Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Narvarte, Bienson Ceasar V; Nelson, Wendy A; Roleda, Michael Y (2020): Seawater carbonate chemistry and physiological performance of the rhodolith Sporolithon sp [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.924085

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Fish farming in coastal areas has become an important source of food to support the world's increasing population. However, intensive and unregulated mariculture activities have contributed to changing seawater carbonate chemistry through the production of high levels of respiratory CO2. This additional CO2, i.e. in addition to atmospheric inputs, intensifies the effects of global ocean acidification resulting in localized extreme low pH levels. Marine calcifying macroalgae are susceptible to such changes due to their CaCO3 skeleton. Their physiological response to CO2-driven acidification is dependent on their carbon physiology. In this study, we used the pH drift experiment to determine the capability of 9 calcifying macroalgae to use one or more inorganic carbon (Ci) species. From the 9 species, we selected the rhodolith Sporolithon sp. as a model organism to investigate the long-term effects of extreme low pH on the physiology and biochemistry of calcifying macroalgae. Samples were incubated under two pH treatments (pH 7.9 = ambient and pH 7.5 = extreme acidification) in a temperature-controlled (26 ± 0.02 °C) room provided with saturating light intensity (98.3 ± 2.50 μmol photons/m**2/s). After the experimental treatment period (40 d), growth rate, calcification rate, nutrient uptake rate, organic content, skeletal CO3-2, pigments, and tissue C, N and P of Sporolithon samples were compared. The pH drift experiment revealed species-specific Ci use mechanisms, even between congenerics, among tropical calcifying macroalgae. Furthermore, long-term extreme low pH significantly reduced the growth rate, calcification rate and skeletal CO3-2 content by 79%, 66% and 18%, respectively. On the other hand, nutrient uptake rates, organic matter, pigments and tissue C, N and P were not affected by the low pH treatments. Our results suggest that the rhodolith Sporolithon sp. is susceptible to the negative effects of extreme low pH resulting from intensive mariculture-driven coastal acidification.
Keyword(s):
Benthos; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (<20 L); Calcification/Dissolution; Coast and continental shelf; Growth/Morphology; Laboratory experiment; Macroalgae; North Pacific; Plantae; Rhodophyta; Single species; Sporolithon sp.; Tropical
Supplement to:
Narvarte, Bienson Ceasar V; Nelson, Wendy A; Roleda, Michael Y (2020): Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp. Environmental Pollution, 266, 115344, https://doi.org/10.1016/j.envpol.2020.115344
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James C; Gentili, Bernard; Hagens, Mathilde; Hofmann, Andreas; Mueller, Jens-Daniel; Proye, Aurélien; Rae, James; Soetaert, Karline (2019): seacarb: seawater carbonate chemistry with R. R package version 3.2.12. https://CRAN.R-project.org/package=seacarb
Coverage:
Latitude: 16.428600 * Longitude: 119.930500
Event(s):
Dos_Hermanos * Latitude: 16.428600 * Longitude: 119.930500 * Method/Device: Experiment (EXP)
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2020-10-20.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1TypeTypeNarvarte, Bienson Ceasar Vstudy
2SpeciesSpeciesNarvarte, Bienson Ceasar V
3TreatmentTreatNarvarte, Bienson Ceasar V
4GrowthGrowth%Narvarte, Bienson Ceasar V
5Growth, relative, standard errorGrowth rel std e±Narvarte, Bienson Ceasar V
6Calcification rate of calcium carbonateCalc rate CaCO3µmol/g/dayNarvarte, Bienson Ceasar V
7Calcification rate, standard errorCalc rate std e±Narvarte, Bienson Ceasar V
8Inorganic matterIM%Narvarte, Bienson Ceasar V
9Inorganic matter, standard errorIM std e±Narvarte, Bienson Ceasar V
10SkeletonSkel%Narvarte, Bienson Ceasar V%CO3
11Skeleton, standard errorSkeleton std e±Narvarte, Bienson Ceasar V
12Organic matterOM%Narvarte, Bienson Ceasar V
13Organic matter, standard errorOM std e±Narvarte, Bienson Ceasar V
14Chlorophyll aChl aµg/gNarvarte, Bienson Ceasar V
15Chlorophyll a, standard errorChl a std e±Narvarte, Bienson Ceasar V
16Chlorophyll dChl dµg/gNarvarte, Bienson Ceasar V
17Chlorophyll d, standard errorChl d std e±Narvarte, Bienson Ceasar V
18PhycocyaninPhycocµg/gNarvarte, Bienson Ceasar V
19Phycocyanin, standard errorPhycoc std e±Narvarte, Bienson Ceasar V
20AllophycocyaninAPCmg/gNarvarte, Bienson Ceasar V
21Allophycocyanin, standard errorAPC std e±Narvarte, Bienson Ceasar V
22PhycoerythrinPhycoeµg/gNarvarte, Bienson Ceasar V
23Phycoerythrin, standard errorPhycoe std e±Narvarte, Bienson Ceasar V
24Ammonium uptake rate[NH4+] upt rateµmol/g/dayNarvarte, Bienson Ceasar V
25Ammonium uptake rate, standard error[NH4]+ upt rate std e±Narvarte, Bienson Ceasar V
26Nitrite uptake rate[NO2]- upt rateµmol/g/dayNarvarte, Bienson Ceasar V
27Nitrite uptake rate, standard error[NO2]- upt rate std e±Narvarte, Bienson Ceasar V
28Nitrate uptake rateNO3 upt rateµmol/g/dayNarvarte, Bienson Ceasar V
29Nitrate uptake rate, standard errorNO3 upt rate std e±Narvarte, Bienson Ceasar V
30Phosphate uptake ratePO4 upt rateµmol/g/dayNarvarte, Bienson Ceasar V
31Phosphate uptake rate, standard errorPO4 upt rate std e±Narvarte, Bienson Ceasar V
32CarbonC%Narvarte, Bienson Ceasar Vtissue
33Carbon, standard errorC std e±Narvarte, Bienson Ceasar Vtissue
34NitrogenN%Narvarte, Bienson Ceasar Vtissue
35Nitrogen, standard errorN std e±Narvarte, Bienson Ceasar Vtissue
36PhosphorusP%Narvarte, Bienson Ceasar Vtissue
37Phosphorus, standard errorP std e±Narvarte, Bienson Ceasar Vtissue
38Carbon/Nitrogen ratioC/NNarvarte, Bienson Ceasar Vtissue
39Carbon/Nitrogen ratio, standard errorC/N std e±Narvarte, Bienson Ceasar Vtissue
40Carbon/Phosphorus ratioC/PNarvarte, Bienson Ceasar Vtissue
41Carbon/Phosphorus ratio, standard errorC/P std e±Narvarte, Bienson Ceasar Vtissue
42Nitrogen/Phosphorus ratioN/PNarvarte, Bienson Ceasar Vtissue
43Nitrogen/Phosphorus ratio, standard errorN/P std e±Narvarte, Bienson Ceasar Vtissue
44pHpHNarvarte, Bienson Ceasar VPotentiometrictotal scale
45pH, standard errorpH std e±Narvarte, Bienson Ceasar VPotentiometrictotal scale
46Carbon dioxideCO2µmol/kgNarvarte, Bienson Ceasar VCalculated using CO2SYS
47Carbon dioxide, standard errorCO2 std e±Narvarte, Bienson Ceasar VCalculated using CO2SYS
48Bicarbonate ion[HCO3]-µmol/kgNarvarte, Bienson Ceasar VCalculated using CO2SYS
49Bicarbonate ion, standard error[HCO3]- std e±Narvarte, Bienson Ceasar VCalculated using CO2SYS
50Carbonate ion[CO3]2-µmol/kgNarvarte, Bienson Ceasar VCalculated using CO2SYS
51Carbonate ion, standard error[CO3]2- std e±Narvarte, Bienson Ceasar VCalculated using CO2SYS
52Carbon, inorganic, dissolvedDICµmol/kgNarvarte, Bienson Ceasar VCalculated using CO2SYS
53Carbon, inorganic, dissolved, standard errorDIC std e±Narvarte, Bienson Ceasar VCalculated using CO2SYS
54Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmNarvarte, Bienson Ceasar VCalculated using CO2SYS
55Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard errorpCO2water_SST_wet std e±Narvarte, Bienson Ceasar VCalculated using CO2SYS
56Calcite saturation stateOmega CalNarvarte, Bienson Ceasar VCalculated using CO2SYS
57Calcite saturation state, standard errorOmega Cal std e±Narvarte, Bienson Ceasar VCalculated using CO2SYS
58Alkalinity, totalATµmol/kgNarvarte, Bienson Ceasar VPotentiometric titration
59Alkalinity, total, standard errorAT std e±Narvarte, Bienson Ceasar VPotentiometric titration
60SalinitySalNarvarte, Bienson Ceasar V
61Salinity, standard errorSal std e±Narvarte, Bienson Ceasar V
62Temperature, waterTemp°CNarvarte, Bienson Ceasar V
63Temperature, water, standard errorT std e±Narvarte, Bienson Ceasar V
64Carbonate system computation flagCSC flagYang, YanCalculated using seacarb after Nisumaa et al. (2010)
65Carbon dioxideCO2µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
66Fugacity of carbon dioxide (water) at sea surface temperature (wet air)fCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
67Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)pCO2water_SST_wetµatmYang, YanCalculated using seacarb after Nisumaa et al. (2010)
68Bicarbonate ion[HCO3]-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
69Carbonate ion[CO3]2-µmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
70Carbon, inorganic, dissolvedDICµmol/kgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
71Aragonite saturation stateOmega ArgYang, YanCalculated using seacarb after Nisumaa et al. (2010)
72Calcite saturation stateOmega CalYang, YanCalculated using seacarb after Nisumaa et al. (2010)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
144 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML