Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Waelbroeck, Claire; Lougheed, Bryan C; Vázquez Riveiros, Natalia; Missiaen, Lise; Pedro, Joel B; Dokken, Trond; Hajdas, Irka; Wacker, Lukas; Abbott, Peter M; Dumoulin, Jean-Pascal; Thil, François; Eynaud, Frédérique; Rossignol, Linda; Fersi, Wiem; Albuquerque, Ana Luiza Spadano; Arz, Helge Wolfgang; Austin, William EN; Came, Rosemarie E; Carlson, Anders Eskil; Collins, James A; Dennielou, Bernard; Desprat, Stéphanie; Dickson, Alex; Elliot, Mary; Farmer, Christa; Giraudeau, Jacques; Gottschalk, Julia; Henderiks, Jorijntje; Hughen, Konrad A; Jung, Simon; Knutz, Paul Cornils; Lebreiro, Susana Martin; Lund, David C; Lynch-Stieglitz, Jean; Malaizé, Bruno; Marchitto, Thomas M; Martínez Méndez, Gema; Mollenhauer, Gesine; Naughton, Filipa; Nave, Silvia Osorio; Nürnberg, Dirk; Oppo, Delia W; Peck, Victoria L; Peeters, Frank J C; Penaud, Aurélie; Portilho-Ramos, Rodrigo Costa; Repschläger, Janne; Roberts, Jenny; Rühlemann, Carsten; Salgueiro, Emilia; Sanchez Goñi, Maria Fernanda; Schönfeld, Joachim; Scussolini, Paolo; Skinner, Luke C; Skonieczny, Charlotte; Thornalley, David J R; Toucanne, Samuel; Van Rooij, David; Vidal, Laurence; Voelker, Antje H L; Wary, Mélanie; Weldeab, Syee; Ziegler, Martin (2019): A summary of consistently dated Atlantic sediment cores over the last 40 thousand years [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.899490, In: Waelbroeck, C et al. (2019): Consistently dated Atlantic sediment cores [dataset publication series]. PANGAEA, https://doi.org/10.1594/PANGAEA.900073

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.
Keyword(s):
Atlantic sediment cores; consistent dating; last 40 ky
Further details:
Abbott, Peter M; Griggs, Adam J; Bourne, Anna J; Chapman, Mark R; Davies, Siwan M (2018): Tracing marine cryptotephras in the North Atlantic during the last glacial period: Improving the North Atlantic marine tephrostratigraphic framework. Quaternary Science Reviews, 189, 169-186, https://doi.org/10.1016/j.quascirev.2018.03.023
Arz, Helge Wolfgang; Gerhardt, Sabine; Pätzold, Jürgen; Röhl, Ursula (2001): Millennial-scale changes of surface- and deep-water flow in the western tropical Atlantic linked to Northern Hemisphere high-latitude climate during the Holocene. Geology, 29(3), 239-242, https://doi.org/10.1130/0091-7613(2001)029%3C0239:MSCOSA%3E2.0.CO;2
Austin, William EN; Hibbert, Fiona D (2012): Tracing time in the ocean: a brief review of chronological constraints (60–8 kyr) on North Atlantic marine event-based stratigraphies. Quaternary Science Reviews, 36, 28-37, https://doi.org/10.1016/j.quascirev.2012.01.015
Balmer, Sven; Sarnthein, Michael; Mudelsee, Manfred; Grootes, Pieter Meiert (2016): Refined modeling and 14C plateau tuning reveal consistent patterns of glacial and deglacial 14C reservoir ages of surface waters in low-latitude Atlantic. Paleoceanography, https://doi.org/10.1002/2016PA002953
Bard, Edouard; Arnold, Maurice; Maurice, Pierre; Duprat, Josette M; Moyes, Jean; Duplessy, Jean-Claude (1987): Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. Nature, 328, 791-794, https://doi.org/10.1038/328791a0
Bard, Edouard; Ménot, Guillemette; Rostek, Frauke; Licari, Laetitia; Böning, Philipp; Edwards, R Lawrence; Cheng, Hai; Wang, Yongjin; Heaton, T J (2013): Radiocarbon calibration/comparison records based on marine sediments from the Pakistan and Iberian Margins. Radiocarbon, 55 (4), 1999-2019, https://doi.org/10.2458/azu_js_rc.55.17114
Barker, Stephen; Chen, James; Gong, Xun; Jonkers, Lukas; Knorr, Gregor; Thornalley, David J R (2015): Icebergs not the trigger for North Atlantic cold events. Nature, 520(7547), 333-336, https://doi.org/10.1038/nature14330
Barker, Stephen; Diz, Paula (2014): Timing of the descent into the last Ice Age determined by the bipolar seesaw. Paleoceanography, 29(6), 489-507, https://doi.org/10.1002/2014PA002623
Behling, Hermann; Arz, Helge Wolfgang; Pätzold, Jürgen; Wefer, Gerold (2002): Late Quaternary vegetational and climate dynamics in southeastern Brazil, inferences from marine cores GeoB 3229-2 and GeoB 3202-1. Palaeogeography, Palaeoclimatology, Palaeoecology, 179(3-4), 227-243, https://doi.org/10.1016/S0031-0182(01)00435-7
Bond, Gerard C; Broecker, Wallace S; Johnsen, Sigfús Jóhann; McManus, James; Labeyrie, Laurent D; Jouzel, Jean; Bonani, Georges (1993): Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365(6442), 143-147, https://doi.org/10.1038/365143a0
Brendryen, J; Haflidason, Haflidi; Sejrup, Hans Petter (2011): Non-synchronous deposition of North Atlantic Ash Zone II in Greenland ice cores, and North Atlantic and Norwegian Sea sediments: an example of complex glacial-stage tephra transport. Journal of Quaternary Science, 26(7), 739-745, https://doi.org/10.1002/jqs.1499
Broecker, Wallace S (1990): Salinity history of the northern Atlantic during the last deglaciation. Paleoceanography, 5(4), 459-467, https://doi.org/10.1029/PA005i004p00459
Burckel, Pierre; Waelbroeck, Claire; Gherardi, Jeanne-Marie; Pichat, Sylvain; Arz, Helge Wolfgang; Lippold, Jörg; Dokken, Trond; Thil, François (2015): Atlantic Ocean circulation changes preceded millennial tropical South America rainfall events during the last glacial. Geophysical Research Letters, 42(2), 411-418, https://doi.org/10.1002/2014GL062512
Burckel, Pierre; Waelbroeck, Claire; Luo, Yiming; Roche, Didier M; Pichat, Sylvain; Jaccard, Samuel L; Gherardi, Jeanne-Marie; Govin, Aline; Lippold, Jörg; Thil, François (2016): Changes in the geometry and strength of the Atlantic meridional overturning circulation during the last glacial (20–50 ka). Climate of the Past, 12(11), 2061-2075, https://doi.org/10.5194/cp-12-2061-2016
Cacho, Isabel; Grimalt, Joan O; Canals, Miquel; Sbaffi, Laura; Shackleton, Nicholas J; Schönfeld, Joachim; Zahn, Rainer (2001): Variability of the Western Mediterranean sea surface temperatures during the last 25 000 years and its connection with the northern hemisphere climatic changes. Paleoceanography, 16(1), 40-52, https://doi.org/10.1029/2000PA000502
Came, Rosemarie E; Oppo, Delia W; Curry, William B (2003): Atlantic Ocean circulation during the Younger Dryas: Insights from a new Cd/Ca record from the western subtropical South Atlantic. Paleoceanography, 18(4), 1086, https://doi.org/10.1029/2003PA000888
Came, Rosemarie E; Oppo, Delia W; Curry, William B; Lynch-Stieglitz, Jean (2008): Deglacial variability in the surface return flow of the Atlantic meridional overturning circulation. Paleoceanography, 23(1), PA1217, https://doi.org/10.1029/2007PA001450
Came, Rosemarie E; Oppo, Delia W; McManus, Jerry F (2007): Amplitude and timing of temperature and salinity variability in the subpolar North Atlantic over the past 10 k.y. Geology, 35(4), 315-318, https://doi.org/10.1130/G23455A.1
Carlson, Anders Eskil; Oppo, Delia W; Came, Rosemarie E; LeGrande, Allegra N; Keigwin, Lloyd D; Curry, William B (2008): Subtropical Atlantic salinity variability and Atlantic meridional circulation during the last deglaciation. Geology, 36(12), 991, https://doi.org/10.1130/G25080A.1
Chabaud, Ludivine; Sanchez Goñi, Maria Fernanda; Desprat, Stéphanie; Rossignol, Linda (2014): Land–sea climatic variability in the eastern North Atlantic subtropical region over the last 14,200 years: Atmospheric and oceanic processes at different timescales. The Holocene, 24(7), 787-797, https://doi.org/10.1177/0959683614530439
Collins, James A; Schefuß, Enno; Govin, Aline; Mulitza, Stefan; Tiedemann, Ralf (2014): Insolation and glacial–interglacial control on southwestern African hydroclimate over the past 140 000 years. Earth and Planetary Science Letters, 398, 1-10, https://doi.org/10.1016/j.epsl.2014.04.034
Curry, William B; Marchitto, Thomas M; McManus, Jerry F; Oppo, Delia W; Laarkamp, K (1999): Millennial-scale changes in ventilation of the thermocline, intermediate, and deep waters of the glacial North Atlantic. In: Clark, U; Webb, S; Keigwin, D (eds.), Mechanisms of Global Climate Change at Millennial Time Scales, Geophysical Monograph Series, 112, 59-76, https://doi.org/10.1029/GM112p0059
Daniau, Anne-Laure; Sanchez Goñi, Maria Fernanda; Duprat, Josette M (2009): Last glacial fire regime variability in western France inferred from microcharcoal preserved in core MD04-2845, Bay of Biscay. Quaternary Research, 71(3), 385-396, https://doi.org/10.1016/j.yqres.2009.01.007
de Abreu, Lucia; Shackleton, Nicholas J; Schönfeld, Joachim; Hall, Michael A; Chapman, Mark R (2003): Millenial-scale oceanic climate variability off the Western Iberian margin during the last two glacial periods. Marine Geology, 196(1-2), 1-20, https://doi.org/10.1016/S0025-3227(03)00046-X
Delivet, Stanislas (2017): Sedimentary expression of internal waves on Quaternary contouritic processes along the Irish and Moroccan Atlantic margins. Ghent University. Faculty of Sciences, hdl:1854/LU-8514402
Dickson, Alexander J; Beer, Christopher J; Dempsey, Ciara; Maslin, Mark; Bendle, James A; McClymont, Erin L; Pancost, Richard D (2009): Oceanic forcing of the Marine Isotope Stage 11 interglacial. Nature Geoscience, 2, 428-433, https://doi.org/10.1038/ngeo527
Dokken, Trond; Jansen, Eystein (1999): Rapid changes in the mechanism of ocean convection during the last glacial period. Nature, 401(6752), 458-461, https://doi.org/10.1038/46753
Dokken, Trond; Nisancioglu, Kerim H; Li, Camille; Battisti, David S; Kissel, Catherine (2013): Dansgaard-Oeschger cycles: Interactions between ocean and sea ice intrinsic to the Nordic Seas. Paleoceanography, 28(3), 491-502, https://doi.org/10.1002/palo.20042
Duplessy, Jean-Claude; Labeyrie, Laurent D; Arnold, Maurice; Paterne, Martine; Duprat, Josette M; van Weering, Tjeerd C E (1992): Changes of surface salinity of the North Atlantic ocean during the last deglaciation. Nature, 358(6386), 485-488, https://doi.org/10.1038/358485a0
Elliot, Mary; Labeyrie, Laurent D; Duplessy, Jean-Claude (2002): Changes in North Atlantic deep-water formation associated with the Dansgaard–Oeschger temperature oscillations (60–10ka). Quaternary Science Reviews, 21(10), 1153-1165, https://doi.org/10.1016/S0277-3791(01)00137-8
Eynaud, Frédérique; de Abreu, Lucia; Voelker, Antje H L; Schönfeld, Joachim; Salgueiro, Emilia; Turon, Jean-Louis; Penaud, Aurélie; Toucanne, Samuel; Naughton, Filipa; Sanchez Goñi, Maria Fernanda; Malaizé, Bruno; Cacho, Isabel (2009): Position of the Polar Front along the western Iberian margin during key cold episodes of the last 45 ka. Geochemistry, Geophysics, Geosystems, 10(7), Q07U05, https://doi.org/10.1029/2009GC002398
Eynaud, Frédérique; Zaragosi, Sebastien; Scourse, James D; Mojtahid, Meryem; Bourillet, Jean Francois; Hall, Ian R; Penaud, Aurélie; Locascio, M; Reijonen, A (2007): Deglacial laminated facies on the NW European continental margin: The hydrographic significance of British-Irish Ice Sheet deglaciation and Fleuve Manche paleoriver discharges. Geochemistry, Geophysics, Geosystems, 8(6), Q06019, https://doi.org/10.1029/2006GC001496
Farmer, E Christa; deMenocal, Peter B; Marchitto, Thomas M (2005): Holocene and deglacial ocean temperature variability in the Benguela upwelling region: Implications for low-latitude atmospheric circulation. Paleoceanography, 20(2), https://doi.org/10.1029/2004PA001049
Freeman, Emma; Skinner, Luke C; Tisserand, Amandine; Dokken, Trond; Timmermann, Axel; Menviel, Laurie; Friedrich, Torsten (2015): An Atlantic–Pacific ventilation seesaw across the last deglaciation. Earth and Planetary Science Letters, 424, 237-244, https://doi.org/10.1016/j.epsl.2015.05.032
Gherardi, Jeanne-Marie; Labeyrie, Laurent D; Nave, Silvia Osorio; Francois, Roger; McManus, Jerry F; Cortijo, Elsa (2009): Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region. Paleoceanography, 24(2), PA2204, https://doi.org/10.1029/2008PA001696
Gottschalk, Julia; Skinner, Luke C; Misra, Sambuddha; Waelbroeck, Claire; Menviel, Laurie; Timmermann, Axel (2015): Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard–Oeschger events. Nature Geoscience, 8(12), 950-954, https://doi.org/10.1038/ngeo2558
Henderiks, Jorijntje; Freudenthal, Tim; Meggers, Helge; Nave, Silvia Osorio; Abrantes, Fatima F; Bollmann, Jörg; Thierstein, Hans R (2002): Glacial–interglacial variability of particle accumulation in the Canary Basin: a time-slice approach. Deep Sea Research Part II: Topical Studies in Oceanography, 49(17), 3675-3705, https://doi.org/10.1016/S0967-0645(02)00102-9
Hoffmann, J L; Lund, David C (2012): Refining the stable isotope budget for Antarctic Bottom Water: New foraminiferal data from the abyssal southwest Atlantic. Paleoceanography, 27(1), PA1213, https://doi.org/10.1029/2011PA002216
Hoogakker, Babette A A; McCave, I Nick; Vautravers, Maryline J (2007): Antarctic link to deep flow speed variation during Marine Isotope Stage 3 in the western North Atlantic. Earth and Planetary Science Letters, 257(3-4), 463-473, https://doi.org/10.1016/j.epsl.2007.03.003
Hughen, Konrad A; Southon, John R; Lehman, Scott J; Bertrand, Chanda J H; Turnbull, J (2006): Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin. Quaternary Science Reviews, 25(23-24), 3216-3227, https://doi.org/10.1016/j.quascirev.2006.03.014
Jaeschke, Andrea; Rühlemann, Carsten; Arz, Helge Wolfgang; Heil, Gerrit M N; Lohmann, Gerrit (2007): Coupling of millennial-scale changes in sea surface temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period. Paleoceanography, 22(4), PA4206, https://doi.org/10.1029/2006PA001391
Jullien, Elsa; Grousset, Francis E; Malaizé, Bruno; Duprat, Josette M; Sanchez Goñi, Maria Fernanda; Eynaud, Frédérique; Charlier, Karine; Schneider, Ralph R; Bory, Aloys J-M; Bout, Viviane; Flores, José-Abel (2007): Low-latitude “dusty events” vs. high-latitude “icy Heinrich events”. Quaternary Research, 68(3), 379-386, https://doi.org/10.1016/j.yqres.2007.07.007
Keigwin, Lloyd D (2004): Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic. Paleoceanography, 19(4), PA4012, https://doi.org/10.1029/2004PA001029
Keigwin, Lloyd D; Jones, Glenn A (1994): Western North Atlantic evidence for millennial-scale changes in ocean circulation and climate. Journal of Geophysical Research, 99(C6), 12397-12410, https://doi.org/10.1029/94JC00525
Keigwin, Lloyd D; Jones, Glenn A; Lehman, S J; Boyle, Edward A (1991): Deglacial meltwater discharge, North Atlantic Deep Circulation, and abrupt climate change. Journal of Geophysical Research, 96(C9), 16811, https://doi.org/10.1029/91JC01624
Keigwin, Lloyd D; Swift, Stephen A (2017): Carbon isotope evidence for a northern source of deep water in the glacial western North Atlantic. Proceedings of the National Academy of Sciences, 114(11), 2831-2835, https://doi.org/10.1073/pnas.1614693114
Kim, Jung-Hyun; Romero, Oscar E; Lohmann, Gerrit; Donner, Barbara; Laepple, Thomas; Haam, Eddie; Sinninghe Damsté, Jaap S (2012): Pronounced subsurface coolling of North Atlantic waters off Northwest Africa during Dansgaard-Oeschger interstadials. Earth and Planetary Science Letters, 339, 95-102, https://doi.org/10.1016/j.epsl.2012.05.018
Kim, Jung-Hyun; Schneider, Ralph R; Mulitza, Stefan; Müller, Peter J (2003): Reconstruction of SE trade wind intensity based on sea-surface temperature gradients in the SE Atlantic over the last 25 kyr. Geophysical Research Letters, 30(22), 2144, https://doi.org/10.1029/2003GL017557
Knutz, Paul Cornils; Zahn, Rainer; Hall, Ian R (2007): Centennial-scale variability of the British Ice Sheet: Implications for climate forcing and Atlantic meridional overturning circulation during the last deglaciation. Paleoceanography, 22(1), PA1207, https://doi.org/10.1029/2006PA001298
Kuhlmann, Holger; Freudenthal, Tim; Helmke, Peer; Meggers, Helge (2004): Reconstruction of paleoceanography off NW Africa during the last 40,000 years: influence of local and regional factors on sediment accumulation. Marine Geology, 207(1-4), 209-224, https://doi.org/10.1016/j.margeo.2004.03.017
Labeyrie, Laurent D; Leclaire, Héloïse; Waelbroeck, Claire; Cortijo, Elsa; Duplessy, Jean-Claude; Vidal, Laurence; Elliot, Mary; Le Coat, B (1999): Temporal variability of the surface and deep waters of the North West Atlantic Ocean at orbital and millenial scales. Geophysical Monograph Series, 112, 77-98, https://doi.org/10.1029/GM112p0077
Labeyrie, Laurent D; Waelbroeck, Claire; Cortijo, Elsa; Michel, Elisabeth; Duplessy, Jean-Claude (2005): Changes in deep water hydrology during the Last Deglaciation. Comptes Rendus Geoscience, 337(10-11), 919-927, https://doi.org/10.1016/j.crte.2005.05.010
Lebreiro, Susana Martin; Voelker, Antje H L; Vizcaino, Alexis; Abrantes, Fatima F; Alt-Epping, Ulrich; Jung, S; Thouveny, Nicolas; Gràcia, Eulàlia (2009): Sediment instability on the Portuguese continental margin under abrupt glacial climate changes (last 60 kyr). Quaternary Science Reviews, 28(27-28), 3211-3223, https://doi.org/10.1016/j.quascirev.2009.08.007
Lynch-Stieglitz, Jean; Schmidt, Matthew W; Curry, William B (2011): Evidence from the Florida Straits for Younger Dryas ocean circulation changes. Paleoceanography, 26(1), PA1205, https://doi.org/10.1029/2010PA002032
Lynch-Stieglitz, Jean; Schmidt, Matthew W; Henry, L Gene; Curry, William B; Skinner, Luke C; Mulitza, Stefan; Zhang, Rong; Chang, Ping (2014): Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events. Nature Geoscience, 7(2), 144-150, https://doi.org/10.1038/ngeo2045
Manthé, Sandrine (1998): Variabilité de la circulation thermohaline glaciaire et interglaciaire en Atlantique Nord tracée par les foraminifères planctoniques et la microfaune benthique. PhD thesis, Bordeaux 1, 291
Marchitto, Thomas M; Curry, William B; Oppo, Delia W (1998): Millennial-scale changes in North Atlantic circulation since the last glaciation. Nature, 393(6685), 557-561, https://doi.org/10.1038/31197
Martínez Méndez, Gema; Zahn, Rainer; Hall, Ian R; Peeters, Frank J C; Pena, Leopoldo D; Cacho, Isabel; Negre, César (2010): Contrasting multiproxy reconstructions of surface ocean hydrography in the Agulhas Corridor and implications for the Agulhas Leakage during the last 345,000 years. Paleoceanography, 25(4), PA4227, https://doi.org/10.1029/2009PA001879
McManus, Jerry F; Francois, Roger; Gherardi, Jeanne-Marie; Keigwin, Lloyd D; Brown Leger, Susan (2004): Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428(6985), 834-837, https://doi.org/10.1038/nature02494
Mulitza, Stefan; Prange, Matthias; Stuut, Jan-Berend W; Zabel, Matthias; von Dobeneck, Tilo; Itambi, Achakie C; Nizou, Jean; Schulz, Michael; Wefer, Gerold (2008): Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning. Paleoceanography, 23(4), PA4206, https://doi.org/10.1029/2008PA001637
Naughton, Filipa; Sanchez Goñi, Maria Fernanda; Desprat, Stéphanie; Turon, Jean-Louis; Duprat, Josette M; Malaizé, Bruno; Joli, C; Cortijo, Elsa; Drago, Teresa; Freitas, M C (2007): Present-day and past (last 25 000 years) marine pollen signal off western Iberia. Marine Micropaleontology, 62(2), 91-114, https://doi.org/10.1016/j.marmicro.2006.07.006
Naughton, Filipa; Sanchez Goñi, Maria Fernanda; Kageyama, Masa; Bard, Edouard; Duprat, Josette M; Cortijo, Elsa; Desprat, Stéphanie; Malaizé, Bruno; Joly, C; Rostek, Frauke; Turon, Jean-Louis (2009): Wet to dry climatic trend in north-western Iberia within Heinrich events. Earth and Planetary Science Letters, 284(3-4), 329-342, https://doi.org/10.1016/j.epsl.2009.05.001
Nürnberg, Dirk; Ziegler, Martin; Karas, Cyrus; Tiedemann, Ralf; Schmidt, Matthew W (2008): Interacting Loop Current variability and Mississippi River discharge over the past 400 kyr. Earth and Planetary Science Letters, 272(1-2), 278-289, https://doi.org/10.1016/j.epsl.2008.04.051
Oppo, Delia W; Lehman, S J (1995): Suborbital timescale variability of North Atlantic Deep Water during the past 200,000 years. Paleoceanography, 10(5), 901-910, https://doi.org/10.1029/95PA02089
Papenfuß, Thomas (1999): Glazial-Interglaziale Variation von Planktonproduktivität und Nährstoffgehalten im tropisch-subtropischen Ostatlantik im Abbild der Barium-Gehalte. Berichte-Reports, Institut für Geowissenschaften, Universität Kiel, 5, 1-119, https://doi.org/10.2312/reports-ifg.1999.5
Pastouret, L; Chamley, Hervè; Delibrias, G; Duplessy, Jean-Claude; Thiede, Jörn (1978): Late quaternary climatic changes in western tropical Africa deduced from deep-sea sedimentation off Niger delta. Oceanologica Acta, 1(2), 217-232
Peck, Victoria L; Hall, Ian R; Zahn, Rainer; Elderfield, Henry (2008): Millennial-scale surface and subsurface paleothermometry from the northeast Atlantic, 55-8 ka BP. Paleoceanography, 23(3), PA3221, https://doi.org/10.1029/2008PA001631
Peck, Victoria L; Hall, Ian R; Zahn, Rainer; Elderfield, Henry; Grousset, Francis E; Hemming, Sidney R; Scourse, James D (2006): High resolution evidence for linkages between NW European ice sheet instability and Atlantic Meridional Overturning Circulation. Earth and Planetary Science Letters, 243(3-4), 476-488, https://doi.org/10.1016/j.epsl.2005.12.023
Peck, Victoria L; Hall, Ian R; Zahn, Rainer; Scourse, James D (2007): Progressive reduction in NE Atlantic intermediate water ventilation prior to Heinrich events: Response to NW European ice sheet instabilities? Geochemistry, Geophysics, Geosystems, 8(1), https://doi.org/10.1029/2006GC001321
Penaud, Aurélie; Eynaud, Frédérique; Turon, Jean-Louis; Blamart, Dominique; Rossignol, Linda; Marret, Fabienne; López-Martinez, Constancia; Grimalt, Joan O; Malaizé, Bruno; Charlier, Karine (2010): Contrasting paleoceanographic conditions off Morocco during Heinrich events (1 and 2) and the Last Glacial Maximum. Quaternary Science Reviews, 29(15-16), 1923-1939, https://doi.org/10.1016/j.quascirev.2010.04.011
Pichevin, Laetitia; Bertrand, Philippe; Boussafir, Mohammed; Disnar, Jean-Robert (2004): Organic matter accumulation and preservation controls in a deep sea modern environment: an example from Namibian slope sediments. Organic Geochemistry, 35(5), 543-559, https://doi.org/10.1016/j.orggeochem.2004.01.018
Plewa, Kerstin; Meggers, Helge; Kasten, Sabine (2006): Barium in sediments off NW Africa: A tracer for paleoproductivity or meltwater events? Paleoceanography, 21(2), PA2015, https://doi.org/10.1029/2005PA001136
Rasmussen, Tine Lander; Thomsen, Erik (2012): Changes in planktic foraminiferal faunas, temperature and salinity in the Gulf Stream during the last 30,000 years: influence of meltwater via the Mississippi River. Quaternary Science Reviews, 33, 42-54, https://doi.org/10.1016/j.quascirev.2011.11.019
Rasmussen, Tine Lander; Thomsen, Erik; van Weering, Tjeerd C E (1998): Cyclic sedimentation on the Faeroe Drift 53-10 ka BP related to climatic variations. In: Stoker, MS; Evans, D; Cramp, A (eds), Geological Processes on Continental Margins: Sedimentation, Mass-Wasting and Stability, Geology Society, London, Special Publications, 129, 255-267
Rasmussen, Tine Lander; van Weering, Tjeerd C E; Labeyrie, Laurent D (1996): High resolution stratigraphy of the Faeroe-Shetland Channel and its relation to North Atlantic paleoceanography: the last 87 kyr. Marine Geology, 131(1-2), 75-88, https://doi.org/10.1016/0025-3227(95)00145-X
Raymo, Maureen E; Oppo, Delia W; Flower, Benjamin P; Hodell, David A; McManus, Jerry F; Venz, Kathryn A; Kleiven, K F; McIntyre, K (2004): Stability of North Atlantic water masses in face of pronounced climate variability during the Pleistocene. Paleoceanography, 19(2), PA2008, https://doi.org/10.1029/2003PA000921
Repschläger, Janne; Garbe-Schönberg, Dieter; Weinelt, Mara; Schneider, Ralph R (2017): Holocene evolution of the North Atlantic subsurface transport. Climate of the Past, 13(4), 333-344, https://doi.org/10.5194/cp-13-333-2017
Richter, Thomas (1998): Sedimentary fluxes at the mid-atlantic ridge - sediment sources, accumulation rates, and geochemical characterisation. GEOMAR Report, GEOMAR Research Center for Marine Geosciences, Christian Albrechts University in Kiel, 73, 173 pp, https://doi.org/10.3289/GEOMAR_REP_73_1998
Roberts, Jenny; Gottschalk, Julia; Skinner, Luke C; Peck, Victoria L; Kender, Sev; Elderfield, Henry; Waelbroeck, Claire; Vázquez Riveiros, Natalia; Hodell, David A (2016): Evolution of South Atlantic density and chemical stratification across the last deglaciation. Proceedings of the National Academy of Sciences, 113(3), 514-519, https://doi.org/10.1073/pnas.1511252113
Rühlemann, Carsten; Frank, Martin; Hale, Walter; Mangini, Augusto; Mulitza, Stefan; Müller, Peter J; Wefer, Gerold (1996): Late Quaternary productivity changes in the western equatorial Atlantic: Evidence from 230Th-normalized carbonate and organic carbon accumulation rates. Marine Geology, 135(1-4), 127-152, https://doi.org/10.1016/S0025-3227(96)00048-5
Sadatzki, Henrik; Dokken, Trond; Berben, Sarah M P; Muschitiello, Francesco; Stein, Ruediger; Fahl, Kirsten; Menviel, Laurie; Timmermann, Axel; Jansen, Eystein (2019): Sea ice variability in the southern Norwegian Sea during glacial Dansgaard-Oeschger climate cycles. Science Advances, 5(3), eaau6174, https://doi.org/10.1126/sciadv.aau6174
Salgueiro, Emilia; Naughton, Filipa; Voelker, Antje H L; de Abreu, Lucia; Alberto, Ana; Rossignol, Pascale E; Duprat, Josette M; Magalhães, Vitor H; Vaqueiro, Sandra; Turon, Jean-Louis; Abrantes, Fatima F (2014): Past circulation along the western Iberian margin: a time slice vision from the Last Glacial to the Holocene. Quaternary Science Reviews, 106, 316-329, https://doi.org/10.1016/j.quascirev.2014.09.001
Salgueiro, Emilia; Voelker, Antje H L; de Abreu, Lucia; Abrantes, Fatima F; Meggers, Helge; Wefer, Gerold (2010): Temperature and productivity changes off the western Iberian margin during the last 150 ky. Quaternary Science Reviews, 29(5-6), 680-695, https://doi.org/10.1016/j.quascirev.2009.11.013
Sanchez Goñi, Maria Fernanda; Landais, Amaëlle; Fletcher, William J; Naughton, Filipa; Desprat, Stéphanie; Duprat, Josette M (2008): Contrasting impacts of Dansgaard–Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews, 27(11-12), 1136-1151, https://doi.org/10.1016/j.quascirev.2008.03.003
Sarnthein, Michael; Balmer, Sven; Grootes, Pieter Meiert; Mudelsee, Manfred (2015): Planktic and benthic 14C reservoir ages for three ocean basins, calibrated by a suite of 14C plateaus in the glacial-to-deglacial Suigetsu atmospheric 14C record. Radiocarbon, 57(1), 129-151, https://doi.org/10.2458/azu_rc.57.17916
Sarnthein, Michael; Winn, Kyaw; Jung, Simon J A; Duplessy, Jean-Claude; Labeyrie, Laurent D; Erlenkeuser, Helmut; Ganssen, Gerald M (1994): Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography, 9(2), 209-267, https://doi.org/10.1029/93PA03301
Schönfeld, Joachim; Zahn, Rainer; de Abreu, Lucia (2003): Surface to deep water response to rapid climate changes at the western Iberian Margin. Global and Planetary Change, 36(4), 237-264, https://doi.org/10.1016/S0921-8181(02)00197-2
Schwab, Christian; Kinkel, Hanno; Weinelt, M; Repschläger, Janne (2012): Coccolithophore paleoproductivity and ecology response to deglacial and Holocene changes in the Azores Current System. Paleoceanography, 27(3), PA3210, https://doi.org/10.1029/2012PA002281
Shackleton, Nicholas J; Hall, Michael A; Vincent, Edith (2000): Phase relationships between millennial-scale events 64,000-24,000 years ago. Paleoceanography, 15(6), 565-569, https://doi.org/10.1029/2000PA000513
Skinner, Luke C; Fallon, Robert D; Waelbroeck, Claire; Michel, Elisabeth; Barker, S (2010): Ventilation of the Deep Southern Ocean and Deglacial CO2 Rise. Science, 328(5982), 1147-1151, https://doi.org/10.1126/science.1183627
Skinner, Luke C; Shackleton, Nicholas J (2004): Rapid transient changes in northeast Atlantic deep water ventilation age across Termination I. Paleoceanography, 19(2), PA2005, https://doi.org/10.1029/2003PA000983
Skinner, Luke C; Shackleton, Nicholas J; Elderfield, Henry (2003): Millennial-scale variability of deep-water temperature and d18Odw indicating deep-water source variations in the Northeast Atlantic, 0-34 cal. ka BP. Geochemistry, Geophysics, Geosystems, 4(12), https://doi.org/10.1029/2003GC000585
Thornalley, David J R; Elderfield, Henry; McCave, I Nick (2010): Intermediate and deep water paleoceanography of the northern North Atlantic over the past 21,000 years. Paleoceanography, 25(1), PA1211, https://doi.org/10.1029/2009PA001833
Toucanne, Samuel; Soulet, Guillaume; Freslon, Nicolas; Jacinto Silva, Ricardo; Dennielou, Bernard; Zaragosi, Sebastien; Eynaud, Frédérique; Bourillet, Jean Francois; Bayon, Germain (2015): Millennial-scale fluctuations of the European Ice Sheet at the end of the last glacial, and their potential impact on global climate. Quaternary Science Reviews, 123, 113-133, https://doi.org/10.1016/j.quascirev.2015.06.010
Valley, John W; Lynch-Stieglitz, Jean; Marchitto, Thomas M (2017): Timing of deglacial AMOC variability from a high-resolution seawater cadmium reconstruction. Paleoceanography, 32(11), 1195-1203, https://doi.org/10.1002/2017PA003099
van Kreveld, Shirley A; Sarnthein, Michael; Erlenkeuser, Helmut; Grootes, Pieter Meiert; Jung, Simon J A; Pflaumann, Uwe; Voelker, Antje H L (2000): Potential links between surging ice sheets, circulation changes, and the Dansgaard-Oeschger cycles in the Irminger Sea, 60-18 kyr. Paleoceanography, 15(4), 425-442, https://doi.org/10.1029/1999PA000464
Vautravers, Maryline J; Shackleton, Nicholas J; López-Martinez, Constancia; Grimalt, Joan O (2004): Gulf Stream variability during marine isotope stage 3. Paleoceanography, 19(2), PA2011, https://doi.org/10.1029/2003PA000966
Vidal, Laurence; Labeyrie, Laurent D; Cortijo, Elsa; Arnold, Maurice; Duplessy, Jean-Claude; Michel, Elisabeth; Becqué, S; van Weering, Tjeerd C E (1997): Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events. Earth and Planetary Science Letters, 146(1-2), 13-27, https://doi.org/10.1016/S0012-821X(96)00192-6
Vidal, Laurence; Schneider, Ralph R; Marchal, Olivier; Bickert, Torsten; Stocker, Thomas F; Wefer, Gerold (1999): Link between the North and South Atlantic during the Heinrich events of the last galcial period. Climate Dynamics, 15(12), 909-919, https://doi.org/10.1007/s003820050321
Vink, Annemiek; Rühlemann, Carsten; Zonneveld, Karin A F; Mulitza, Stefan; Hüls, Matthias; Willems, Helmut (2001): Shifts in the Position of the North Equatorial Current and Rapid Productivity Changes in the western Tropical Atlantic during the Last Glacial. Paleoceanography, 16(5), 479-490, https://doi.org/10.1029/2000PA000582
Voelker, Antje H L (1999): Zur Deutung der Dansgaard-Oeschger Ereignisse in ultra-hochauflösenden Sedimentprofilen aus dem Europäischen Nordmeer (Dansgaard-Oeschger events in ultra-high resolution sediment records from the Nordic Seas). Berichte-Reports, Institut für Geowissenschaften, Universität Kiel, 9, 278 pp, https://doi.org/10.2312/reports-ifg.1999.9
Voelker, Antje H L; de Abreu, Lucia (2011): A Review of Abrupt Climate Change Events in the Northeastern Atlantic Ocean (Iberian Margin): Latitudinal, Longitudinal and Vertical Gradients. In: Rashid, H; Polyak, L; Mosley-Thompson, E (eds.), Abrupt Climate Change: Mechanisms, Patterns, and Impacts. Geophysical Monograph Series (AGU, Washington D.C.), 193, 15-37, https://doi.org/10.1029/2010GM001021
Voelker, Antje H L; de Abreu, Lucia; Schönfeld, Joachim; Erlenkeuser, Helmut; Abrantes, Fatima F (2009): Hydrographic conditions along the western Iberian margin during marine isotope stage 2. Geochemistry, Geophysics, Geosystems, 10, Q12U08, https://doi.org/10.1029/2009GC002605
Voelker, Antje H L; Haflidason, Haflidi (2015): Refining the Icelandic tephrachronology of the last glacial period – The deep-sea core PS2644 record from the southern Greenland Sea. Global and Planetary Change, 131, 35-62, https://doi.org/10.1016/j.gloplacha.2015.05.001
Vogelsang, Elke; Sarnthein, Michael; Pflaumann, Uwe (2001): d18O Stratigraphy, chronology, and sea surface temperatures of Atlantic sediment records (GLAMAP-2000 Kiel). Berichte-Reports, Institut für Geowissenschaften, Universität Kiel, 13, 13+244 pp., https://doi.org/10.2312/reports-ifg.2001.13
Voigt, Ines; Cruz, Anna Paula Soares; Mulitza, Stefan; Chiessi, Cristiano Mazur; Mackensen, Andreas; Lippold, Jörg; Antz, Benny; Zabel, Matthias; Zhang, Yancheng; Barbosa, Catia F; Tisserand, Amandine (2017): Variability in mid-depth ventilation of the western Atlantic Ocean during the last deglaciation. Paleoceanography, 32(9), 948-965, https://doi.org/10.1002/2017PA003095
Waelbroeck, Claire; Duplessy, Jean-Claude; Michel, Elisabeth; Labeyrie, Laurent D; Paillard, Didier; Duprat, Josette M (2001): The timing of the last deglaciation in North Atlantic climate records. Nature, 412(6848), 724-727, https://doi.org/10.1038/35089060
Waelbroeck, Claire; Skinner, Luke C; Labeyrie, Laurent D; Duplessy, Jean-Claude; Michel, Elisabeth; Vázquez Riveiros, Natalia; Gherardi, Jeanne-Marie; Dewilde, Fabien (2011): The timing of deglacial circulation changes in the Atlantic. Paleoceanography, 26(3), PA3213, https://doi.org/10.1029/2010PA002007
Wary, Mélanie; Eynaud, Frédérique; Sabine, Christopher L; Zaragosi, Sebastien; Rossignol, Pascale E; Malaizé, Bruno; Palis, Edouard; Zumaque, Jena; Caulle, Clémence; Penaud, Aurélie; Michel, Elisabeth; Charlier, Karine (2015): Stratification of surface waters during the last glacial millennial climatic events: a key factor in subsurface and deep-water mass dynamics. Climate of the Past, 11(11), 1507-1525, https://doi.org/10.5194/cp-11-1507-2015
Weinelt, Mara; Vogelsang, Elke; Kucera, Michal; Pflaumann, Uwe; Sarnthein, Michael; Voelker, Antje H L; Erlenkeuser, Helmut; Malmgren, Bjorn (2003): Variability of North Atlantic heat transfer during MIS2. Paleoceanography, 18(3), 1065, https://doi.org/10.1029/2002PA000772
Weldeab, Syee; Lea, David W; Schneider, Ralph R; Andersen, Nils (2007): 155,000 Years of West African Monsoon and Ocean Thermal Evolution. Science, 316(5829), 1303-1307, https://doi.org/10.1126/science.1140461
Zahn, Rainer; Winn, Kyaw; Sarnthein, Michael (1986): Benthic foraminiferal d13C and accumulation rates of organic carbon: Uvigerina peregrina group and Cibicidoides wuellerstorfi. Paleoceanography, 1(1), 27-42, https://doi.org/10.1029/PA001i001p00027
Zarriess, Michelle; Mackensen, Andreas (2010): The tropical rainbelt and productivity changes off northwest Africa: a 31,000-year high-resolution record. Marine Micropaleontology, 76(3-4), 76-91, https://doi.org/10.1016/j.marmicro.2010.06.001
Zhang, Yancheng; Chiessi, Cristiano Mazur; Mulitza, Stefan; Zabel, Matthias; Trindade, Ricardo F; Hollanda, Maria Helena B M; Dantas, Elton L; Govin, Aline; Tiedemann, Ralf; Wefer, Gerold (2015): Origin of increased terrigenous supply to the NE South American continental margin during Heinrich Stadial 1 and the Younger Dryas. Earth and Planetary Science Letters, 432, 493-500, https://doi.org/10.1016/j.epsl.2015.09.054
Ziegler, Martin; Diz, Paula; Hall, Ian R; Zahn, Rainer (2013): Millennial-scale changes in atmospheric CO2 levels linked to the Southern Ocean carbon isotope gradient and dust flux. Nature Geoscience, 6(6), 457-461, https://doi.org/10.1038/ngeo1782
Ziegler, Martin; Nürnberg, Dirk; Karas, Cyrus; Tiedemann, Ralf; Lourens, Lucas Joost (2008): Persistent summer expansion of the Atlantic Warm Pool during glacial abrupt cold events. Nature Geoscience, 1, 601-605, https://doi.org/10.1038/ngeo277
Zumaque, Jena; Eynaud, Frédérique; Zaragosi, Sebastien; Marret, Fabienne; Matsuzaki, Hiroyuki; Kissel, Catherine; Roche, Didier M; Malaizé, Bruno; Michel, Elisabeth; Billy, Isabelle; Richter, Thomas; Palis, Edouard (2012): An ocean–ice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway. Climate of the Past, 8(6), 1997-2017, https://doi.org/10.5194/cp-8-1997-2012
Coverage:
Median Latitude: 21.456630 * Median Longitude: -25.634783 * South-bound Latitude: -53.010000 * West-bound Longitude: -87.120000 * North-bound Latitude: 67.870000 * East-bound Longitude: 29.240000
Date/Time Start: 1971-12-03T00:00:00 * Date/Time End: 2012-03-08T16:07:00
Minimum ALTITUDE: -5010 m * Maximum ALTITUDE: -426 m
Event(s):
94-609  * Latitude: 49.877800 * Longitude: -24.238200 * Date/Time: 1983-07-22T00:00:00 * Elevation: -3884.0 m * Penetration: 399.4 m * Recovery: 301.4 m * Location: North Atlantic/FLANK * Campaign: Leg94 * Basis: Glomar Challenger * Method/Device: Drilling/drill rig (DRILL) * Comment: 40 cores; 380.2 m cored; 19.2 m drilled; 79.3 % recovery
162-983  * Latitude: 60.403500 * Longitude: -23.640667 * Date/Time Start: 1995-07-21T00:00:00 * Date/Time End: 1995-07-24T00:00:00 * Elevation: -1983.7 m * Penetration: 766.5 m * Recovery: 798 m * Location: South Atlantic Ocean * Campaign: Leg162 * Basis: Joides Resolution * Method/Device: Composite Core (COMPCORE) * Comment: 82 cores; 766.5 m cored; 0 m drilled; 104.1% recovery
165-1002  * Latitude: 10.706100 * Longitude: -65.169617 * Date/Time Start: 1996-02-18T00:00:00 * Date/Time End: 1996-02-20T00:00:00 * Elevation: -892.9 m * Penetration: 516.6 m * Recovery: 529.3 m * Location: Cayman Rise, Caribbean Sea * Campaign: Leg165 * Basis: Joides Resolution * Method/Device: Composite Core (COMPCORE) * Comment: 57 cores; 516.6 m cored; 0 m drilled; 102.5% recovery
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
Event labelEventWaelbroeck, Claire
CoreCoreWaelbroeck, Claire
LATITUDELatitudeWaelbroeck, ClaireGeocode
LONGITUDELongitudeWaelbroeck, ClaireGeocode
ALTITUDEAltitudemWaelbroeck, ClaireGeocode – depth
CommentCommentWaelbroeck, ClaireBased on deep sea coral data given in Roberts et al., 2016
Method commentMethod commWaelbroeck, ClaireEntirely AMS-based
Method commentMethod commWaelbroeck, ClaireSST alignment to NGRIP
Method commentMethod commWaelbroeck, ClaireMS aligment to NGRIP
10 Method commentMethod commWaelbroeck, ClaireSST alignment to EDML
11 Method commentMethod commWaelbroeck, ClaireCombined AMS + SST alignment to NGRIP
12 Method commentMethod commWaelbroeck, ClaireCombined AMS + alignment to speleothems
13 Method commentMethod commWaelbroeck, ClaireUse of tephra chronological markers
14 Persistent IdentifierPersistent IdentifierWaelbroeck, ClaireAge-depth model
15 Uniform resource locator/link to graphicURL graphicWaelbroeck, ClaireAge model input
16 Uniform resource locator/link to graphicURL graphicWaelbroeck, ClaireAge model
17 Reference/sourceReferenceWaelbroeck, Claire
Size:
563 data points

Data

Download dataset as tab-delimited text — use the following character encoding:


Event

Core

Latitude

Longitude

Altitude [m]
(depth)

Comment
(Based on deep sea coral data ...)

Method comm
(Entirely AMS-based)

Method comm
(SST alignment to NGRIP)

Method comm
(MS aligment to NGRIP)
10 
Method comm
(SST alignment to EDML)
11 
Method comm
(Combined AMS + SST alignment ...)
12 
Method comm
(Combined AMS + alignment to s...)
13 
Method comm
(Use of tephra chronological m...)
14 
Persistent Identifier
(Age-depth model)
15 
URL graphic
(Age model input)
16 
URL graphic
(Age model)
17 
Reference
PS2644-5 PS2644-567.87-21.77-777XXdoi.pangaea.dePS2644-5_age_depth_input.txtPS2644-5_admodel.pdfVoelker and Haflidason, 2015, Voelker, 1999
MD95-2010 MD95-201066.684.57-1226XXdoi.pangaea.deMD95-2010_age_depth_input.txtMD95-2010_admodel.pdfAbbott et al., 2018, Dokken and Jansen, 1999
RAPiD-10-1P RAPID-10-1P62.98-17.59-1237XXdoi.pangaea.deRAPID-10-1P_age_depth_input.txtRAPID-10-1P_admodel.pdfThornalley et al., 2010
ENAM93-21 ENAM93-2162.74-4.00-1020XXdoi.pangaea.deENAM93-21_age_depth_input.txtENAM93-21_admodel.pdfRasmussen et al., 1996, Rasmussen et al., 1998
MD99-2284 MD99-228462.37-0.98-1500Xdoi.pangaea.deMD99-2284_age_depth_input.txtMD99-2284_admodel.pdfDokken et al., 2013, Sadatzki et al., 2019
SU90-24 SU90-2462.07-37.03-2085Xdoi.pangaea.deSU90-24_age_depth_input.txtSU90-24_admodel.pdfElliot et al., 2002
RAPiD-17-5P RAPID-17-5P61.48-19.54-2303XXdoi.pangaea.deRAPID-17-5P_age_depth_input.txtRAPID-17-5P_admodel.pdfThornalley et al., 2010
MD95-2014 MD95-201460.58-22.08-2397Xdoi.pangaea.deMD95-2014_age_depth_input.txtMD95-2014_admodel.pdfManthé, 1998
162-983 ODP Site 98360.40-23.64-1984Xdoi.pangaea.deODP983_age_depth_input.txtODP983_admodel.pdfBarker et al., 2015, Raymo et al., 2004
V29-202 V29-20260.38-20.97-2658Xdoi.pangaea.deV29-202_age_depth_input.txtV29-202_admodel.pdfOppo and Lehman, 1995
MD99-2281 MD99-228160.34-9.46-1197Xdoi.pangaea.deMD99-2281_age_depth_input.txtMD99-2281_admodel.pdfWary et al., 2015, Zumaque et al., 2012
SO82_5-2 SO82-5-259.17-30.91-1416XXdoi.pangaea.deSO82-5-2_age_depth_input.txtSO82-5-2_admodel.pdfBrendryen et al., 2011, van Kreveld et al., 2000
DAPC2 DAPC258.97-9.61-1709Xdoi.pangaea.deDAPC2_age_depth_input.txtDAPC2_admodel.pdfKnutz et al., 2007
MD95-2006 MD95-200657.03-10.06-2122XXdoi.pangaea.deMD95-2006_age_depth_input.txtMD95-2006_admodel.pdfAustin and Hibbert, 2012
NA87-22 NA87-2255.50-14.70-2161Xdoi.pangaea.deNA87-22_age_depth_input.txtNA87-22_admodel.pdfDuplessy et al., 1992, Vidal et al., 1997, Waelbroeck et al., 2001, Waelbroeck et al., 2011, this study
GIK23415-9 GIK23415-953.18-19.15-2472XXdoi.pangaea.deGIK23415-9_age_depth_input.txtGIK23415-9_admodel.pdfAbbott et al., 2018, Vogelsang, 2001, Weinelt et al., 2003
MD01-2461 MD01-246151.75-12.92-1153XXdoi.pangaea.deMD01-2461_age_depth_input.txtMD01-2461_admodel.pdfAbbott et al., 2018, Peck et al., 2008, Peck et al., 2006, Peck et al., 2007
94-609 DSDP Site 60949.88-24.23-3883XXdoi.pangaea.deDSDP609_age_depth_input.txtDSDP609_admodel.pdfBond et al., 1993, Broecker, 1990
MD95-2002 MD95-200247.45-8.53-2174Xdoi.pangaea.deMD95-2002_age_depth_input.txtMD95-2002_admodel.pdfEynaud et al., 2007, Toucanne et al., 2015
MD04-2845 MD04-284545.35-5.22-4175Xdoi.pangaea.deMD04-2845_age_depth_input.txtMD04-2845_admodel.pdfDaniau et al., 2009, Sanchez Goni et al., 2008
SU92-03 SU92-0343.20-10.11-3005Xdoi.pangaea.deSU92-03_age_depth_input.txtSU92-03_admodel.pdfSalgueiro et al., 2010
SU90-08 SU90-0843.05-30.04-3080Xdoi.pangaea.deSU90-08_age_depth_input.txtSU90-08_admodel.pdfVidal et al., 1997
MD03-2697 MD03-269742.16-9.70-2164Xdoi.pangaea.deMD03-2697_age_depth_input.txtMD03-2697_admodel.pdfNaughton et al., 2007, Naughton et al., 2016
MD99-2331 MD99-233142.15-9.68-2120Xdoi.pangaea.deMD99-2331_age_depth_input.txtMD99-2331_admodel.pdfNaughton et al., 2009, Salgueiro et al., 2014, Voelker and de Abreu, 2011
CH69-K09 CH69-K0941.76-47.35-4100Xdoi.pangaea.deCH69-K09_age_depth_input.txtCH69-K09_admodel.pdfLabeyrie et al., 1999
MD95-2040 MD95-204040.58-9.86-2465Xdoi.pangaea.deMD95-2040_age_depth_input.txtMD95-2040_admodel.pdfde Abreu et al., 2003, Salgueiro et al., 2010, Schönfeld et al., 2003
MD95-2039 MD95-203940.58-10.35-3381Xdoi.pangaea.deMD95-2039_age_depth_input.txtMD95-2039_admodel.pdfSalgueiro et al., 2014, Schönfeld et al., 2003
MD03-2698 MD03-269838.24-10.39-4602Xdoi.pangaea.deMD03-2698_age_depth_input.txtMD03-2698_admodel.pdfLebreiro et al., 2009, this study
KF16 GEOFAR-KF1638.00-31.13-3050Xdoi.pangaea.deGEOFAR-KF16_age_depth_input.txtGEOFAR-KF16_admodel.pdfRepschläger et al., 2017
MD08-3180 MD08-3180Q38.00-31.13-3064Xdoi.pangaea.deMD08-3180Q_age_depth_input.txtMD08-3180Q_admodel.pdfSarnthein et al., 2015, Schwab et al., 2012
MD95-2041 MD95-204137.83-9.52-1123Xdoi.pangaea.deMD95-2041_age_depth_input.txtMD95-2041_admodel.pdfSalgueiro et al., 2014, Voelker et al., 2009, Voelker and de Abreu, 2011
MD95-2042 MD95-204237.80-10.17-3146Xdoi.pangaea.deMD95-2042_age_depth_input.txtMD95-2042_admodel.pdfBard et al., 2013, Chabaud et al., 2014, Salgueiro et al., 2014, Shackleton et al., 2000
MD99-2334 MD99-2334K37.80-10.17-3146Xdoi.pangaea.deMD99-2334K_age_depth_input.txtMD99-2334K_admodel.pdfSkinner et al., 2003, Skinner and Shackleton, 2004
SU81-18 SU81-1837.77-10.18-3135Xdoi.pangaea.deSU81-18_age_depth_input.txtSU81-18_admodel.pdfBard et al., 1987, Waelbroeck et al., 2001
KF13 GEOFAR-KF1337.58-31.84-2690Xdoi.pangaea.deGEOFAR-KF13_age_depth_input.txtGEOFAR-KF13_admodel.pdfRichter, 1998
MD95-2037 MD95-203737.09-32.03-2159Xdoi.pangaea.deMD95-2037_age_depth_input.txtMD95-2037_admodel.pdfGherardi et al., 2009, Labeyrie et al., 2005, this study
S94-2-KS04 S94-2-KS0436.87-29.18-3400Xdoi.pangaea.deS94-2-KS04_age_depth_input.txtS94-2-KS04_admodel.pdfthis study
KNR197-10-GGC17 KNR197-10-17GGC36.41-48.54-5010Xdoi.pangaea.deKNR197-10-17GGC_age_depth_input.txtKNR197-10-17GGC_admodel.pdfKeigwin and Swift, 2017
M39/1_08-3 M39008-336.38-7.07-577Xdoi.pangaea.deM39008-3_age_depth_input.txtM39008-3_admodel.pdfCacho et al., 2001, Eynaud et al., 2009
MD08-3227G MD08-322735.27-6.80-642Xdoi.pangaea.deMD08-3227_age_depth_input.txtMD08-3227_admodel.pdfDelivet, 2016, this study
GIK15669-1 GIK15669-134.89-7.82-2022Xdoi.pangaea.deGIK15669-1_age_depth_input.txtGIK15669-1_admodel.pdfSarnthein et al., 1994
MD04-2805CQ MD04-2805Q34.52-7.02-859Xdoi.pangaea.deMD04-2805Q_age_depth_input.txtMD04-2805Q_admodel.pdfPenaud et al., 2010, this study
OCE326-GGC5 OCE326-GGC533.70-57.58-4550Xdoi.pangaea.deOCE326-GGC5_age_depth_input.txtOCE326-GGC5_admodel.pdfCarlson et al., 2008, McManus et al., 2004
KNR31GPC5 KNR31-GPC533.69-57.63-4583Xdoi.pangaea.deKNR31-GPC5_age_depth_input.txtKNR31-GPC5_admodel.pdfKeigwin et al., 1991, Keigwin and Jones, 1994, Waelbroeck et al., 2011
KNR140-51GGC KNR140-51GGC32.78-76.28-1790Xdoi.pangaea.deKNR140-2-51GGC_age_depth_input.txtKNR140-2-51GGC_admodel.pdfKeigwin, 2004, Rasmussen and Thomsen, 2012
172-1060 ODP Site 106030.77-74.47-3481Xdoi.pangaea.deODP1060_age_depth_input.txtODP1060_admodel.pdfHoogakker et al., 2007, Vautravers et al., 2004
MD02-2575 MD02-257529.00-87.12-847Xdoi.pangaea.deMD02-2575_age_depth_input.txtMD02-2575_admodel.pdfNürnberg et al., 2008, Ziegler et al., 2008
GeoB4240-2 GeoB4240-228.89-13.23-1358Xdoi.pangaea.deGeoB4240-2_age_depth_input.txtGeoB4240-2_admodel.pdfHenderiks et al., 2002
GeoB5546-2 GeoB5546-227.54-13.74-1172Xdoi.pangaea.deGeoB5546-2_age_depth_input.txtGeoB5546-2_admodel.pdfKuhlmann et al., 2004, Plewa et al., 2006
OCE205-2-100GGC OCE205-2-100GGC26.10-78.00-1045Xdoi.pangaea.deOCE205-2-100GGC_age_depth_input.txtOCE205-2-100GGC_admodel.pdfCame et al., 2007
OCE205-2-103GGC OCE205-2-103GGC26.07-78.06-965Xdoi.pangaea.deOCE205-2-103GGC_age_depth_input.txtOCE205-2-103GGC_admodel.pdfCame et al., 2003, Curry et al., 1999, Marchitto et al., 1998
GIK12392-1 GIK12392-125.17-16.85-2575Xdoi.pangaea.deGIK12392-1_age_depth_input.txtGIK12392-1_admodel.pdfVogelsang, 2001, Zahn et al., 1986
KNR166-2-26 KNR166-2-26JPC24.33-83.25-546Xdoi.pangaea.deKNR166-2-26JPC_age_depth_input.txtKNR166-2-26JPC_admodel.pdfLynch-Stieglitz et al., 2014, Lynch?Stieglitz et al., 2011, Valley et al., 2017
KNR166-2-29 KNR166-2-29JPC24.28-83.27-648Xdoi.pangaea.deKNR166-2-29JPC_age_depth_input.txtKNR166-2-29JPC_admodel.pdfLynch?Stieglitz et al., 2011
KNR166-2-31 KNR166-2-31JPC24.22-83.30-751Xdoi.pangaea.deKNR166-2-31JPC_age_depth_input.txtKNR166-2-31JPC_admodel.pdfCame et al., 2008, Lynch?Stieglitz et al., 2011
KNR166-2-73 KNR166-2-73GGC23.74-79.43-542Xdoi.pangaea.deKNR166-2-73GGC_age_depth_input.txtKNR166-2-73GGC_admodel.pdfLynch?Stieglitz et al., 2011
GeoB7920-2 GeoB7920-220.75-18.58-2278Xdoi.pangaea.deGeoB7920-2_age_depth_input.txtGeoB7920-2_admodel.pdfCollins et al., 2011, Papenfuss, 1999
MD03-2705 MD03-270518.08-21.15-3085Xdoi.pangaea.deMD03-2705_age_depth_input.txtMD03-2705_admodel.pdfJullien et al., 2007, Skonieczny et al., 2019
CHO288-54 CHO288-5417.43-77.66-1020Xdoi.pangaea.deCHO288-54_age_depth_input.txtCHO288-54_admodel.pdfthis study
GeoB9508-5 GeoB9508-515.50-17.95-2384Xdoi.pangaea.deGeoB9508-5_age_depth_input.txtGeoB9508-5_admodel.pdfMulitza et al., 2008
GeoB9526-5 GeoB9526-512.43-18.05-3233Xdoi.pangaea.deGeoB9526-5_age_depth_input.txtGeoB9526-5_admodel.pdfZarriess and Mackensen, 2010
M35003-4 M35003-412.09-61.24-1299Xdoi.pangaea.deM35003-4_age_depth_input.txtM35003-4_admodel.pdfVink et al., 2001
165-1002 ODP Site 100210.71-65.17-892Xdoi.pangaea.deODP1002_age_depth_input.txtODP1002_admodel.pdfHughen et al., 2006
GeoB16224-1 GeoB16224-16.65-52.08-2510Xdoi.pangaea.deGeoB16224-1_age_depth_input.txtGeoB16224-1_admodel.pdfVoigt et al., 2017, Zhang et al., 2015
EW9209-1JPC EW9209-1JPC5.90-44.19-4056Xdoi.pangaea.deEW9209-1JPC_age_depth_input.txtEW9209-1JPC_admodel.pdfCurry et al., 1999
GeoB1515-1 GeoB1515-14.24-43.07-3129Xdoi.pangaea.deGeoB1515-1_age_depth_input.txtGeoB1515-1_admodel.pdfRühlemann et al., 1996, Vidal et al., 1999
CH22KW31 CH22-KW313.525.57-1181Xdoi.pangaea.deCH22-KW31_age_depth_input.txtCH22-KW31_admodel.pdfPastouret et al., 1978
MD03-2707 MD03-27072.509.40-1295Xdoi.pangaea.deMD03-2707_age_depth_input.txtMD03-2707_admodel.pdfWeldeab et al., 2007
GeoB16206-1 GeoB16206-1-1.58-43.02-1367Xdoi.pangaea.deGeoB16206-1_age_depth_input.txtGeoB16206-1_admodel.pdfVoigt et al., 2017, Zhang et al., 2015
GeoB16202-2 GeoB16202-2-1.91-41.59-2247Xdoi.pangaea.deGeoB16202-2_age_depth_input.txtGeoB16202-2_admodel.pdfMulitza et al., 2017
MD09-3256 MD09-3256Q-3.55-35.39-3537Xdoi.pangaea.deMD09-3256Q_age_depth_input.txtMD09-3256Q_admodel.pdfBurckel et al., 2016, this study
GS07-150-17/1GC-A GS07-150-17/1GC-A-4.22-37.08-1000Xdoi.pangaea.deGS07-150-17-1GCA_age_depth_input.txtGS07-150-17-1GCA_admodel.pdfFreeman et al., 2015, Voigt et al., 2017
MD09-3246 MD09-3246-4.23-37.10-892Xdoi.pangaea.deMD09-3246_age_depth_input.txtMD09-3246_admodel.pdfthis study
GeoB3910-2 GeoB3910-2-4.25-36.35-2362Xdoi.pangaea.deGeoB3910-2_age_depth_input.txtGeoB3910-2_admodel.pdfArz et al., 2001, Burckel et al., 2015, Jaeschke et al., 2007
175-1078C ODP Site 1078C-11.9213.40-426Xdoi.pangaea.deODP1078C_age_depth_input.txtODP1078C_admodel.pdfKim et al., 2003
GeoB1023-5 GeoB1023-5-17.1611.01-1978Xdoi.pangaea.deGeoB1023-5_age_depth_input.txtGeoB1023-5_admodel.pdfKim et al., 2012
GeoB3202-1 GeoB3202-1-21.62-39.98-1090Xdoi.pangaea.deGeoB3202-1_age_depth_input.txtGeoB3202-1_admodel.pdfBehling et al., 2002
GeoB1711-4 GeoB1711-23.3212.38-1967Xdoi.pangaea.deGeoB1711_age_depth_input.txtGeoB1711_admodel.pdfBalmer et al., 2016, Vidal et al., 1999
MD08-3167 MD08-3167-23.3212.38-1948Xdoi.pangaea.deMD08-3167_age_depth_input.txtMD08-3167_admodel.pdfCollins et al., 2014, this study
GL1090 GL1090-24.90-42.50-2225Xdoi.pangaea.deGL1090_age_depth_input.txtGL1090_admodel.pdfSantos et al., 2017
175-1084 ODP Site 1084-25.5113.03-1992Xdoi.pangaea.deODP1084_age_depth_input.txtODP1084_admodel.pdfFarmer et al., 2005
GeoB6201-5 GeoB6201-5-26.67-46.44-475Xdoi.pangaea.deGeoB6201-5_age_depth_input.txtGeoB6201-5_admodel.pdfPortilho-Ramos et al., 2018
KNR159-5-36GGC KNR159-5-36GGC-27.50-46.50-1268Xdoi.pangaea.deKNR159-5-36GGC_age_depth_input.txtKNR159-5-36GGC_admodel.pdfCame et al., 2003
KNR159-5-42JPC KNR159-5-42JPC-27.76-46.63-2296Xdoi.pangaea.deKNR159-5-42JPC_age_depth_input.txtKNR159-5-42JPC_admodel.pdfHoffman and Lund, 2012
GeoB1720-2 GeoB1720-2-29.0013.84-1997Xdoi.pangaea.deGeoB1720-2_age_depth_input.txtGeoB1720-2_admodel.pdfDickson et al., 2009
MD02-2592 MD02-2592-32.0914.47-2869Xdoi.pangaea.deMD02-2592_age_depth_input.txtMD02-2592_admodel.pdfthis study
MD02-2594 MD02-2594-34.7117.34-2440Xdoi.pangaea.deMD02-2594_age_depth_input.txtMD02-2594_admodel.pdfMartínez?Méndez et al., 2010
MD16-3511 MD16-3511Q-35.3629.24-4435Xdoi.pangaea.deMD16-3511Q_age_depth_input.txtMD16-3511Q_admodel.pdfthis study
TNO57-21 TNO57-21-41.107.80-4981Xdoi.pangaea.deTNO57-21_age_depth_input.txtTNO57-21_admodel.pdfBarker and Diz, 2014
MD02-2588 MD02-2588Q-41.3325.83-2907Xdoi.pangaea.deMD02-2588Q_age_depth_input.txtMD02-2588Q_admodel.pdfZiegler et al., 2013
MD07-3076 MD07-3076Q-44.15-14.22-3770Xdoi.pangaea.deMD07-3076Q_age_depth_input.txtMD07-3076Q_admodel.pdfGottschalk et al., 2015, Skinner et al., 2010
JR244-GC528 JR244-GC528-53.01-58.04-59814C dates calibrated using reservoir ages at 600 m water depthXdoi.pangaea.deJR244-GC528_age_depth_input.txtJR244-GC528_admodel.pdfRoberts et al., 2016