Su, Wenhao; Shi, Wei; Han, Yu; Hu, Yuan; Ke, Aiying; Wu, Hongxi; Liu, Guangxu (2019): Seawater carbonate chemistry and bioaccumulation of three pollutants in an edible bivalve species [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.907953, Supplement to: Su, W et al. (2019): The health risk for seafood consumers under future ocean acidification (OA) scenarios: OA alters bioaccumulation of three pollutants in an edible bivalve species through affecting the in vivo metabolism. Science of the Total Environment, 650, 2987-2995, https://doi.org/10.1016/j.scitotenv.2018.10.056
Always quote citation above when using data! You can download the citation in several formats below.
Abstract:
The current knowledge about the effect of pCO2-driven ocean acidification on the bioaccumulation of pollutants in marine species is still scarce, as only limited types of pollutants have been investigated. Therefore, to obtain a better understanding of the effect of ocean acidification on the process of bioaccumulation and subsequent food safety, the accumulation of benzo[a]pyrene (B[a]P), chloramphenicol (CAP), and nitrofurazone (NFZ) in an edible bivalve species, Tegillarca granosa, under present and near-future ocean acidification scenarios was investigated in the present study. The health risks associated with consuming contaminated blood clams were also assessed using target hazard quotient (THQ), lifetime cancer risk (CR), or margin of exposure (MoE). To explain the alterations in bioaccumulation of these pollutants, the expressions of genes encoding corresponding key metabolic proteins were analyzed as well. The results obtained showed that ocean acidification exerted a significant effect on the accumulation of B[a]P, NFZ, and CAP in the clams. After four-week exposure to B[a]P, NFZ, or CAP contaminated seawater acidified with CO2 at pH 7.8 and 7.4, significantly greater amounts of B[a]P and lower amounts of NFZ and CAP were accumulated in the clams compared to that in the control. Although no non-carcinogenic risk of consuming B[a]P-contaminated blood clams was detected using the THQ values obtained, the CR values obtained indicated a high life-time risk in all groups. In addition, according to the MoE values obtained, the health risks in terms of consuming NFZ- and CAP-contaminated clams were significantly reduced under ocean acidification scenarios but still cannot be ignored, especially for children. The gene expression results showed that the ability of clams to eliminate B[a]P may be significantly constrained, whereas the ability to eliminate NFZ and CAP may be enhanced under ocean acidification scenarios, indicating that the changes in the accumulation of these pollutants may be due to the altered in vivo metabolism.
Keyword(s):
Further details:
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James C; Gentili, Bernard; Hagens, Mathilde; Hofmann, Andreas; Mueller, Jens-Daniel; Proye, Aurélien; Rae, James; Soetaert, Karline (2019): seacarb: seawater carbonate chemistry with R. R package version 3.2.12. https://CRAN.R-project.org/package=seacarb
Project(s):
Comment:
In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2019) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2019-10-24.
Parameter(s):
License:
Creative Commons Attribution 4.0 International (CC-BY-4.0)
Status:
Curation Level: Enhanced curation (CurationLevelC)
Size:
1176 data points