(02)01102-0
Wittmann, Hella; Malusà, Marco G; Resentini, Alberto; Garzanti, Eduardo; Niedermann, Samuel (2016): The cosmogenic record of mountain erosion transmitted across a foreland basin: Source-to-sink analysis of in situ 10 Be, 26 Al and 21 Ne in sediment of the Po river catchment. Earth and Planetary Science Letters, 452, 258-271, https://doi.org/10.1016/j.epsl.2016.07.017
Wittmann, Hella; von Blanckenburg, Friedhelm; Guyot, Jean-Loup; Laraque, A; Bernal, C; Kubik, Peter W (2011): Sediment production and transport from in situ-produced cosmogenic 10Be and river loads in the Napo River basin, an upper Amazon tributary of Ecuador and Peru. Journal of South American Earth Sciences, 31(1), 45-53, https://doi.org/10.1016/j.jsames.2010.09.004
Wittmann, Hella; von Blanckenburg, Friedhelm; Kruesmann, Tina; Norton, Kevin P; Kubik, Peter W (2007): Relation between rock uplift and denudation from cosmogenic nuclides in river sediment in the Central Alps of Switzerland. Journal of Geophysical Research, 112(F4), https://doi.org/10.1029/2006JF000729
Project(s):
Coverage:
Median Latitude: 35.775333 * Median Longitude: 6.030676 * South-bound Latitude: -43.576644 * West-bound Longitude: -116.323388 * North-bound Latitude: 51.491598 * East-bound Longitude: 170.995832
Minimum ELEVATION: 134.25 m a.s.l. * Maximum ELEVATION: 5184.99 m a.s.l.
Event(s):
Acher * Latitude: 48.585000 * Longitude: 8.127000 * Location: Black Forest * Method/Device: Multiple investigations (MULT)
Alaknanda * Latitude: 30.524000 * Longitude: 79.503000 * Location: Upper Ganges * Method/Device: Multiple investigations (MULT)
Anton_Riv * Latitude: 8.400000 * Longitude: -80.256000 * Location: Central-East * Method/Device: Multiple investigations (MULT)
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1Event labelEventLehmann, Nele
2IdentificationIDLehmann, NeleID of sampling location of both erosion rate and alkalinity
3BasinBasinLehmann, NeleBased on OCTOPUS data base
4Area/localityAreaLehmann, NeleBased on OCTOPUS data base
5CountryCountryLehmann, NeleBased on OCTOPUS data base
6LONGITUDELongitudeLehmann, NeleBased on OCTOPUS data baseGeocode
7LATITUDELatitudeLehmann, NeleBased on OCTOPUS data baseGeocode
8ELEVATIONElevationm a.s.l.Lehmann, NeleBased on OCTOPUS data baseGeocode
9Slope gradient, meanMean slope gradientm/kmLehmann, NeleBased on OCTOPUS data base
10Sample IDSample IDLehmann, NeleBased on OCTOPUS data baseID of erosion rate sampling location, taken from the OCTOPUS data base
11Sample IDSample IDLehmann, NeleBased on OCTOPUS data baseOriginal erosion rate sample identifier (as published), taken from the OCTOPUS data base
12Reference/sourceReferenceLehmann, NeleBased on OCTOPUS data baseerosion
13Erosion rateErosion ratemm/kaLehmann, NeleBased on OCTOPUS data base
14Number of measurementsn#Lehmann, NeleNumber of erosion rate measurements per location
15Erosion rate, standard deviationErosion rate std dev±Lehmann, Nele
16Sample IDSample IDLehmann, NeleID of alkalinity sample provided as part of the compilation
17Sample IDSample IDLehmann, NeleOriginal alkalinity sample identifier (as published)
18Reference/sourceReferenceLehmann, Nelealkalinity
19Alkalinity, totalATµmol/lLehmann, Nele
20Number of measurementsn#Lehmann, NeleNumber of alkalinity measurements per location
21Alkalinity, total, standard deviationAT std dev±Lehmann, Nele
22CommentCommentLehmann, NeleM: alkalinity was measured; C: alkalinity was calculated
23CommentCommentLehmann, NeleTA: alkalinity equals total alkalinity; HCO3 or HCO3_CO3: alkalinity equals bicarbonate
24Alkalinity, normalizedAT normmol/m4/aLehmann, Nele
25Carbon, inorganic, dissolvedDICµmol/lLehmann, Nele
26Temperature, waterTemp°CLehmann, Nele
27Conductivity, electricalCond electrµS/cmLehmann, Nele
28Turbidity (Formazin nephelometric unit)TurbidityFNULehmann, Nele
29Soil thicknessSoil thickcmLehmann, NeleBased on Global depth to bedrock (DTB) dataset
30Carbonate sedimentary rocksCarbonate sed rocks%Lehmann, NeleBased on Global lithological map database (GLiM)
31Sedimentary rockSedim rock%Lehmann, NeleBased on Global lithological map database (GLiM)mixed
32MetamorphiteMetam%Lehmann, NeleBased on Global lithological map database (GLiM)with presence of carbonate
33MetamorphiteMetam%Lehmann, NeleBased on Global lithological map database (GLiM)
34SedimentsSediments%Lehmann, NeleBased on Global lithological map database (GLiM)unconsolidated
35Siliciclastic sedimentary rocksSiliciclastic sed rocks%Lehmann, NeleBased on Global lithological map database (GLiM)
36EvaporiteEvaporite%Lehmann, NeleBased on Global lithological map database (GLiM)
37PyroclasticsPyroclastics%Lehmann, NeleBased on Global lithological map database (GLiM)
38Volcanic rocks, acidicVolc rocks acidic%Lehmann, NeleBased on Global lithological map database (GLiM)
39Volcanic rocks, basicVolc rocks basic%Lehmann, NeleBased on Global lithological map database (GLiM)
40Volcanic rocks, intermediateVolc rocks intermed%Lehmann, NeleBased on Global lithological map database (GLiM)
41Plutonic rocks, acidicPlutonic rocks acidic%Lehmann, NeleBased on Global lithological map database (GLiM)
42Plutonic rocks, basicPlutonic rocks basic%Lehmann, NeleBased on Global lithological map database (GLiM)
43Plutonic rocks, intermediatePlutonic rocks intermed%Lehmann, NeleBased on Global lithological map database (GLiM)
44Water bodiesWater bodies%Lehmann, NeleBased on Global lithological map database (GLiM)
45Ice and glaciersIce + glaciers%Lehmann, NeleBased on Global lithological map database (GLiM)
46SumSum%Lehmann, NeleBased on Global lithological map database (GLiM)rocks
47SumSum%Lehmann, NeleBased on Global lithological map database (GLiM)carbonate containing rock types
48RunoffRunoffmmLehmann, NeleBased on UNH/GRDC runoff compositesmean annual
49Temperature, annual meanMAT°CLehmann, NeleBased on WorldClim 2
50Snow and ice, permanentPerm snow + ice%Lehmann, NeleBased on GlobCover
51Catchment areaCatch areakm2Lehmann, Nele
52Precipitation, annual meanMAPmmLehmann, NeleBased on WorldClim 2
53Catchment, affected by damsDams extent%Lehmann, NeleGOODD (global dataset of more than 38,000 georeferenced dams)
Size:
10929 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML (shows only first 2000 rows)