RRS CHARLES DARWIN CRUISE 78
 22/04/1993 - 24/05/1993

THE NORTH ATLANTIC TRACER RELEASE EXPERIMENT (NATRE):
 FINAL SAMPLING LEG

Principal Scientist: A. J. Watson Co-Principal Investigator: J. R. Ledwell

Report prepared by: A. J. Watson, K. Van Scoy, J. R. Ledwell, C. S. Law, D. Jones, C. Marquette, T. Donaghue, S. Watts, M. I. Liddicoat, C. Fernandez, J. Bouthilette, D. Ciochetto, J. Donoghue, S. T. Bolmer, K. Tedesco, K. Smith and J. Scott

We are pleased to acknowledge the assistance of the staff of the RRS Charles Darwin under
Captain R. Bourne. Their hard work and professional skills helped ensure that this was a successful and enjoyable cruise.

Funding for NATRE is provided by the Natural Environment Research Council in the UK and the National Science Foundation in the USA.

PERSONNEL LIST

R. A. Bourne	Master
C. M. Leathe	C/O
P. Newton	2/0
R. A. Warner	2/0
J. G. Baker	R/O
I. R. Bennet	C/E
D. E. Anderson	2/E
V. E. Lovell	3/E
S. F. Dean	3/E
M. Trevaskis	CPO
T. G. Lewis	PO
A. Marren	SG. 1A
S. Jones	SG. 1A
K. R. Luckhurst	SG. 1A
J. Miller	SG. 1B
C. Hubbard	S.C.M
K. Peters	COOK
R. Edes	STWD
A. P. Lee	STWD
J. P. Taylor	STWD
I. M. Slater	MM. 1A
A. J. Watson	Chief Scientist
C. S. Law	Scientist
M. I. Liddicoa	Scientist
K. Van Scoy	Scientist
S. T. Bolmer	Scientist
J. Bouthilette	Scientist
J. Donoghue	Scientist
T. Donoghue	Scientist
C. Fernande	Scientist
C. Marquette	Scientist
K. Tedesco	Scientist
D. Ciochetto	Scientist
J. Scott	Scientist
W. K. Smith	Scientist
D. A. Jones	Scientist
S. F. Watts	Scientist
J. R. Ledwell	Scientist

INTRODUCTION AND CRUISE OBJECTIVES

This cruise was the third and last scheduled tracer documentation cruise associated with the North Atlantic Tracer Release Experiment (NATRE). The experiment is a major international exercise under the auspices of the World Ocean Circulation Experiment, Core 3 programme, in which UK, US and Canadian scientists and ships are participating. Its object is to study the rates of both vertical and horizontal mixing in the main pycnocline of the Northeast Atlantic subtropical gyre, using a release of sulphur hexafluoride $\left(\mathrm{SF}_{6}\right)$ tracer, marked by neutrally buoyant floats, and accompanied by an extensive suite of measurements of micro- and fine-structure of the kind more conventionally used to infer rates of vertical mixing. By these means the existing techniques will be validated against a direct and accurate measurement of mixing processes associated with the tracer experiment. The experiment was initiated in April/May 1992 in a two-ship exercise in which the Woods Hole vessel R/V Oceanus released 139 kg of tracer and the neutrally buoyant floats, while the Charles Darwin documented the distribution of the tracer in the first month after release (Cruise CD68). Subsequently, at six months after release, the Oceanus returned to the area and documented the distribution of about $25-33 \%$ of the tracer during October and November 1992, finding two lengthy streaks extending to about 600 km in length and typically 3 km wide by 18 m thick. An accurate measure of the vertical mixing rate during the April-October period was obtained by comparison of the CD68 data with these Oceanus observations.

The task of the present cruise was to document the distribution of the tracer one year after release. In this we were assisted by the Canadian research vessel CSS Hudson, currently in the area conducting microstructure measurements as part of the overall experiment. Dr. James Ledwell, the Principal Scientist on the US component of the experiments, was aboard the Hudson and made some tracer measurements in advance of our cruise, so that we had information on the location of at least some of the tracer before we left port.

NARRATIVE

Figure 1 shows the overall cruise track, from Ponta Delgada in the Azores to Lisbon. We sailed from Ponta Delgada at 0810 on $22^{\text {nd }}$ April 1993, and made course $204^{\circ} \mathrm{T}$ for a previously agreed rendezvous with the CSS Hudson, at $26^{\circ} 50^{\prime} \mathrm{N}, 31^{\circ} 20^{\prime} \mathrm{W}$. Hudson had to make an unscheduled journey to Las Palmas, due to a medical emergency, which set back their programme considerably. The original reason for the early rendezvous was to transfer analytical equipment to speed sample analysis. Dr. James Ledwell, at this time aboard the Hudson, was scheduled to transfer to Darwin but not before about $10^{\text {th }}$ May when the Hudson would leave the NATRE site.

We kept a regular radio schedule with the Hudson throughout the period that the two ships were working. We were told that they had succeeded in locating some of the neutrally buoyant SOFAR floats originally released with the tracer, i.e. float 55 at 23°
$50^{\prime} \mathrm{N}, 30^{\circ} 20^{\prime} \mathrm{W}$, and float 58 at $21^{\circ} 20^{\prime} \mathrm{N}, 30^{\circ} 30^{\prime} \mathrm{W}$, in what might be the SE corner of the tracer patch. One float, to which was attached a Richardson Number (RiNo) neutrally buoyant float, appeared at that time to be at about $30^{\circ} \mathrm{N}, 37^{\circ} \mathrm{W}$, in what might demarcate a NW corner. This position later proved to be incorrect, but nevertheless the assumption that the tracer lay mostly east and south of there was verified.

We arrived at the rendezvous in the early hours of $25^{\text {th }}$ April, but continued past the Hudson, having elected to postpone transfer of equipment for a time. After crossing $29^{\circ} \mathrm{N}$, we began exploratory casts through the target surface, spacing these approximately 50 miles apart. No tracer was found on the first three casts, but we encountered it on the fourth, which was at the original rendezvous point.

It was soon apparent that the tracer had spread into an enormous area of ocean: the concentrations we observed averaged about 25 fM , with column integrals averaging around $2 \times 10^{-9} \mathrm{moles} / \mathrm{m}^{2}$, and given the initial amount released of approximately 1000 moles this indicates a patch $\sim 700 \mathrm{~km}$ on a side. However the shape was not regular or simple, and the concentration varied widely even on the $10-20 \mathrm{~km}$ scale. Given that we had very little information at the beginning of the cruise as to where this patch might be centred or what its shape might be, it was thought that it would not be possible to comprehensively document the entire patch. Instead we aimed to get a sufficient number of profiles, from many different areas of the patch, to be confident of a statistically valid description of properties such as the vertical thickness and streakiness. In the event however, we did end by accounting for more than 90% of the tracer.

Having approached the region on a course of $204^{\circ} \mathrm{T}$ we saw no reason to deviate after passing the Hudson, so continued on this heading for the better part of a week, finally running out of the patch at $21^{\circ} 20^{\prime} \mathrm{N}$ latitude. We then executed a series of east-west sections spaced approximately 1 apart in latitude, heading northwards, (see cruise track for the working area, Figure 2). This pattern was designed to be complemented by the tracer measurements performed from the Hudson (see Figure 29 for a map of Hudson stations). The pattern was broken at about the time of our RiNo hunt (see below), to make a number of tows using a high-resolution sampling system, and towards the end of the cruise when we filled in corners in the north-west and south-east. We finished science at 1200 on $19^{\text {th }}$ May and set course for Lisbon, docking there at 1700 on $24^{\text {th }}$ May.

Sampling Casts

These were to 500 m : on the downcast, the depth of the target isopycnal (actually at $\sigma_{0.3}$ $=28.050$, though we used the previous year s calibration of the BBC microcomputer which gave $\sigma_{0.3}=28.0395$), was noted - it was generally between 300 and 400 m depth. On the upcast, bottles were triggered at 10 m intervals, starting 120 m below the depth of the target surface and ending 120 m above it. We found that the time taken for each cast was roughly an hour, which meant that at a spacing of 10 miles or more between casts, the limiting factor on the rate at which we could proceed was not the rate of processing samples in the laboratory, but the wire time and steam time. Stations were spaced
initially at 10 mile intervals, but the standard spacing was increased to 15 miles after station 22 (Table 1). Stations were grouped into geographical working areas (Figure 3). Tracer and salt samples only were taken from the Niskin bottles, and the work continued 24 hours a day. We found that we could progress about 130 miles per day in this mode, with the ship on station and wire out for about half the time, and steaming at 10kt the other half of the time.

Rendezvous with CSS Hudson

On $6^{\text {th }}$ May we broke off sampling to rendezvous with the Hudson, chiefly for the purpose of transferring Dr. Ledwell from the Hudson to the Darwin. Hudson at this time was continuing her programme of CTD and Epsonde microstructure casts for the overall experiment under the direction of Chief Scientist Neil Oakey of Bedford Institute of Oceanography. The rendezvous was at 1000 , at $24^{\circ} 58^{\prime} \mathrm{N}, 31^{\circ} 6^{\prime} \mathrm{W}$. The Master of the Hudson invited members of the Darwin s company over for lunch which was taken up by nine scientists and ships personnel including the PSO. We extended a reciprocal invitation, which was taken up by Dr. Oakey and several members of the science party aboard Hudson. Gifts were exchanged between the two ships companies. Dr. Ledwell transferred, and we took the opportunity to transfer a SF_{6} gas standard from the Hudson to the Darwin to cross calibrate our measurements with theirs. We were finished with the transfer and pleasantries at about 1430 and departed to continue our programme.

Hunt for the RiNo

One of the aims of Hudson was to locate and recover the Richardson Number (RiNo) float deployed by Oceanus at the time of the tracer injection. RiNo is tracked by SOFAR signal, and at close range by means of a 10 kHz beacon. We determined last year during cruise CD68 that the Simrad EA500 precision echo-sounder aboard the Darwin was an efficient instrument for sensing these beacons.

The task of recovering the RiNo was greatly hampered by what appears to have been a malfunction of the clock on the SOFAR beacon, which initially led the team aboard the Hudson to believe that the float was situated well to the west at about $36^{\circ} \mathrm{W}$. Latterly, the best guess for the position of the float was thought to be near $26^{\circ} 15^{\prime} \mathrm{N}, 29^{\circ} 30^{\prime} \mathrm{W}$. We offered to assist the Hudson in the search they were to undertake for this float after leaving our rendezvous, since the Simrad was thought to have a better range for the 10 kHz beacon than the equipment aboard the Hudson. We agreed to search two lines out of a grid of 5 lines, covering a region about 8-18 miles NW of the most likely position of the float.

The search began at 1600 on $7^{\text {th }}$ May and lasted until about 1300 the following day. The actual lines originally agreed with Hudson took only 8 hours. These are shown in Figure 4. However, as we were ending this pattern we saw a trace on the Simrad, lasting about 20 minutes, which looked characteristic of a beacon behind the ship. The trace was very faint, appearing and then disappearing without obvious cause. We therefore re-traced and re-retraced our course, running over the section on which the signal had appeared
a total of four times, but without seeing it again. We then began a box-search pattern (Figure 5) centred on the location where we considered the source most likely to be, and continued this for 8 hours further, without at any time again seeing the signal. We remain unsure about the source of this signal, but we know of no phenomenon other than a regularly repeating beacon which could give rise to such a trace. Therefore we believe that we must have heard the float we were searching for, but perhaps due to freak acoustic conditions, at a distance very much greater than the normal range of the apparatus.

Sled Tows using High-Resolution Carousel Sampler

Casts 220 through 223 were tows in which the CTD was mounted on a sled with sequentially filling syringe samplers. 50 samples were collected on each tow, but the distance covered varied from 8 to 65 km (Table 2). The package was lowered on the CTD wire from the starboard A frame, and flown on the target surface by automated control of the winch, using the control system developed by R. Powell of RVS for cruise CD68. The longest tow entailed steaming at approximately 2 kt , at which speed the wire angle was considerable (60-70 from the vertical). The tracks towed along are shown in Figure 6 and the along-track concentrations are shown in Figure 7: they reveal a pattern of plates of relatively constant concentrations of dimension $\sim 10 \mathrm{~km}$, separated by rather sharp boundaries.

CTD DATA

Calibration

Hydrographic data were gathered with an EG\&G MkIII CTD, equipped with PRT thermometers and a single conductivity probe. A laboratory temperature calibration performed just prior to the cruise indicated that the primary PRT was within $0.0005^{\circ} \mathrm{C}$ of the bath standard. No adjustment was made for a temperature offset.

Salinity samples taken on each cast showed the salinity reading from the system to be low by $0.028-0.029$ psu throughout the cruise. The constants in the acquisition system had already been set to compensate for a raw salinity that was low by 0.018psu. Thus, another 0.011 psu were added to the salinity calculated using these constants.

The pressure sensor read high by 4.7 db at the surface, and this amount was subtracted from all pressures throughout the cruise.

A sample profile and a $\theta /$ S plot are shown in Figures 8 and 10, respectively.

Data Reduction

The descent for each cast was selected from the CTD data stream, and made into a separate file named cd780xxx.dat, where xxx represents the number of the cast,
from 001 to 241 . These raw data were then interpolated to a 1 db pressure grid and stored in files called cd780xxxpi.dat. At the same time the potential temperature $\theta_{0.3}$, and potential density $\sigma_{0.3}$, both referenced to 300 db , were added to the files, in the $4^{\text {th }}$ and $5^{\text {th }}$ columns, respectively. A sixth column reports the number of scans skipped during the original file because the pressure was decreasing. Seldom was this number different from 0 , since the weather was light, and the payout rate of the CTD wire was typically $60 \mathrm{~m} / \mathrm{min}$.

The target $\sigma_{0.3}$ for the tracer release was $28.05 \mathrm{~kg} / \mathrm{m}^{3}$. Hydrographic properties at this surface were estimated from the CTD data for each cast (Table 3), and vertical gradients in the properties were estimated for casts that went more than 50 m below the target surface, as follows.

First, the nearest pressure to the target density surface was found, and a window spanning -50 db about this pressure was selected. A quadratic fit of $\theta_{0.3}$ versus $\sigma_{0.3}$ in this window was performed, and the value of $\theta_{0.3}$ at the target surface was determined from the resulting polynomial. This procedure reduces the uncertainty in finding the target surface created by noise in salinity which propagates to potential density. The salinity at the target density was then found from the potential temperature, using the equation of state. Also, an accurate pressure at the target surface was found by interpolation.

Gradients of in situ temperature, $\mathrm{dT} / \mathrm{dP}$, and salinity, $\mathrm{dS} / \mathrm{dP}$, at the target surface were then determined by making quadratic fits of $T(P)$ and $S(P)$ in the -50 db window about the target surface. The coefficient of thermal expansion, α, the change of density with salinity, β, and the adiabatic lapse rate, Γ, were determined at the target surface. Then, a density gradient, $d \sigma / \mathrm{dp}$, the density ratio, R_{p}, and the buoyancy frequency, N , were calculated from the following equations:
$\rho_{0}=1000+\sigma_{0} \quad \rho=1000+\sigma_{3}$
$d \sigma / d P=\rho_{0}[\alpha\{-d T / d P+\Gamma\}+\beta d S / d P]$
$\mathrm{R}_{\mathrm{p}}=\alpha\{-\mathrm{dT} / \mathrm{dP}+\Gamma\} /\{-\beta \mathrm{dS} / \mathrm{dP}\}$
$N=\operatorname{sqrt}\{g(d \sigma / d P) / \rho\}$
The values for $P, \theta_{0.3}, S,-d T / d P,-d S / d P, d \sigma / d P, R_{p}$, and N at the target density surface are given for each cast in Table 4.

The CTD casts were sorted into the same groups as the tracer data (Table 5). The data from each group were averaged, and the average data were treated the same way as above to give the properties and gradients for each group (Table 4).

The last entry in Table 4 gives the properties and gradients calculated from the average of the deep CTD profiles that went at least 50db deeper than the target surface for the whole cruise. This average CTD profile is tabulated every 10 db in Table 3, and is plotted in Figure 9. A typical θ / S relation is plotted in Figure 10 and the mean θ / S relation is plotted in Figure 11.

SF_{6} DATA

SF $_{6}$ Analysis

Water samples were analysed using two identical systems (A and B), each of which consisted of a vacuum-sparge front end in which the SF_{6} was stripped from the water and trapped on Porapak Q at $-70^{\circ} \mathrm{C}$, followed by chromatographic separation and detection by an Electron Capture Detector (Shimadzu GC8-AIE). Both systems were fully automated requiring minimal input from the operator, and so reducing any errors arising from sample handling and manual valve-switching. Water from the Niskin bottles were sub-sampled into 500 ml glass bottles which were flushed three times, and then transferred to the laboratory where they were stored underwater. The SF_{6} concentration at the target density was obtained within 10 minutes of the CTD landing on deck, allowing alterations in the cruise track to be made relatively rapidly. A volume of 350 ml was required for analysis of profile samples, although GC-B was adjusted to facilitate analysis of 50 ml samples obtained from the carousel sampler for a period of 4 days towards the end of the cruise. A typical profile cast consisted of 25 samples, which at a rate of 6.75 minutes per sample resulted in a cast analysis time of 90 minutes; in total, 5000 water samples and 500 standards were run by a pool of 10 analysts.

The sensitivity of GC-A and B were 0.05 and $0.03 \mathrm{fmol} / \mathrm{l}$, respectively, although the background concentration was higher than these values. Samples from each profile were artificially divided, with the tails of the profile analysed on the more sensitive GC, and the middle of the profile on the less sensitive system. Duplicate samples from the target density were run on both instruments at the start of each cast analysis to determine an average reproducibility of 3.6% between the two instruments. This reproducibility is a reflection of the difference in calibration between the two instruments as opposed to variability in the efficiency of the analysis. The reproducibility within both GC s was 0.6% (A) and 0.88% (B) for duplicate samples (including background samples).

Calibration of each system took approximately 75 minutes every 36-48 hours, requiring certain casts to be run entirely on one system while the other was calibrated. The response of both instruments remained relatively constant (Table 6), except for the initial recovery of GC-A in the first 3 days from a previous contamination event on a recent cruise. Despite continuous analysis for 30 days, both instruments performed extremely well with virtually no down-time and minimal sample back-up. A valve driver board had to be replaced at the start of the cruise when a motor burnt out during start up on GC-A, and occasional maintenance was required to clean up salt crystal deposit
in valves and solenoids on both systems. The gland in the 29.4ppt standard cylinder failed, although the calibration fitting programme was able to compensate for the absence of standards in this range.

SF_{6} Data Reduction

The SF_{6} data were calibrated using a linear fit for samples less than 1.3×10^{-14} moles (300ppt in 1 ml gas standard), smoothly joined to a cubic fit for higher values: previous work at PML has shown this to be the best polynomial type of fit to cover the range 0 to 5×10^{-13} moles. Calibrated data, identified by Niskin bottle number, were merged on the RVS computer with CTD data from the last frame before the bottle was closed. For each cast, a file was made tabulating pressure, temperature, salinity, $\sigma_{0.3}$, and SF_{6} for each bottle. These files constitute a basic data output from the cruise.

For further analysis, the SF_{6} profiles were interpolated onto a regular density grid (27.8 to 28.2×0.01) and averaged by regional group (Figure 3) to give statistics on mean concentration, depth and rms width. To obtain meaningful widths in depth (actually pressure) space, correctly referenced to the target surface, the mean pressure versus density profile of the initial sampling cruise CD68 was used to map SF_{6} from density space into pressure. Individual profiles versus $\sigma_{0.3}$, these mean profiles versus CD68 depth, and the statistics of mean depth and rms width relative to the centre of mass are plotted in Figures 12-24. The interpolation could profitably have been continued to 28.3 as data from the lower tail were sometimes missed out of the interpolation.

The entire cruise average of casts interpolated from 27.8 to 28.3 is plotted in Figure 26. The centre of mass is at 28.058, 0.008 units lower than the original injection, and the rms width relative to the centre of mass is 31.14 m in CD68 depth space. The width indicates a vertical mixing rate, K_{z} in the range 0.17 to $0.2 \mathrm{~cm}^{2} / \mathrm{s}$ since the OctoberNovember period when the tracer was last sampled. This is significantly larger than the value of $0.11 \mathrm{~cm}^{2} / \mathrm{s}$ for the first 6 months of the experiment, presumably due to larger forcing energy during the winter months. The actual value of K_{z} will be defined to better accuracy after post-cruise analysis. The average profile is almost a perfect gaussian (see Figure 27).

The lateral dispersion of the tracer, expressed as column integral in $\mathrm{nmol} / \mathrm{m}^{2}$, is shown in Figure 30 after gridding and contouring the data, using a 0.75 degree radius of integration. The tracer was spread over about 5-6 degrees of latitude and 9-10 degrees of longitude - an area in excess of 150000 square miles. Though still highly variable in space, there were few points within this region that had no tracer at all - in other words, the tracer streaks had combined to paint in this area. Integrating under the contours gives a total amount of 937 moles, which is less than 2% different from the 950 moles which were released. Ana alternative way of integrating the tracer, by obtaining an average concentration along the cruise track and multiplying by the overall area covered, gave essentially the same value. However, the margin of error is undoubtedly larger than these figures suggest. Provisionally we estimate that we accounted for 99-10\%.

TABLE 1: STATION LIST

Notes:

1) Full casts were 24 bottle casts with approx 10 m spacing centred on the target surface.
2) Short casts: one or two bottles were fired at the target surface only.
3) Background casts (2-4) were used as representative background measurements, the average of which was subtracted from the remainder in all calculations.
4) Sled casts (218-223) were tows along the target surface of the WHOI sled with carousel samplers.
5) The SF_{6} column integral, background subtracted, is in nanomoles per square metre. est indicates it was estimated from the concentration at the target surface.
6) Casts $38-65$ are numbered differently in the original cast sheets: original numbering is in brackets under cast type .

Cast	Date	Time GMT	Latitude	Longitude	Cast type	SF_{6} Column
						Integral
1	$22 / 04 / 93$	$19: 23$	3555.76 N	2638.05 W	background	0.00
2	$24 / 04 / 93$	$13: 36$	290.32 N	3014.82 W	background	0.00
3	$24 / 04 / 93$	$19: 14$	2817.12 N	3036.97 W	background	0.00
4	$25 / 04 / 93$	$00: 44$	2733.24 N	3058.01 W	background	0.00
5	$25 / 04 / 93$	$06: 26$	2649.86 N	3120.12 W	full	2.69
6	$25 / 04 / 93$	$09: 27$	2632.01 N	3127.75 W	full	3.92
7	$25 / 04 / 93$	$11: 49$	2622.21 N	3132.92 W	full	2.04
8	$25 / 04 / 93$	$14: 00$	2613.14 N	3137.98 W	full	1.28
9	$25 / 04 / 93$	$16: 00$	264.20 N	3142.89 W	full	0.86
10	$25 / 04 / 93$	$18: 16$	2554.99 N	3147.06 W	full	1.72
11	$25 / 04 / 93$	$20: 42$	2545.90 N	3151.47 W	full	2.01
12	$25 / 04 / 93$	$23: 00$	2535.82 N	3156.38 W	full	2.75
13	$26 / 04 / 93$	$01: 02$	2526.93 N	320.83 W	full	1.19
14	$26 / 04 / 93$	$03: 07$	2518.23 N	324.88 W	full	1.50
15	$26 / 04 / 93$	$05: 31$	258.85 N	329.92 W	full	0.52
16	$26 / 04 / 93$	$08: 02$	2459.63 N	3214.25 W	full	2.59
17	$26 / 04 / 93$	$10: 48$	2450.34 N	3218.02 W	full	6.03
18	$26 / 04 / 93$	$13: 04$	2441.23 N	3222.68 W	full	4.42
19	$26 / 04 / 93$	$15: 25$	2432.11 N	3227.71 W	full	6.23
20	$26 / 04 / 93$	$17: 39$	2423.11 N	3232.14 W	full	2.86
21	$26 / 04 / 93$	$19: 52$	2413.65 N	3236.36 W	full	0.59
22	$26 / 04 / 93$	$22: 22$	244.95 N	3240.88 W	full	0.87
23	$27 / 04 / 93$	$01: 03$	2350.89 N	3247.14 W	full	1.06
24	$27 / 04 / 93$	$03: 41$	2337.28 N	3253.94 W	full	0.39
25	$27 / 04 / 93$	$06: 24$	2323.11 N	3259.93 W	full	2.74
26	$27 / 04 / 93$	$09: 08$	239.27 N	336.79 W	full	3.12
27	$27 / 04 / 93$	$11: 55$	2255.06 N	3313.27 W	full	0.76

28	27/04/93	14:32	2241.09 N	33 19.71W	full	1.22
29	27/04/93	17:05	2228.21 N	33 25.99W	full	1.89
30	27/04/93	19:50	2214.43 N	33 32.51W	full	2.76
31	27/04/93	22:30	22 0.48N	33 39.01W	full	0.82
32	28/04/93	01:08	21 46.66N	3345.25 W	full	0.40
33	28/04/93	04:15	2132.12 N	3351.87 W	full	0.05
34	28/04/93	06:53	21 19.02N	33 58.91W	short	0.00
35	28/04/93	10:43	21 19.29N	33 26.90W	short	0.00
36	28/04/93	14:09	2118.94 N	32 54.44W	short	0.00
37	28/04/93	17:40	21 19.02N	32 22.36W	short	?
38	28/04/93	18:18	21 19.47N	32 22.33W	full (37i)	0.39
39	28/04/93	22:04	21 18.96N	3150.27 W	short (38)	?
40	28/04/93	22:42	21 19.15N	3150.21 W	full (38i)	0.31
41	29/04/93	01:48	2142.17 N	31 49.96W	full (39)	0.42
42	29/04/93	05:04	22 6.08N	3150.24 W	full (40)	0.08
43	29/04/93	08:23	22 29.97N	3150.41 W	full (41)	0.49
44	29/04/93	10:46	22 29.94N	324.29 W	full (42)	0.45
45	29/04/93	13:17	2230.19 N	32 20.10W	full (43)	0.82
46	29/04/93	15:53	22 29.95N	32 36.18W	full (44)	0.87
47	29/04/93	18:30	22 29.98N	32 52.04W	full (45)	0.36
48	29/04/93	21:24	2230.00 N	33 7.87W	full (46)	0.91
49	30/04/93	01:17	2230.15 N	33 40.17W	full (47)	1.58
50	30/04/93	04:17	22 29.55N	3355.96 W	full (48)	0.92
51	30/04/93	07:07	22 29.61N	3411.94 W	full (49)	0.32
52	30/04/93	09:47	22 29.77N	3428.17 W	full (50)	0.20
53	30/04/93	12:18	22 29.94N	34 43.96W	full (51)	0.26
54	30/04/93	14:36	22 29.53N	3459.84 W	full (52)	0.16
55	30/04/93	17:00	22 29.87N	3516.20 W	full (53)	0.00
56	30/04/93	19:50	22 44.97N	35 16.10W	full (54)	0.12
57	30/04/93	22:26	2259.98 N	3516.04 W	full (55)	0.02
58	1/05/93	01:01	2315.37 N	3516.06 W	full (56)	0.00
59	1/05/93	03:24	23 30.32N	3516.25 W	full (57)	0.84
60	1/05/93	06:02	23 29.87N	3459.76 W	full (58)	0.09
61	1/05/93	08:35	23 30.05N	34 44.04W	full (59)	0.00
62	1/05/93	12:37	2330.23 N	3412.37 W	full (60)	0.08
63	1/05/93	15:00	2330.11 N	3355.54 W	short (61)	0.00
64	1/05/93	16:58	23 30.12N	33 39.35W	short (62)	0.00
65	1/05/93	17:29	23 30.46N	33 39.37W	full (63)	0.45
100	1/05/93	19:49	2330.13 N	33 23.00W	full	0.02
101	1/05/93	22:21	23 29.87N	337.04 W	full	2.75
102	2/05/93	00:57	23 30.15N	3250.57 W	full	0.46
103	2/05/93	03:16	2337.53 N	3258.18 W	full	3.58
104	2/05/93	05:27	2345.03 N	32 58.64W	full	1.35
105	2/05/93	07:29	23 44.93N	33 6.78W	full	2.77
106	2/05/93	09:56	2337.29 N	3315.21 W	full	0.79
107	2/05/93	11:42	2337.57 N	336.84 W	full	3.34

108	2/05/93	15:09	2337.60 N	3239.58 W	full	0.65
109	2/05/93	18:07	2330.14 N	32 24.00W	full	3.15
110	2/05/93	20:48	2329.98 N	328.16 W	full	2.53
111	3/05/93	01:32	23 30.48N	3151.76 W	full	2.35
112	3/05/93	04:38	23 30.15N	31 35.33W	full	0.93
113	3/05/93	07:15	2329.91 N	31 19.21W	full	3.67
114	3/05/93	09:51	2330.13 N	313.01 W	full	1.27
115	3/05/93	12:25	23 30.28N	3046.78 W	full	1.33
116	3/05/93	16:37	23 30.02N	3030.26 W	full	4.14
117	3/05/93	19:21	2330.13 N	30 14.22W	full	1.05
118	3/05/93	22:12	23 29.90N	29 58.16W	full	3.39
119	4/05/93	00:47	2330.31 N	29 41.69W	full	0.48
120	4/05/93	03:46	23 30.26N	29 25.19W	full	0.18
121	4/05/93	06:32	23 29.94N	298.74 W	full	0.23
122	4/05/93	09:08	23 30.13N	2852.45 W	full	0.00
123	4/05/93	11:53	2330.22 N	2836.17 W	full	0.14
124	4/05/93	14:28	23 30.18N	2819.51 W	full	0.45
125	4/05/93	16:59	23 30.15N	283.37 W	full	0.28
126	4/05/93	19:36	23 45.04N	27 59.84W	full	0.35
127	4/05/93	22:28	23 59.94N	27 59.82W	full	0.27
128	5/05/93	02:52	24 29.94N	2759.99 W	full	0.32
129	5/05/93	06:03	24 29.92N	28 16.51W	full	0.41
130	5/05/93	08:31	2430.23 N	2832.88 W	full	1.85
131	5/05/93	10:40	2430.12 N	28 43.86W	full	3.30
132	5/05/93	12:50	2430.12 N	2854.91 W	full	3.55
133	5/05/93	15:22	2430.35 N	29 11.29W	full	1.79
134	5/05/93	18:16	2430.02 N	29 27.76W	full	2.02
135	5/05/93	20:44	24 29.89N	29 44.46W	full	8.70
136	5/05/93	23:10	24 29.87N	300.42 W	full	0.49
137	6/05/93	01:37	24 29.82N	3017.06 W	full	4.34
138	6/05/93	04:05	2430.18 N	3033.54 W	full	3.87
139	6/05/93	06:15	24 29.87N	3050.15 W	full	2.01
140	6/05/93	16:19	24 44.97N	316.41 W	full	1.22
141	6/05/93	18:47	2430.04 N	316.60 W	full	3.59
142	6/05/93	21:44	2445.02 N	3050.01 W	full	1.28
143	7/05/93	00:14	2458.27 N	3043.64 W	full	1.00
144	7/05/93	02:40	25 12.62N	3036.85 W	full	0.72
145	7/05/93	04:54	2526.47 N	3029.98 W	full	0.39
146	7/05/93	07:12	2539.96 N	3023.01 W	full	3.46
147	7/05/93	09:30	25 53.79N	3016.13 W	full	0.09
148	7/05/93	11:52	26 7.81N	309.63 W	full	0.00
149	7/05/93	14:11	26 7.89N	29 53.16W	full	0.18
150	7/05/93	17:44	2621.70 N	2935.85 W	short	
151	8/05/93	09:54	2622.09 N	2935.00 W	full	0.16
152	8/05/93	12:52	2622.45 N	29 52.44W	full	0.05
153	8/05/93	15:12	2622.27 N	309.20 W	full	0.00

154	8/05/93	17:37	2622.20 N	3026.05 W	full	0.04
155	8/05/93	20:15	2622.08 N	30 46.86W	full	0.12
156	8/05/93	22:37	268.94 N	3053.88 W	full	0.00
157	9/05/93	00:53	2554.57 N	31 0.29W	full	0.01
158	9/05/93	03:12	2541.18 N	317.24 W	full	0.00
159	9/05/93	05:27	2527.04 N	3114.19 W	full	1.22
160	9/05/93	07:35	2513.08 N	31 20.52W	full	3.44
161	9/05/93	10:14	24 59.22N	31 27.05W	full	2.08
162	9/05/93	12:26	2445.92 N	3134.06 W	full	5.14
163	9/05/93	18:09	2429.95 N	3141.57 W	full	4.51
164	9/05/93	20:39	2429.94 N	3157.76 W	full	2.91
165	9/05/93	23:06	24 30.19N	32 14.39W	full	1.55
166	10/05/93	01:26	2430.02 N	3230.90 W	full	0.60
167	10/05/93	03:45	24 29.86N	32 47.17W	full	4.57
168	10/05/93	05:50	2429.91 N	32 58.05W	full	4.48
169	10/05/93	07:48	24 29.88N	339.10 W	full	4.57
170	10/05/93	09:44	2430.10 N	33 19.79W	full	5.58
171	10/05/93	11:40	2430.07 N	33 30.76W	full	5.02
172	10/05/93	13:41	2430.07 N	3341.89 W	full	5.01
173	10/05/93	15:37	2430.22 N	3352.90 W	full	5.13
174	10/05/93	17:40	2430.26 N	344.20 W	full	3.99
175	10/05/93	19:32	2430.18 N	3415.10 W	full	5.86
176	10/05/93	21:35	2429.95 N	34 26.12W	full	4.27
177	10/05/93	23:23	2429.97 N	34 37.15W	full	5.80
178	11/05/93	01:13	2430.07 N	34 47.81W	full	3.18
179	11/05/93	03:04	2430.22 N	3458.95 W	full	0.81
180	11/05/93	05:33	2430.13 N	3515.35 W	full	0.08
181	11/05/93	07:51	2430.15 N	3531.96 W	full	0.82
182	11/05/93	10:12	2429.70 N	3548.40 W	full	3.02
183	11/05/93	12:25	2429.81 N	36 4.34W	full	0.65
184	11/05/93	14:51	24 29.66N	3620.84 W	full	1.23
185	11/05/93	17:01	24 29.79N	36 37.34W	full	0.79
186	11/05/93	19:14	2429.93 N	3653.64 W	full	0.03
187	11/05/93	21:29	2429.84 N	37 10.30W	full	0.15
188	11/05/93	23:55	24 44.42N	37 10.58W	full	0.08
189	12/05/93	02:41	2459.21 N	3654.85 W	full	0.21
190	12/05/93	05:10	2514.43 N	3653.99 W	full	0.11
191	12/05/93	08:15	2529.73 N	3638.03 W	full	0.34
192	12/05/93	10:40	2544.79 N	3637.70 W	full	0.28
193	12/05/93	13:33	2559.73 N	3637.64 W	full	1.93
194	12/05/93	16:06	26 15.06N	36 37.91W	full	1.98
195	12/05/93	18:33	26 29.69N	36 37.57W	full	1.35
196	12/05/93	21:05	26 44.87N	36 37.67W	full	0.01
197	12/05/93	23:33	270.01 N	3637.79 W	full	0.00
198	13/05/93	02:44	2715.18 N	36 20.85W	full	0.05
199	13/05/93	05:46	27 29.86N	364.58 W	full	5.34

200	$13 / 05 / 93$	$08: 24$	2740.58 N	3551.54 W	full	0.84
201	$13 / 05 / 93$	$10: 59$	2740.90 N	3534.65 W	full	1.27
202	$13 / 05 / 93$	$13: 09$	2740.90 N	3517.97 W	full	0.57
203	$13 / 05 / 93$	$15: 28$	2740.87 N	350.17 W	full	0.64
204	$13 / 05 / 93$	$17: 49$	2740.65 N	3442.33 W	full	0.35
205	$13 / 05 / 93$	$20: 10$	2725.86 N	3437.53 W	full	1.70
206	$13 / 05 / 93$	$22: 18$	2712.58 N	3433.90 W	full	0.82
207	$14 / 05 / 93$	$00: 23$	270.10 N	3430.00 W	full	1.59
208	$14 / 05 / 93$	$02: 42$	2645.05 N	3429.84 W	full	0.81
209	$14 / 05 / 93$	$04: 56$	2630.18 N	3430.03 W	full	0.61
210	$14 / 05 / 93$	$07: 06$	2629.82 N	3446.78 W	full	0.47
211	$14 / 05 / 93$	$09: 16$	2630.18 N	353.49 W	full	1.42
212	$14 / 05 / 93$	$11: 31$	2630.25 N	3520.35 W	full	0.36
213	$14 / 05 / 93$	$13: 45$	2630.00 N	3535.99 W	full	1.72
214	$14 / 05 / 93$	$17: 12$	263.16 N	3536.96 W	full	3.57
215	$14 / 05 / 93$	$19: 28$	2545.11 N	3536.88 W	full	5.07
216	$14 / 05 / 93$	$21: 46$	2530.09 N	3536.97 W	full	2.13
217	$15 / 05 / 93$	$01: 22$	257.46 N	3515.12 W	full	1.29
218	$15 / 05 / 93$	$08: 00$	2415.07 N	3424.98 W	sled (test)	
219	$15 / 05 / 93$	$09: 15$	2414.62 N	3424.78 W	sled (aborted)	
220	$15 / 05 / 93$	$10: 50$	2415.89 N	3424.65 W	sled tow	
221	$15 / 05 / 93$	$16: 00$	2419.73 N	3424.60 W	sled tow	
222	$16 / 05 / 93$	$02: 51$	2453.49 N	3422.51 W	sled tow	
223	$16 / 05 / 93$	$21: 10$	2337.08 N	3239.92 W	sled tow	
224	$17 / 05 / 93$	$22: 28$	2231.87 N	3116.76 W	full	1.38
225	$18 / 05 / 93$	$00: 44$	2227.30 N	312.35 W	full	0.84
226	$18 / 05 / 93$	$03: 00$	2221.79 N	3046.99 W	full	1.07
227	$18 / 05 / 93$	$05: 13$	2216.28 N	3031.72 W	full	0.81
228	$18 / 05 / 93$	$07: 21$	221.42 N	3031.76 W	full	0.88
229	$18 / 05 / 93$	$09: 37$	2146.39 N	3031.61 W	full	1.12
230	$18 / 05 / 93$	$11: 49$	2131.90 N	3031.26 W	full	0.37
231	$18 / 05 / 93$	$13: 54$	2120.62 N	3031.87 W	full	0.00
232	$18 / 05 / 93$	$16: 08$	2131.29 N	3021.39 W	full	0.00
233	$18 / 05 / 93$	$18: 15$	2141.67 N	309.95 W	full	0.00
234	$18 / 05 / 93$	$20: 39$	2152.09 N	2958.33 W	full	0.00
235	$18 / 05 / 93$	$22: 49$	221.94 N	2946.81 W	short	0.00
236	$19 / 05 / 93$	$00: 46$	2212.61 N	2936.14 W	short	0.00
237	$19 / 05 / 93$	$02: 41$	2223.16 N	2924.42 W	short	0.00
238	$19 / 05 / 93$	$04: 40$	2234.12 N	2912.82 W	short	0.05
239	$19 / 05 / 93$	$06: 35$	2244.04 N	291.53 W	short	0.07
240	$19 / 05 / 93$	$09: 03$	2258.36 N	2845.93 W	short	0.63
241	$19 / 05 / 93$	$11: 35$	2312.60 N	2830.50 W	short	0.62
	est.					
20						

TABLE II: Sled tow data

Cast	Day, Time	Position		Day, Time	Positon	
	Start	Lat	Long	End	Lat	Long
220	$5 / 15,11: 13$	$24^{\circ} 15.8 \mathrm{~N}$	$34^{\circ} 25.2 \mathrm{~W}$	$5 / 15,14: 23$	$24^{\circ} 20.2 \mathrm{~N}$	$34^{\circ} 24.6 \mathrm{~W}$
221	$5 / 15,16: 33$	$24^{\circ} 20.4 \mathrm{~N}$	$34^{\circ} 24.1 \mathrm{~W}$	$5 / 16,00: 33$	$24^{\circ} 37.2 \mathrm{~N}$	$34^{\circ} 22.9 \mathrm{~W}$
222	$5 / 16,03: 08$	$24^{\circ} 53.3 \mathrm{~N}$	$34^{\circ} 22.1 \mathrm{~W}$	$5 / 16,11: 08$	$24^{\circ} 32.2 \mathrm{~N}$	$34^{\circ} 23.8 \mathrm{~W}$
223	$5 / 16,21: 30$	$23^{\circ} 36.7 \mathrm{~N}$	$32^{\circ} 39.9 \mathrm{~W}$	$5 / 17,11: 16$	$23^{\circ} 07.1 \mathrm{~N}$	$32^{\circ} 57.5 \mathrm{~W}$

TABLE III: Cruise-mean CTD profile, interpolated to 10 m intervals.

\mathbf{P} (dbar)	$\mathbf{T}(\mathrm{C})$	$\mathbf{S}($ PSU $)$	$\Theta_{0.3}(\mathrm{C})$	$\sigma_{0.3}$
10.00	22.238	37.382	22.297	27.239
20.00	22.182	37.384	22.239	27.257
30.00	22.138	37.387	22.192	27.274
40.00	22.082	37.391	22.134	27.293
50.00	22.013	37.391	22.063	27.313
60.00	21.901	37.382	21.949	27.339
70.00	21.753	37.365	21.799	27.369
80.00	21.590	37.346	21.634	27.401
90.00	21.442	37.326	21.484	27.429
100.00	21.327	37.313	21.366	27.452
110.00	21.209	37.295	21.246	27.472
120.00	21.050	37.263	21.086	27.493
130.00	20.867	37.225	20.900	27.515
140.00	20.651	37.177	20.681	27.540
150.00	20.345	37.106	20.373	27.570
160.00	19.994	37.028	20.020	27.606
170.00	19.580	36.933	19.604	27.645
180.00	19.144	36.838	19.166	27.689
190.00	18.718	36.745	18.738	27.731
200.00	18.377	36.675	18.395	27.766
210.00	18.085	36.617	18.101	27.797
220.00	17.825	36.567	17.839	27.825
230.00	17.578	36.520	17.590	27.852
240.00	17.339	36.476	17.349	27.878
250.00	17.112	36.434	17.120	27.902
260.00	16.892	36.394	16.899	27.925
270.00	16.671	36.352	16.676	27.947
280.00	16.462	36.314	16.465	27.969
290.00	16.255	36.276	16.257	27.989
300.00	16.048	36.238	16.048	28.010
310.00	15.854	36.203	15.853	28.029
320.00	15.668	36.171	15.665	28.048
330.00	15.471	36.136	15.466	28.067
340.00	15.284	36.104	15.278	28.086
350.00	15.094	36.072	15.086	28.105
360.00	14.908	36.041	14.899	28.123
370.00	14.721	36.010	14.710	28.142
380.00	14.535	35.980	14.522	28.160
390.00	14.357	35.952	14.343	28.179
400.00	14.181	35.925	14.166	28.196
410.00	14.017	35.901	14.000	28.213
420.00	13.853	35.876	13.835	28.230
430.00	13.693	35.852	13.674	28.246
440.00	13.536	35.829	13.515	28.262
450.00	13.377	35.806	13.355	28.278
460.00	13.218	35.783	13.196	28.295
470.00	13.062	35.762	13.038	28.311
480.00	12.913	35.742	12.888	28.326

TABLE IV Hydrographic properties at the target surface

Group	Count	\mathbf{P} dba	θ \mathbf{C}	\mathbf{S} PSU	-dT/dp 10^{-3}	-dS/dp $\mathrm{ppm} /$ dbar	$\mathbf{d \sigma / d p}$ 10^{-3}	$\mathbf{R \rho}$	\mathbf{N} $10^{-3} \mathbf{s}^{-1}$
						C/dba		dbar^{-1}	
A	7	339.3	15.592	36.151	17.1	2.88	1.79	1.81	4.15
B	18	312.6	15.624	36.161	22.0	3.96	2.10	1.69	4.49
C	15	327.1	15.594	36.151	20.5	3.64	2.00	1.72	4.39
D	17	332.3	15.657	36.170	20.4	3.56	2.04	1.75	4.43
E	8	292.5	15.676	36.176	19.5	3.49	1.90	1.71	4.27
F	9	298.5	15.724	36.191	20.4	3.67	1.97	1.70	4.35
G	6	304.4	15.665	36.173	18.7	3.21	1.92	1.78	4.30
H	11	294.2	15.761	36.202	17.6	3.12	1.75	1.73	4.10
l	18	322.2	15.662	36.172	18.9	3.29	1.91	1.76	4.28
J	15	319.4	15.657	36.170	20.0	3.50	2.00	1.74	4.38
K	9	325.6	15.607	36.155	18.4	3.17	1.87	1.77	4.24
L	8	343.7	15.589	36.150	17.6	3.00	1.84	1.80	4.20
M	19	348.6	15.632	36.163	18.2	3.12	1.88	1.79	4.25
N	7	293.6	15.631	36.163	22.7	4.05	2.18	1.70	4.58
All	166	321.2	15.640	36.165	19.4	3.40	1.93	1.74	4.31

TABLE V: Regional Groups of Stations.

Group	Casts
A	$5-10$
B	$27-33,38,41-49$
C	$50-62,65,100$
D	$21-26,101-111$
E	$112-119$
F	$120-128$
G	$129-134$
H	$147-149,151-158$
I	$12-20,159-167$
J	$168-182$
K	$183-191$
L	$191-198$
M	$199-217$
N	$224-230$

TABLE VI: GC calibration

File	Date	Time	$\begin{aligned} & \text { Std } \\ & \text { Loop } \end{aligned}$	Stds	Fit*	A	B	C	Max Error
GC A									
2SA	24/4	1015	1	1.6-1.1	L/C	-. 000	0.047	340.5	111.28
24SA	27/4	0400	1	1.6-1.2	L/C	0.00004	0.011	358.7	205.29
34SA	28/4	0940	1	1.6-1.2	L/C	0.00004	0.0088	361.8	96.72
47SA	30/4	0000	1	1.6-1.2	L/C	0.00003	0.0159	361.2	406.29
57SA	1/5	0400	1	1.6-1.2	L/C	0.00003	0.0165	372.1	417.46
111SA	3/5	0100	1	1.6-1.2	L/C	0.00003	0.0104	365.34	136.2
128SA	5/5	0400	1	1.6-1.2	L/C	0.00007	0.0103	348.3	345.37
140SA	6/5	1030	1	1.6-1.2	L/C	-0.000002	0.0517	358.67	466.5
140SAS	6/5	1300	1/3	1.4-1.1	C	0.000001	0.00009	121.41	186.6
151SA	$7 / 5$	2000	1/3	1.4-1.1	L/C	0.000003	-0.0091	126.88	216.45
					C	0.000003	-0.0083	129.07	
157SA	9/5	0100	1	1.6-1.2	C	0.000021	0.0065	352.45	313.88
163SA	9/5	1600	1	1.6-1.1	L/C	-0.000006	0.0733	363.87	446.69
180SA	11/5	0630	1	1.6-1.1	L/C	-0.000002	0.0541	372.40	1823.3
189SA	12/5	0250	1	1.6-1.1	L/C	0.0000003	0.0382	383.5	114.13
208SA	14/5	0300	1	1.6-1.2	L/C	0.00006	0.0137	376.47	281.97
224SA	16/5	2110	1	1.6-1.2	L/C	-0.000004	0.0635	380.79	255.04
228SA	18/5	1300	1	1.6-1.2	L/C	0.000063	0.0535	368.93	291.64
GC B									
3SB	24/4	1700	1	1.6-1.1	L/C	-0.0000	0.187	704.17	1337.9
19SB	26/4	1820	1	1.6-1.2	L/C	0.00018	0.0113	712.22	980.0
39SB	29/4	0200	1	1.6-1.2	L/C	0.002	0.0125	710.33	1066.4
59SB	1/5	0800	1	1.6-1.2	L/C	0.00015	0.0232	707.73	377.08
111SB	3/5	0000	1	1.6-1.2	L/C	0.00022	0.0026	695.4	1673.0
128SB	5/5	0125	1	1.6-1.2	L/C	0.00024	-0.0010	691.19	1960
140SB**	6/5	1000	1	1.4-1.1	C	-0.00003	0.1562	643.62	1717.7
140SBS	6/5	1300	1/3	1.4-1.1	C	0.000002	0.0050	222.48	176.54
150SBS	7/5	2100	1/3	1.4-1.1	C	0.000002	0.0047	234.83	244.38
163SB	9/5	1600	1	1.6-1.2	L/C	0.00181	0.093	699.95	673.62
179SB	11/5	0300	1	1.6-1.1	L/C	0.000034	0.159	703.04	742.65
199SB	13/5	0600	1	1.6-1.2	L/C	-0.000045	0.190	702.44	402.65
220SB	15/5	1255	1	1.6-1.2	L/C	0.00055	0.0089	701.11	874.16
223SB	17/5	0830	1	1.6-1.2	L/C	0.000249	0.0113	699.42	1527.56
230SB	18/5	0815	1	1.6-1.2	L/C	-0.00006	0.2403	688.63	1724.73

L/C - linear cubic
C - cubic
** Calibrated across cubic range only

APPENDIX 1: CTD CALIBRATIONS

CTD System

During the cruise 202 CTD casts were completed using an RVS Neil Brown MkIII CTD (s/n 01-1195) and WHOI 24 bottle rosette pylon and frame. Despite a few breakdowns at the start of the cruise the system worked very well and only three hours were lost when the CTD cable was re-terminated. Also 5 casts were completed using the sled and winch control system.

CTD Calibration

Temperature: The CTD temperature calibration was found to have drifted by less than one milli-degrees from last year s NATRE cruise and was therefore left unchanged.

Pressure: The pressure reading had increased by 4.7 decibars compared with last year and this was subtracted from the data.

Salinity: Salinity samples were taken from 24 casts (Table A1). An average offset of 28ppm was found from the first 10 casts and this was added to the CTD data. The last 10 casts showed that the CTD remained in calibration for the rest of the cruise.

Table A1: Salinity calibrations using Autosal. Note CTD was re-calibrated after station 53. Archived data for stations 1-53 were re-calculated using the new calibration.

Cast Number	Samples	Reading
1	23	0.0348
2	24	0.031
4	23	0.0289
10	24	0.0288
13	24	0.0277
22	24	0.0272
27	24	0.0282
31	24	0.0264
45	19	0.0262
48	23	0.0256
53	24	-0.001
60	16	-0.0011
100	22	-0.0011
115	18	-0.0005
147	24	-0.0002
151	24	-0.0013
156	24	-0.002
163	24	0.0004
176	24	0.0001
205	24	-0.0014

APPENDIX 2: CONFIGURATION AND USE OF THE ROSETTE SYSTEM

245 -litre Niskin bottles were needed to sample vertical distribution of SF_{6}. A 43" rosette frame and a 60" cage were borrowed from the WHOI CTD group. There was an upper section to the cage that housed a General Oceanics pylon, rosette and Niskin bottles.

The lower section housed a Neil Brown CTD hung vertically from an A bracket below the pylon. The vertical distance from the T and C probes to the centre of the Niskin bottles was 112 cm . Three sets of shock cords were wrapped around the lower section of the CTD and to three legs of the cage 120° apart. A $31^{\prime \prime}$ shock cord was wrapped around the CTD and a $15^{\prime \prime}$ shock cord was wrapped around the cage leg. Hooks were taken out of the ends of one of the shock cords, and the hooks from the other were inserted into it. The cords were wrapped in vulcanising tape and a tie wrap was put on the end of the cords near where they went around the CTD. This turned out not to be a good idea. All of the stretch of the shock cord was taken in the short length of cord that was not taped. One of the cords gave out near the end of the cruise and was replaced by a new cord and not wrapped in tape. This new one showed no signs of strain whereas the wrapped ones showed cracking and necking down after the first couple of casts.

About 525lbs of weight, in the form of 28 lb slugs of lead from the WHOI Stockroom, were added to the bottom ring and vertical pipes of the lower cage. These were held in place by hose clamps. Adding this weight enabled the cage to be lowered at about $30 \mathrm{~m} / \mathrm{min}$ to about 50 m , and then the speed slowly increased to about $60 \mathrm{~m} / \mathrm{min}$ while maintaining a tension on the CTD wire of between 500 and 1000 lbs .

Considerable corrosion appeared on the rosette rings and the aluminium stanchion on which the rosette was mounted after the first few casts. More and larger anodes were added to both rosette rings and the stanchion and this seemed to alleviate the problem.

APPENDIX 3: CAROUSEL PUMP AND VALVE

For the fall 1992 and spring 1993 sampling cruises, OC253 and CD78, a carousel with more syringes was needed due to the spreading of the SF_{6} patch. A 50 -port valve was built by McLane for the greater number of samples required. Along with this, new software was written to run this valve and pump combination.

When the valve was first tested before OC253, the valve would not mechanically return to the home, valve position 1, although it indicated it was home in the software. There are two microswitches in the valve. One counts revolutions and the other counts valve position. It was thought that if the microswitch that indicated valve position was wired, fine adjustments could be made to align the valve mechanically. This did not work. On OC253 in order to fool the software into thinking the valve was home, the pump would first be programmed for deployment. The valve would then have to be mechanically turned with a screwdriver to align it to the home position. This was difficult to do due to the position and stiffness of the valve.

Before CD78, two things were done to make the valve more user-friendly. Firstly, the microswitch to indicate revolutions was hooked back up so that when the valve was commanded to go home, it obeyed. Second, new software was written for the 50 -port valve called PUMP1_47.BAS. It had menu commands to enable small adjustments to the valve from the keyboard to align the valve in the home position. It was found that due to backlash of the stepping motor, trying to move the valve one step of the motor wouldn t work. The software was modified to make the stepper motor go twenty steps, which is a small movement compared to one valve position. This worked fine. The software version to do this is called PUMPADJ.BAS, and is installed into the tattletale in place of PUMP1_47.BAS.

The pump and 50 -port valve system, on the sled, was used four times on CD78, with the sled towed at 2 to 2.5 kts . In addition to a depressor weight of 500 lbs , hung below the sled, about 300lbs of lead weight, in the form of 28lb slugs, were added to the sled frame. The resulting wire angle was around 45 ; at 2.3 kts . The direction of tow was constrained by the need to have the wind on the starboard side. An effective sampling programme with the carousel system will usually require towing from the stern.

With the exception of a couple of syringes which only partially filled, the pump and valve worked well. It was again started by a lanyard switch hooked to a General Oceanics pylon. When that position was tripped from the deck unit, two pins on the pump electronics housing were shorted to enable the pump. Mechanical alignment of the valve to the home position was not a problem on this cruise either. At the end of each cast, the valve returned almost to its proper position; when the alignment pin was inserted, a small amount of force on the pin was all that was needed to put the valve in the proper place for deployment. Therefore, though we had the capability to align the valve using the computer keyboard, it was not needed.

Figure 1

RRS Charles Darwin 78 Cruise Track

Figure 2

SCALE 1 TO 5000000 (NATURAL SCALE AT LAT. 33)
INTERNATIONAL SPMEROID PROJECTED AT LATTUUDE 0

RRS Charles Darwin 78 CTD Stations in Work Area

Figure 3

RRS Charles Darwin 78 CTD Stations in Work Area

Figure 4

Figure 5

(as mercator projection
GRID NO. 1

- Track ploted from bestinav

SCALE 1 TO 500000 (NATURAL SCALE AT LAT. 33)
INTERNATIONAL SPHEROID PROJECTED AT LATITUDE 0

RRS Charles Darwin 78 Search Area 1

Figure 6

He MERCATOR PROJECTION

SCALE 1 TO 1500000 (NATURAL SCALE AT LAT. 33)
INTERNATIONAL SPHEROID PROUECTED AT LATITUDE O

RRS Charles Darwin 78 Sled Tows in Work Area

Figure 7

SLED TOWS -- CONCENTRATION VERSUS DISTANCE

Figure 8
Charles Darwin cd780018

Theta 10.0

$15.0 \quad 17.5$
$17.5 \quad 20.0$
22.5

Sal 35.0
 38.0

Sigma 27.0 29.0

Figure 9
Charles Darwin averages cd783100

Theta 10.0	12.5	15.0	17.5	20.0	22.5
Sal 35.0					38.0
Sigma 27.0					29.0

Figure 10

Figure 11

Figure 12a

Area A

Column Integral in density space:
3.6E-15

Mean sigmap
28.0637

Mean cd68 pressure: 320.928

RMS CD 68 Width: 29.4257

Figure 12b
Cast 5

Figure 13a

Area B

Column Integral in density space:
1.73E-15

Mean sigmap
28.0436

Mean ca68 pressure 310.007

RMS CD 68 Width:
31.43599

Figure 13b

Figure 13c

27.8	$2 \mathrm{E}-14$
27.85	
27.9	
27.95	
28	
28.05	
28.1	
28.15	
28.2	

Figure 14a
Area C

Column Integral in density space:
5.56E-16

Mean sigmap
28.04443

Mean cd68 pressure: 310.4178

RMS CD 68 Width: 33.97823

Figure 14b

Figure 14c

Figure 15a

Area D

Column Integral in density space:
4.09E-15

Mean sigmap 28.06248

Mean cd68 pressure 320.3006 RMS CD 68 Width: 30.52039

Figure15b

Figure15c

Figure16a
Area E

Column Integral in density space:
4.16E-15

Mean sigmap
28.04906

Mean cd68 pressure:
312.9763

RMS CD 68 Width:
29.11196

Figure16b

Figure 17a

Area F

Column integral in density space:
6.01E-16

Mean sigmap 28.05904

Mean cd68 pressure: 318.4042

RMS CD 68 Width: 31.2402

Average of casts 120-128 with CD68
 Depth profile

SF6 conc

Figure 17b

Figure 18a

Area G

Column Integral in density space:

4.84E-15 Mean sigmap 28.05794 Mean cd68 pressure: 317.7726 RMS CD 68 Width: 30.16065	Area \mathbf{c} Average of casts 129-146 with CD68 Depth profile

Figure 18b

Figure 18c

Figure 19a

Area H

Column Integral in density space:
1.8E-16

Mean sigmap
28.0782

Mean cd68 pressure: 328.964 RMS CD 68 Width: 46.8257

Figure 19b

Figure 20a

Area I

Column Integral in density space:
5.74E-15

Mean sigmap
28.05272

Mean cd68 pressur
314.8748

RMS CD 68 Width:
30.42777

Figure 20b

Figure 20c

Figure 21a

Area J

Column Integral in density space:
8.04E-15

Mean sigmap
28.05943

Mean ca68 pressure 318.6186

RMS CD 68 Width: 30.89238

Area J

Figure 21b

Figure 21c

Figure 22a

Area K

Column Integral in density space:
8.66E-16 Mean sigmap 28.05655 Mean cd68 pressure: 317.0606 RMS CD 68 Width: 31.81439

Figure 22b

Figure 23a

Area L
column Integral in density space:
$1.53 \mathrm{E}-15$
Mean sigmap 28.06673 Mean ca68 pressure 322.6952

RMS CD 68 Width: 31.44292

Figure 23b

Figure 24a

Area M

Column Integral in density space:
$3.07 \mathrm{E}-15$
Mean sigmap 28.06356 Mean cd68 pressure: 320.8799

RMS CD 68 Width: 30.6507

Figure 24b

Figure 25a

Area N

Column Integral in density space:
2.06E-15

Mean sigmap
28.06319

Mean cd68 pressure: 320.6238 RMS CD 68 Width: 32.03053

Figure 25b

Figure 26

Column Integral in density space:
3.2E-15

Mean sigmap
28.05779

Mean cd68 pressure: 317.7156

RMS CD 68 Width:
31.14419

Average of all casts with CD68 Depth profile

Figure 27

Mean SF6 Profile -- compared to gaussian with same RMS width

Figure 28

AB MERCATOR PROJECTION
SCALE 1 TO 5000000 (NATURAL SCALE AT LAT. 33)
INTERNATIONAL SPHEROID PROSECTED AT LATITUDE 0

RRS Charles Darwin 78 \& CSS Hudson SF6 Column Integrals

Figure 29

(H/ MERCATOR PROJECTION
SCALE 1 TO 3500000 (NATURAL SCALE AT LAT. 33)
INTERNATIONAL SPHEROID PRONECTED AT LATITUDE O

CSS Hudson CTD Stations in Work Area

Figure 30

Figure 31

Figure 32

Figure 33

Figure 34

Figure 35

䁤
TITLE:- "RRS Charles Darwin Cruise 78 SF6 casts (23.5 N) \/ARIARI F--CFh

Figure 36

