Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Engel, Friederike G; Lewandowska, Aleksandra M; Eggers, Sarah L; Matthiessen, Birte (2017): Manipulation experiment on phytoplankton diversity, species composition and biomass. PANGAEA, https://doi.org/10.1594/PANGAEA.881071, Supplement to: Engel, FG et al. (2017): Manipulation of Non-random Species Loss in Natural Phytoplankton: Qualitative and Quantitative Evaluation of Different Approaches. Frontiers in Marine Science, 4, https://doi.org/10.3389/fmars.2017.00317

Always quote above citation when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Ecological research in recent decades revealed that species loss has a predominantly negative effect on ecosystem functioning and stability. Most of these studies were based on random species loss scenarios, but extinctions in nature are not random. Recent experimental studies using macroscopic communities largely advanced knowledge about the effects of non-random species loss. However, in microscopic communities like the phytoplankton, implementing realistic species loss scenarios is challenging and experimental data are scarce. Creating more realistic experiments to study the role of phytoplankton diversity for ecosystem functioning is particularly important, as they provide up to 50% of global primary productivity, form the basis of all pelagic food webs, and are important for biogeochemical cycling. In this study, we experimentally tested and evaluated three methods for non-random species loss in a natural marine phytoplankton community. Dilution, filtration, and heat stress removed the targeted rare, large, and sensitive species, respectively. All these species groups are extremely vulnerable to extinction in future climate scenarios and play important roles in the communities. Dilution and filtration with a fine mesh additionally decreased initial biomass, which increased the variability of species left in the respective replicates. The methods tested in this study can be used to non-randomly manipulate phytoplankton species diversity in communities used for experiments. However, in studies where species identities are more important than species richness, the dilution and filtration methods should be modified to eliminate the effect of decreasing initial biomass.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethodComment
1SamplingSamplingEngel, Friederike G
2TreatmentTreatEngel, Friederike G
3ReplicateReplicateEngel, Friederike G
4IdentificationIDEngel, Friederike G
5TreatmentTreatEngel, Friederike GDilution: 0=no dilution, 1=weak dilution, 2=strong dilution
6TreatmentTreatEngel, Friederike GFiltration: 0=no filtration, 1=weak filtration, 2=strong filtration
7TreatmentTreatEngel, Friederike GStress: yes=heat stress applied, no=no heat stress applied
8CellCell#/mlEngel, Friederike G
9BiovolumeBiovolmm3/lEngel, Friederike G
10Species richnessSEngel, Friederike G
11Shannon Diversity IndexH'Engel, Friederike G
12Pielou evenness indexJ'Engel, Friederike G
13Dissimilarity indexDISSEngel, Friederike Gwithin treatment variation calculated from dissimilarites based on Bray-Curtis dissimilarity matrix
14Skeletonema costatum, biovolumeS. costatum biovolµm3/mlEngel, Friederike G
15Detonula confervacea, biovolumeD. confervacea biovolµm3/mlEngel, Friederike G
16Chaetoceros spp., biovolumeChaetoceros spp. biovolµm3/mlEngel, Friederike G
17Thalassiosira spp., biovolumeThalassiosira spp. biovolµm3/mlEngel, Friederike G
18Heterocapsa rotundata, biovolumeH. rotundata biovolµm3/mlEngel, Friederike G
19Plagioselmis sp., biovolumePlagioselmis sp. biovolµm3/mlEngel, Friederike G
20Thalassionema nitzschioides, biovolumeT. nitzschioides biovolµm3/mlEngel, Friederike G
21Thalassiosira rotula, biovolumeT. rotula biovolµm3/mlEngel, Friederike G
22Nitzschia microcephala, biovolumeN. microcephala biovolµm3/mlEngel, Friederike G
23Fragilaria sp., biovolumeFragilaria sp. biovolµm3/mlEngel, Friederike G
24Asterionella formosa, biovolumeA. formosa biovolµm3/mlEngel, Friederike G
25Ceratium fusus, biovolumeC. fusus biovolµm3/mlEngel, Friederike G
26Eutreptiella sp., biovolumeEutreptiella sp. biovolµm3/mlEngel, Friederike G
27Pseudo-nitzschia pungens, biovolumeP-n pungens biovolµm3/mlEngel, Friederike G
28Ditylum brightwellii, biovolumeD. brightwellii biovolµm3/mlEngel, Friederike G
29Navicula spp., biovolumeNavicula spp. biovolµm3/mlEngel, Friederike G
30Cylindrotheca closterium, biovolumeC. closterium biovolµm3/mlEngel, Friederike G
31Gymnodinium sp., biovolumeGymnodinium sp. biovolµm3/mlEngel, Friederike G
32Dictyocha speculum, biovolumeD. speculum biovolµm3/mlEngel, Friederike G
33Scenedesmus sp., biovolumeScenedesmus sp. biovolµm3/mlEngel, Friederike G
34Teleaulax sp., biovolumeTeleaulax sp. biovolµm3/mlEngel, Friederike G
35Dinobryon divergens, biovolumeD. divergens biovolµm3/mlEngel, Friederike G
36Gyrodinium sp., biovolumeGyrodinium sp. biovolµm3/mlEngel, Friederike G
37Tetraedron minimum, biovolumeT. minimum biovolµm3/mlEngel, Friederike G
38Snowella sp., biovolumeSnowella sp. biovolµm3/mlEngel, Friederike G
39Attheya decora, biovolumeA. decora biovolµm3/mlEngel, Friederike G
40Dinobryon faculiferum, biovolumeD. faculiferum biovolµm3/mlEngel, Friederike G
41Apedinella radians, biovolumeA. radians biovolµm3/mlEngel, Friederike G
42Pseudopedinella sp., biovolumePseudopedinella sp. biovolµm3/mlEngel, Friederike G
43Licmophora sp., biovolumeLicmophora sp. biovolµm3/mlEngel, Friederike G
44Ebria tripartita, biovolumeE. tripartita biovolµm3/mlEngel, Friederike G
45Diatomaceae centric, biovolumeDiatoma centric biovolµm3/mlEngel, Friederike G
46Coelastrum sp., biovolumeCoelastrum sp. biovolµm3/mlEngel, Friederike G
47Brockmanniella brockmannii, biovolumeB. brockmannii biovolµm3/mlEngel, Friederike G
Size:
1858 data points

Download Data

Download dataset as tab-delimited text (use the following character encoding: )

View dataset as HTML