Not logged in
Data Publisher for Earth & Environmental Science

Antonova, Sofia; Kääb, Andreas; Heim, Birgit; Langer, Moritz; Boike, Julia (2016): TerraSAR-X backscatter and 11-day interferometric coherence time series of one year (2012-2013) for different landscape types in the Lena River Delta, Siberia, link to shape file. PANGAEA,, In supplement to: Antonova, S et al. (2016): Spatio-temporal variability of X-band radar backscatter and coherence over the Lena River Delta, Siberia. Remote Sensing of Environment, 182, 169-191,

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Time series of TerraSAR-X backscatter intensity and 11-day interferometric coherence with high temporal resolution have been used to interpret major seasonal land surface changes in a variety of tundra environments, namely an area of wet polygonal tundra, a drier Ice Complex upland area, a recently drained well-vegetated lake basin, a partly well-vegetated floodplain, a bare sandbank, and a very dry area of rocky outcrops. Seasonal variations in intensity and coherence were evaluated in the context of meteorological conditions such as air temperatures, precipitation and snow cover status. The TSX signal appeared to have very limited penetration through vegetation and the observed variations in backscatter and coherence were therefore mainly attributed to processes in the upper layer of vegetation. Variations in the TSX backscatter intensities were mostly moderate throughout the annual cycle. Backscatter was found to be insensitive to ground freezing and thawing as well as being generally insensitive to precipitation, but it was sensitive to (i) an individual rain event at the time of SAR acquisition, (ii) an individual snow shower coinciding with unusually high air temperature, and (iii) the spring melt of the snowpack (likely with a refrozen icy crust on the surface). Flooding of the sandbank was clearly detectable from extremely low backscatter values. The selected regions of interest (ROIs) demonstrated generally good separability on the basis of differences in their backscatter intensities: rough and very sparsely vegetated rocky outcrops yielded the highest backscatter and the smooth barren sandbank yielded the lowest backscatter. The backscatter from the vegetated ROIs yielding intermediate values, with the less vegetated ROIs returning lower backscatter.
Interferometric coherence comprises both amplitude and phase signal components and should therefore be more sensitive to surface changes than backscatter intensity alone, especially at the X-band frequency, an assumption that is strongly supported by the results of our investigations. The coherence decreased dramatically with the onset of snow cover in all of the landscape types. The snow melt period was also clearly identified by another reduction in coherence. The snow shower that affected the backscatter also caused a reduction in coherence. January and February yielded the highest coherence values for all of the ROIs (with mean values of up to 0.9 for the rocky outcrops).
Median Latitude: 72.950000 * Median Longitude: 126.550000 * South-bound Latitude: 72.000000 * West-bound Longitude: 123.600000 * North-bound Latitude: 73.900000 * East-bound Longitude: 129.500000
LenaDelta * Latitude Start: 73.900000 * Longitude Start: 123.600000 * Latitude End: 72.000000 * Longitude End: 129.500000 * Location: Lena Delta, Siberia, Russia
Input dataset includes 35 repeat-pass StripMap TerraSAR-X images acquired over the central Lena River Delta, Siberia, from 3 August 2012 to 14 September 2013 every 11 days with a few gaps. TerraSAR-X is a Synthetic Aperture Radar operating in X-band (wavelength 3.1 cm, frequency 9.6 GHz). The scene size measured approximately 18 × 56 km. The orbit was in descending pass and the radar was right-looking. The acquisition incidence angle was approximately 31° and the polarization channel was HH for all used images. Local time of acquisitions was 08:34 (UTC: 22:34). 35 backscatter intensity images, calibrated to sigma nought and converted to decibels, were obtained. 31 coherence images, each with a temporal baseline of 11 days, were obtained from interferometric pairs of coregistered TerraSAR-X images.
Six regions of interest (ROIs), each with dimensions of 30 × 30 pixels, within the SAR scene were chosen. These ROIs represented typical different landscape types that were likely to exhibit different seasonal variations in backscatter and coherence. They comprised an area of wet polygonal tundra, an Ice Complex upland area, a well-vegetated recently drained lake basin, a floodplain area, part of a sandbank, and an area of rocky outcrops to the southwest of Delta. The provided dataset includes two .zip files (for intensity and coherence data), each containing six folders named according to the ROIs. Each of six folders contains the entire time series of intensity or coherence for extracted ROI as .txt files. Additionally, shape file containing the extension of ROIs, is provided.
3.3 MBytes

Download Data

Download dataset