Formulae for bed density, water content and salt correction. (In cgs)

(I.N. McCave, Dept. Earth Sciences, Cambridge).

Data

weight wet (+sw) = x g weight dry (+s) = y g (x-y) = wt of water = wt of sea water-wt of salt = (sw-s) = (1-S)sw

Assumed

sediment density	ρ_p	= 2.65 g/cm^3 (if sed is not qtz make up density by proportion*)
salinity	S	= 35 g/kg = 0.035
water density	ρ_{w}	$= 1.025 \text{ g/cm}^3 (@ 20^{\circ}\text{C})$

Derived

= (y-Sx)/(1-S) = (y-0.035x)/0.965
= S(x-y)/(y-Sx)
<pre>= wt of salt water/wt of wet sediment = 1.025 (x-y)/x (usually expressed as %)</pre>
$= \underline{\mathbf{Y}}_{\rho_{p}} = [\mathbf{Y}/2.65] \text{ cm}^{3}$
$= \frac{(\mathbf{x} - \mathbf{Y})}{\rho_{w}} = [(\mathbf{x} - \mathbf{Y})/1.025] \text{ cm}^{3}$
$= \left[\frac{Y}{2.65} + \frac{(x-Y)}{1.025}\right] = \frac{2.65x - 1.625Y}{2.71625}cm^{3}$
$= \mathbf{V}_{w} / \mathbf{V}_{t} = \varepsilon / (1 + \varepsilon)$
$= y/\mathbf{V}_t g/cm^3$
$= \mathbf{Y}/\mathbf{V}_t \ g/cm^3$
$= \mathbf{P}/\mathbf{V}_{\mathrm{m}} = \mathbf{P}/(1-\mathbf{P})$

If a dry lump of sediment is taken and carbon content C is measured and expressed as [C/dried sed wt], it is wrong <u>unless corrected for salt content</u>: *it should be corrected to* [C/wt sed] i.e. salt-corrected.

1 cm of core = $\mathbf{Y}/\mathbf{V}_t \text{ g/cm}^2$ of salt-free sed.

with sedimentation rate SR cm/ka, and mass accumulation rate MAR g/cm²/ka

MAR = SR
$$(\mathbf{Y}/\mathbf{V}_t)$$
 g/cm²/ka

Summary formulae:
$$\begin{split} \rho_{d} &= \rho_{s} \left(1 - P\right) \\ \rho_{t} &= \Delta_{\rho} \left(1 - P\right) + \rho_{w} \\ \rho_{t} &= \rho_{d} \Delta_{\rho} \\ \rho_{d} &= \left(\rho_{t} - \rho_{w}\right) \rho_{s} / \Delta_{\rho} \end{split}$$

 ρ_w = density of water, ρ_s = sediment grain density, $\Delta_\rho = (\rho_s - \rho_w)$, ρ_t = total wet bulk density x/V_t, ρ_d = salt-corrected dry bulk density (concentration), P = porosity.

Worked example: weight wet weight dry	= 10 g = 7 g	
Y	$= (7-0.035 \times 10)/0.965 = 6.891.g.$	
water content W	= 0.3075 or 30.8%	
Salt content of dry mud + salt	= 0.0158 (a ratio)	
dry mud vol \mathbf{V}_m	$=\frac{6.891}{2.65}$ = 2.600 cm ³	
fluid vol V_w	$= 3.033 \text{ cm}^3$	
wet sample vol \mathbf{V}_t	$= 5.634 \text{ cm}^3$	
porosity P	= 0.538	
voids ratio ε	= 1.16	
dry bulk ρ	$= 1.243. \text{ g/cm}^3$	
Salt-corr. dry bulk ρ_d	$= 1.223 \text{ g/cm}^3$	
\therefore 1 cm core	$= 1.223 \text{ g/cm}^2 \text{ dry sed.}$	
∴ 5 cm/ka SR	$= 6.1 \text{ g/cm}^2/\text{ka dry sed MAR}.$	

if say 9.1% by weight is C on a salt-free basis by wt., then MAR of C = $0.56 \text{ g/cm}^2/\text{ka}$.

To express ρ_d in terms of water content W

$$\rho_d = 2.65 \, \underline{(1 - 1.011 \, \mathbf{W})} \\
(1 + 1.603 \, \mathbf{W})$$
(W was a fraction)

(with W = 0.3075 above gives $\rho_d = 1.223$ g/cm³ as required).

* 'by proportion' means, normally proportion of opal to (qtz+CO_3) , $\rho_{\text{P}}\text{=}~2.1~\text{vs}~2.65$

McCave 1.92, revised 3/05

(I.N. McCave, Dept. Earth Sciences, Cambridge).

Data

weight wet (+sw) = x kg weight dry (+s) = y kg (x-y) = wt of water = wt of sea water-wt of salt = (sw-s) = (1-S)sw

Assumed

sediment density	$ ho_p$	$= 2650 \text{ kg/m}^3$
salinity	S	= 35 g/kg = 0.035
seawater density	$ ho_{w}$	$= 1025 \text{ kg/m}^3 (@ 20^{\circ}\text{C})$

Derived

dry mud weight less salt Y	= (y-Sx)/(1-S) = (y-0.035x)/0.965
salt content $= (y-Y)/Y$	= S(x-y)/(y-Sx)
"water content" W W	<pre>= wt of salt water/wt of wet sediment = 1025 (x-y)/x (usually expressed as %)</pre>
dry mud volume \mathbf{V}_{m}	$= \underline{\mathbf{Y}}_{p_{p}} = [\mathbf{Y}/2650] \text{ m}^{3}$
fluid volume \mathbf{V}_{w}	$= \underline{(\mathbf{x} - \mathbf{Y})}_{\rho_{w}} = [(\mathbf{x} - \mathbf{Y})/1025] \text{ m}^{3}$
\therefore wet sample volume \mathbf{V}_t	$= \left[\frac{Y}{2650} + \frac{(x-Y)}{1025}\right] = \frac{2650x - 1625Y}{2716.25}m^3$
porosity P	$= \mathbf{V}_{w} / \mathbf{V}_{t} = \epsilon / (1 + \epsilon)$
dry bulk density	$= y/V_t kg/m^3$
Salt-corrected dry bulk density ρ_d	$= \mathbf{Y}/\mathbf{V}_t \ kg/m^3$
voids ratio ɛ	$= P/V_m = P/(1-P)$

If a dry lump of sediment is taken and carbon content C is measured and expressed as C/(wt sed + salt), it is wrong <u>unless corrected for salt content</u>: *it should be corrected to [C/wt sed]*.

1 cm of core = $0.01 \mathbf{Y} / \mathbf{V}_t \text{ kg/m}^2$ of salt-free sed.

with sedimentation rate SR m/ma (=mm/ka), and mass accumulation rate MAR $kg/m^2/Ma$

MAR = SR (
$$\mathbf{Y}/\mathbf{V}_t$$
) kg/m²/Ma

 $\begin{array}{ll} \text{Summary formulae:} & \rho_d = \rho_s \ (1 - P) \\ & \rho_t = \Delta_\rho \ (1 - P) + \rho_w \\ & \rho_t = \rho_d \ \Delta_\rho \\ & \rho_d = (\rho_t - \rho_w) \ \rho_s \! / \! \Delta_\rho \end{array}$

 ρ_w = density of water, ρ_s = sediment grain density, $\Delta_\rho = (\rho_s - \rho_w)$, ρ_t = total wet bulk density x/V_t, ρ_d = salt-corrected dry bulk density (concentration), P = porosity.

Worked example: weight wet weight dry	$= 10x10^{-3} \text{ kg} = 7x10^{-3} \text{ kg}$	
Y	= $(7-0.035 \times 10) \times 10^{-3} / 0.965 = 6.891 \times 10^{-3} \text{ kg}$	
water content W	= 0.3075 or 30.8%	
Salt content of dry mud + salt	= 0.0158 (a ratio)	
dry mud vol \mathbf{V}_m	$=\frac{6.891 \times 10^{-3}}{2650} = 2.600 \times 10^{-6} \text{ m}^3$	
fluid vol $~\mathbf{V}_{\mathrm{w}}$	$= 3.033 \times 10^{-6} \text{ m}^3$	
wet sample vol \mathbf{V}_t	$= 5.634 \mathrm{x} 10^{-6} \mathrm{m}^{3}$	
porosity P	= 0.538	
voids ratio ε	= 1.16	
dry bulk ρ	$= 1243 \text{ kg/m}^3$	
Salt-corr. dry bulk ρ_d	$= 1223 \text{ kg/m}^3$	
∴ 1 cm core	$= 12.23 \text{ kg/m}^2 \text{ dry sed.}$	
∴ 50 mm/ka SR	$= 61.2 \text{ kg/m}^2/\text{ma} \text{ dry sed MAR}.$	

if say 9.1% by weight is Carbon <u>on a salt-free basis</u> by wt., then MAR of C = $5.6 \text{ kg/m}^2/\text{ma}$.

To express ρ_d in terms of water content ${\bf W}$

 $\rho_{\rm d} = 2650 \, \underline{(1 - 1.011 \, \text{W})}_{(1 + 1.603 \, \text{W})}$ (W was a fraction)

(with $\mathbf{W} = 0.3075$ above gives $\rho_d = 1223$ kg/m³ as required).

McCave 1.92, revised 2.05