Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Shama, Lisa N S; Mark, Felix Christopher; Strobel, Anneli; Lokmer, Ana; John, Uwe; Wegner, K Mathias (2016): Transgenerational effects persist down the maternal line in marine sticklebacks: gene expression matches physiology in a warming ocean, supplementary material [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.857796, Supplement to: Shama, LNS et al. (2016): Transgenerational effects persist down the maternal line in marine sticklebacks: gene expression matches physiology in a warming ocean. Evolutionary Applications, 9(9), 1096-1111, https://doi.org/10.1111/eva.12370

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX Citation

Abstract:
Transgenerational effects can buffer populations against environmental change, yet little is known about underlying mechanisms, their persistence, or the influence of environmental cue timing. We investigated mitochondrial respiratory capacity (MRC) and gene expression of marine sticklebacks that experienced acute or developmental acclimation to simulated ocean warming (21°C) across three generations. Previous work showed that acute acclimation of grandmothers to 21°C led to lower (optimised) offspring MRCs. Here, developmental acclimation of mothers to 21°C led to higher, but more efficient offspring MRCs. Offspring with a 21°Cx17°C grandmother-mother environment mismatch showed metabolic compensation: their MRCs were as low as offspring with a 17°C thermal history across generations. Transcriptional analyses showed primarily maternal but also grandmaternal environment effects: genes involved in metabolism and mitochondrial protein biosynthesis were differentially expressed when mothers developed at 21°C, whereas 21°C grandmothers influenced genes involved in hemostasis and apoptosis. Genes involved in mitochondrial respiration all showed higher expression when mothers developed at 21° and lower expression in the 21°Cx17°C group, matching the phenotypic pattern for MRCs. Our study links transcriptomics to physiology under climate change, and demonstrates that mechanisms underlying transgenerational effects persist across multiple generations with specific outcomes depending on acclimation type and environmental mismatch between generations.
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1GroupGroupShama, Lisa N S
2Gasterosteus aculeatus, acclimation temperature, maternalG. aculeatus accl temp maternal°CShama, Lisa N Sgranddam
3Gasterosteus aculeatus, acclimation temperature, maternalG. aculeatus accl temp maternal°CShama, Lisa N Sdam
4Temperature, rearingT rear°CShama, Lisa N Soffspring rearing temperature
5Temperature, rearingT rear°CShama, Lisa N Smitochondrial respiration assay temperature
6ReplicatesRepl#Shama, Lisa N Srespiration assay replicate
7Phosphorylation system capacity, maximumOXPHOS maxpmol/s/mgShama, Lisa N S
8Electron transport system capacity, maximumETS maxpmol/s/mgShama, Lisa N S
9Phosphorylation inefficiencyLEAKpmol/s/mgShama, Lisa N S
10Net phosphorylation efficiencyP_Effpmol/s/mgShama, Lisa N Scalculated as 1-(leak/oxphos)
Size:
380 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML