Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Lyle, Mitchell W; Drury, Anna Joy; Tian, Jun; Wilkens, Roy H; Westerhold, Thomas (2019): Supplemental Data for Climate of the Past article "Equatorial Pacific Carbonate cycles, 0-5 Ma: stratigraphy, dissolution, and paleoproductivity" [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.904489, Supplement to: Lyle, MW et al. (2019): Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity. Climate of the Past, 15(5), 1715-1739, https://doi.org/10.5194/cp-15-1715-2019

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Coherent variation of CaCO3 burial is a feature of the Cenozoic eastern equatorial Pacific. Nevertheless, there has been a long-standing ambiguity whether changes in CaCO3 dissolution or changes in equatorial primary production might cause the variability. Since productivity and dissolution leave distinctive regional signals, a regional synthesis of data using updated age models and high-resolution stratigraphic correlation is an important constraint to distinguish between dissolution and production as factors that cause low CaCO3. Furthermore the new chronostratigraphy is an important foundation for future paleoceanographic studies. The ability to distinguish between primary production and dissolution is also important to establish a regional carbonate compensation depth (CCD). We report late Miocene to recent time series of X-ray Fluorescence (XRF) derived bulk sediment composition and mass accumulation rates (MAR) from eastern equatorial Pacific Integrated Ocean Drilling Program (IODP) Sites U1335, U1337, U1338 and Ocean Drilling Program (ODP) Site 849, and also report bulk density derived CaCO3 MAR at ODP Sites 848, 850 and 851. We use physical properties, XRF bulk chemical scans, and images along with available chronostratrigraphy to inter-correlate records in depth space. We then apply a new equatorial Pacific age model to create correlated age records for the last 8 Myr with resolutions of 1-2 kyr. Large magnitude changes in CaCO3 and bio-SiO2 (biogenic opal) MAR occurred within that time period but clay deposition has remained relatively constant, indicating that changes in Fe deposition from dust is only a secondary feedback to equatorial productivity. Because clay deposition is relatively constant, ratios of CaCO3 % or biogenic SiO2 % to clay emulate changes of biogenic MAR. We define 5 major Plio-Pleistocene Low CaCO3 % (PPLC) intervals since 5.3 Ma. Two were caused primarily by high bio-SiO2 burial that diluted CaCO3 (PPLC-2—1685-2135 ka, and PPLC-5—4465-4737 ka), while 3 were caused by enhanced dissolution of CaCO3 (PPLC-1—51-402 ka, PPLC-3—2248-2684 ka, and PPLC-4—2915-4093 ka). Regional patterns of CaCO3 % minima can distinguish between low CaCO3 caused by high diatom bio-SiO2 dilution versus lows caused by high CaCO3 dissolution. CaCO3 dissolution can be confirmed through scanning XRF measurements of Ba. High diatom production causes lowest CaCO3 % within the equatorial high productivity zone, while higher dissolution causes lowest CaCO3 at higher latitudes where CaCO3 production is lower. The two diatom production intervals, PPLC-2 and PPLC-5, have different geographic footprints from each other because of regional changes in eastern Pacific nutrient storage after the closure of the Panama Seaway. Because of the regional variability in carbonate production and sedimentation, the carbonate compensation depth (CCD) approach is only useful to examine large changes in CaCO3 dissolution. Tables SM-1 to SM-7: splice tables used for the 7 ODP and IODP drill sites in this study Tables SM-8 to SM-13: Chronostratigraphic depth ties among the drill sites. Tables SM-14 to SM-17: Age models for each drill site and age-depth ties at each site. Tables SM-18 to SM-23: scanning XRF data for 4 drill sites, and opal calibration data for Site 849 Tables SM-24 to SM-27: CaCO3 % estimated from Gamma Ray measured density for ODP Sites 848, 849, 850, and 851 Tables SM-28 to SM-34: Mass Accumulation Rates (MAR) for the 7 drill sites Tables SM-35 to SM-37: calculations of CCD from CaCO3 MAR
Keyword(s):
CaCO3 burial; Eastern Equatorial Pacific; Pleistocene; Pliocene
Coverage:
Median Latitude: 1.763090 * Median Longitude: -115.270428 * South-bound Latitude: -2.994083 * West-bound Longitude: -126.283480 * North-bound Latitude: 5.312270 * East-bound Longitude: -110.479983
Date/Time Start: 1991-06-04T00:00:00 * Date/Time End: 1991-09-07T00:00:00
Size:
51 datasets

Download Data

Download ZIP file containing all datasets as tab-delimited text — use the following character encoding:

Datasets listed in this publication series

  1. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-1: Offsets of ODP Site 138-848. https://doi.org/10.1594/PANGAEA.904384
  2. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-2: Offsets of ODP Site 138-849. https://doi.org/10.1594/PANGAEA.904386
  3. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-3: Offsets of ODP Site 138-850. https://doi.org/10.1594/PANGAEA.904388
  4. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-4: Offsets of ODP Site 138-851. https://doi.org/10.1594/PANGAEA.904391
  5. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-5: Offsets of IODP Site 320-U1335. https://doi.org/10.1594/PANGAEA.904392
  6. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-6: Offsets of IODP Site 321-U1337. https://doi.org/10.1594/PANGAEA.904394
  7. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-7: Offsets of IODP Site 321-U1338. https://doi.org/10.1594/PANGAEA.904395
  8. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-1: Splice interval table for ODP Site 138-848. https://doi.org/10.1594/PANGAEA.904719
  9. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-1: Splice tie table for ODP Site 138-848. https://doi.org/10.1594/PANGAEA.904726
  10. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-2: Splice interval table for ODP Site 138-849. https://doi.org/10.1594/PANGAEA.904720
  11. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-2: Splice tie table for ODP Site 138-849. https://doi.org/10.1594/PANGAEA.904727
  12. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-3: Splice interval table for ODP Site 138-850. https://doi.org/10.1594/PANGAEA.904721
  13. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-3: Splice tie table for ODP Site 138-850. https://doi.org/10.1594/PANGAEA.904728
  14. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-4: Splice interval table for ODP Site 138-851. https://doi.org/10.1594/PANGAEA.904722
  15. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-4: Splice tie table for ODP Site 138-851. https://doi.org/10.1594/PANGAEA.904729
  16. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-5: Splice interval table for IODP Site 320-U1335. https://doi.org/10.1594/PANGAEA.904723
  17. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-5: Splice tie table for ODP Site 320-U1335. https://doi.org/10.1594/PANGAEA.904730
  18. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-6: Splice interval table for IODP Site 321-U1337. https://doi.org/10.1594/PANGAEA.904724
  19. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-6: Splice tie table for ODP Site 321-U1337. https://doi.org/10.1594/PANGAEA.904731
  20. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-7: Splice interval table for IODP Site 321-U1338. https://doi.org/10.1594/PANGAEA.904725
  21. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-7: Splice tie table for IODP Site 321-U1338. https://doi.org/10.1594/PANGAEA.904732
  22. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-8: Site 849-850 Tie Table. https://doi.org/10.1594/PANGAEA.904413
  23. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-9: Site 849-848 Tie Table. https://doi.org/10.1594/PANGAEA.904414
  24. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-10: Site U1338-849 Tie Table. https://doi.org/10.1594/PANGAEA.904415
  25. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-11: Site U1338-851 Tie Table. https://doi.org/10.1594/PANGAEA.904417
  26. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-12: Site U1338-U1335 Tie Table. https://doi.org/10.1594/PANGAEA.904418
  27. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-13: Site U1338-U1337 Tie Table. https://doi.org/10.1594/PANGAEA.904419
  28. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-14: ODP Site 138-849 spliced benthic foraminiferal stable isotope data. https://doi.org/10.1594/PANGAEA.904425
  29. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-15: IODP 321-U1338 benthic foraminiferal stable isotopes. https://doi.org/10.1594/PANGAEA.904441
  30. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-16: Sites 138-849 and 321-U1338 combined isotope data. https://doi.org/10.1594/PANGAEA.904584
  31. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-17: The EEP compiled age model (short format). https://doi.org/10.1594/PANGAEA.904445
  32. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-18: IODP Site 320-U1335 XRF data. https://doi.org/10.1594/PANGAEA.904449
  33. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-19: IODP Site 321-U1337 XRF data. https://doi.org/10.1594/PANGAEA.904454
  34. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-20: IODP Site 321-U1338 XRF data. https://doi.org/10.1594/PANGAEA.904459
  35. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-21: ODP Site 138-849 XRF data. https://doi.org/10.1594/PANGAEA.904461
  36. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-22: ODP Site 138-849 Discrete bio-SiO2 analyses for calibration. https://doi.org/10.1594/PANGAEA.904462
  37. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-23: Standardized CaCO3:BaSO4 ratio. https://doi.org/10.1594/PANGAEA.904464
  38. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-24: ODP Site 138-848 GRA-estimated CaCO3 %. https://doi.org/10.1594/PANGAEA.904554
  39. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-25: ODP Site 138-849 GRA-estimated CaCO3 %. https://doi.org/10.1594/PANGAEA.904555
  40. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-26: ODP Site 138-850 GRA-estimated CaCO3 %. https://doi.org/10.1594/PANGAEA.904556
  41. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-27: ODP Site 138-851 GRA-estimated CaCO3 %. https://doi.org/10.1594/PANGAEA.904557
  42. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-28: ODP Site 138-848 Mass Accumulation Rates. https://doi.org/10.1594/PANGAEA.904587
  43. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-29: ODP Site 138-849 Mass Accumulation Rates. https://doi.org/10.1594/PANGAEA.904592
  44. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-30: Site 850 Mass Accumulation Rates. https://doi.org/10.1594/PANGAEA.904593
  45. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-31: Site 851 Mass Accumulation Rates. https://doi.org/10.1594/PANGAEA.904594
  46. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-32: Site U1335 Mass Accumulation Rates. https://doi.org/10.1594/PANGAEA.904595
  47. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-33: IODP Site 321-U1337 Mass Accumulation Rates. https://doi.org/10.1594/PANGAEA.904597
  48. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-34: Site U1338 Mass Accumulation Rates. https://doi.org/10.1594/PANGAEA.904598
  49. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-35: Site 138-851 - 321-U1338 CCD calculation using CaCO3 Mass Accumulation Rate change with depth. https://doi.org/10.1594/PANGAEA.904740
  50. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-36: ODP Site 138-851 paleodepth calculation. https://doi.org/10.1594/PANGAEA.904741
  51. Lyle, MW; Drury, AJ; Tian, J et al. (2019): Table SM-37: IODP Site 321-U1338 paleodepth calculation. https://doi.org/10.1594/PANGAEA.904742