IRIS field report:

Airborne EM measurements of Baltic ice thickness in February 2003: The campaign

Christian Haas
Fortum

July 2003

Document identification sheet

EVK3-CT-2002-00833
IRIS

Ice Ridging Information for Decision
 Making in Shipping Operations

TITLE: IIS field report: Airborne EM measurements of Baltic ice thickness in February 2003: The campaign	REPORT IDENTIFICATION:
IRIS Report No. xxx	

CONTENTS

ABSTRACT 3

1. INTRODUCTION 3
2. SENSORS AND MEASUREMENTS 3
2.1 EM bird 3
2.2 Laser altimeter 4
2.3 GPS 4
2.4 Video camera 4
2.5 Aerial photography 5
3. THE CAMPAIGN 5
3.1 General 5
3.1.1 Flying procedure 7
3.1.2 Logistics 8
3.2 Daily flight maps and ice conditions 9
4. DATA ANALYSIS PLAN 9
4.1 Drift compensation 10
4.2 Calibration 11
4.3 Thickness computation 11
4.4 Retrieval of ridge distributions 13
5. EXPERIENCES AND CONCLUSIONS 13
6. ACKNOWLEDGEMENTS 13
APPENDIX I: Daily flight maps and ice conditions 14
APPENDIX II: File inventory 37

Abstract

This field report summarises flights and measurements carried out during the first IRIS airborne EM campaign in the Baltic between February 17 and 23, 2003. It also presents general ice conditions encountered during the flights and corresponding ice charts. Data analysis results will be presented in additional, later reports.

1. Introduction

The main objective of the IRIS project is the quantitative derivation of the amount of ridges from satellite imagery and their prediction by means of numerical models. The information is needed to further improve ice information for shipping, as. e.g. provided by national ice services.
In the Baltic the estimates of the amount of ridged ice are so far based on surface observations or surface profiles. However, the uncertainty in these estimates is large and thus no reliable statistics on the equivalent thickness of ridged ice volume yet exists. The proper parameterisation of models that seek to determine the ridged ice volume and ridge keel statistics from sail statistics requires joint profiles of the ice surface and ice draft. Such profiles can be obtained with ice thickness sensors based on electromagnetic (EM) induction.
From the surface profile obtained from the laser measurement the usual ridge parameters like ridge density and ridge height, together with their associated distribution can be determined. The joint thickness and surface profile data allows then the linking of the usual ridge parameters to the volume of ridged ice and to the keel parameters. The EM measurement gives also the level ice thickness between the ridges, and if the measured ridge field is recently created, the relationship of ridge ice block thickness (parent ice thickness) to the ridge statistics can be studied. This relationship is important for the parameterisation of ridging resolving dynamic ice models and for the estimation of ridging from SAR images.
Accordingly, there is a large work package (WP 2: Baltic field studies) for the acquisition of in-situ ice thickness and surface roughness data which can be used for the development of remote sensing algorithms and model parameterisations. The main goals are to collect sufficient amounts of unbiased data and to determine ridge height and ice thickness distributions along extended, representative profiles. To achieve these goals, an operational, helicopterborne EM ice thickness sensor designed for surveying Arctic ice tickness has to be calibrated for Baltic brackish water conditions. This report summarises the measurements performed in February 2003 and presents the plan for further data analysis.

2. Sensors and measurements

2.1 EM bird

Electromagnetic (EM) induction sounding can generally be used to determine the distance to the interface of two layers with different electrical conductivities. The sea ice application is based on the fact the sea water is a conductive medium while sea ice is non-conductive. Thus the distance from the sensor to the ice/water interface, which is coincident with the ice underside, can be determined. The distance between the
sensor and the ice surface is measured by a laser distance meter. From the difference of both distances ice thickness is obtained.
Alfred Wegener Institutes (AWI) thickness sensor is a towed bird (EM bird) suspended with a 20 m long below a helicopter (Fig. 1). It uses two operating frequencies of 3.6 and 112 kHz . The length of the bird is 3.4 m and weight 120 kg . The bird is flown at an altitude of 10 to 20 m above the ice surface. The laser altimeter readings are directly displayed to the pilot for real-time altitude control of the bird. The bird requires a power supply of 28 VDC and $16 \mathrm{~A}(450 \mathrm{~W})$ to be delivered from the helicopter. The power supply and the load hook are the only interfaces with the helicopter, so that the bird is quite platform independent. Data are radio-transmitted to a small notebook operated on the knees of one passenger in the helicopter. Data acquisition is performed at a sampling rate of 10 Hz , corresponding to a point spacing of 3 to 4 m with flight speeds of 60 to 80 knots.

Figure 1: EM bird in operation.

2.2 Laser altimeter

The Riegl LD90-3100HS laser distance meter inside the EM bird is not only used as a supplementary instrument for the computation of ice thickness, but also as a standalone laser profiler for measurements of ridge sail distributions and surface roughness. Its measurements enable to relate ridge profiles to overall thickness profiles.
The infrared laser operates at a wavelength of 905 nm with a ray divergence of 2 mrad . It has a range of up to 150 m with an accuracy of 0.002 m . To obtain a higher spatial sampling than with the thickness measurements, the laser is operated at a sampling rate of 100 Hz , corresponding to a point spacing of 0.3 to 0.4 m .

2.3 GPS

A standard GPS is included in the EM bird for recording the flight track with high accuracy. This enables later comparison of the data with data from other sources, e.g. satellite imagery.

2.4 Video camera

A downward looking digital video camera inside a metal housing was mounted directly to the helicopter (Fig. 2). The video was used to enable detailed investigations of the behaviour of the EM signal over different ice types and to judge the spatial resolution of the EM measurements. It was also used to document overall ice conditions with high flying altitudes.

Figure 2: Downward looking video camera.

2.5 Aerial photography

With conventional analogue and digital cameras still photographs were taken to document overall ice conditions and whenever there were peculiar ice features or situations. All photographs were documented with a GPS position to be able to specify their exact location when questions regarding interpretation of thickness data or satellite images should occur. The locations of all photographs taken are indicated as circles on the maps for every days flight track in Section 3.2.

3. The campaign

3.1. General

The 2003 helicopter ice thickness profiling campaign took between February 17 and 23. Flight tracks are shown in Figure 3 and are summarised in Table 1. In total, 12 flights with a total length of 1267 km have been performed. They lasted between 0.8 and 1.5 hours, corresponding to profile lengths of 73 to 141 km . As both the Gulf of Finland and the Gulf of Bothnia were well covered with ice (Fig. 4), we decided to survey both regions. Therefore, we moved from Helsinki northwards up to Raahe, and obtained an almost continuous coverage of the Finnish coast (Fig. 3). While two cross sections between Finland and Estonia could be achieved on February 23, helicopter range proved not to be sufficient to profile complete sections between the Finnish and Swedish coast.
The large number of flights was only possible due to favourable weather conditions. However, this also meant that there were no strong storms in the meantime. Therefore, there was probably not much change of the ice thickness distribution in the Gulf of Finland over the one-week period. To show such a change was the original idea behind the repeat flights from Helsinki on February 17 and 23. Section 3.2 and the Appendix describes in detail every days flights and the main ice conditions observed.

Figure 3: Map of all EM bird flight tracks during the 2003 ice thickness campaign between Febraury 17 and 23.

Table 1: Summary of all flights showing total flight duration and length of thickness profile obtained (flying altitude lower than 25 m).

Date	Base	Flight No.	Duration, h	Profile length, km
17.2.2003	Helsinki	1	1.5	140
		2	1.3	135
18.2.2003	Pori	1	0.8	81
19.2.2003	Närpiö	1	1.2	95
		2	1.3	141
20.2.2003	Kokkola	1	1.2	73
		2	1.2	100
		3	1.3	116
21.2.2003	Raahe	1	1.3	83
		2	1.4	95
23.2.2003	Helsinki	1	1.2	77
		2	1.3	131
Total			15.0	1267

Figure 4: Ice situation on February 16, i.e. one day before the first flight. Map courtesy of FIMR.

3.1.1 Flying procedure

The flight tracks were designed in order to represent the prevailing ice conditions, and to perpendicularly cross boundaries of eventually different ice regimes. Plans were made every morning based on recent ice charts which had been ordered by fax from the Finnish Ice Service at FIMR (e.g. Fig. 4).
Between the airfields and the sea flying altitudes between 100 and 200 m have been chosen. The bird was already switched on to allow for warm-up of the analogue electronic components. For thickness sounding, the bird had to be flown at altitudes between 12 and 15 m above the ice surface. Operation speed was 80 knots. However, because the EM signal is subject to electronic drift, the bird was lifted to altitudes greater than 60 m every 10 to 15 minutes to monitor the EM signal without any presence of electrical conductors like the sea (Fig. 5). During the high altitude sections, signal nulling and internal calibration was performed to compensate and correct for the drift. This procedure resulted in interruptions of the thickness profiles for 3 to 5 minutes. In most cases, the video camera was switched on only during ascents to and descents from the high altitude sections.

During the flights, geo-referenced event markers were edited into the files to demarcate special features and to document general ice conditions along the flight tracks. The locations of event markers are indicated as crosses on the maps for every days flight track in Section 3.2 and the Appendix. Notes on every event are only available as hand-written paper copy.

Figure 5: Typical GPS altitude pattern of 192 km long EM flight with actual thickness profiling performed during low altitude sections. Example from second flight on February 23.

Fiducial numbers are in 0.1 s , i.e. 6000 Fids correspond to 10 minutes flying time.

3.1.2 Logistics

The flight plan required to operate from different airfields along the Finnish coast. Currently, the bird cannot be landed without ground-assistance. Therefore, it was not possible to fly it from one base to the next, but it had always to be returned to the starting point. Therefore, all equipment had to be transported from one base to the next every evening after the flights. For transport of the scientific equipment a van with a 4 m long loading platform was rented, which was just big enough to host all required equipment (Fig. 6). The science team consisted of three people (M. Lensu, W. Dierking, C. Haas).

For all flights, a MD-500 helicopter was chartered from Helitour Oy, Helsinki. Operation of the flights required a pilot and a technician. The technician was responsible on the ground for take-off and landing of the bird, which was directly landed into a specially built trolley. He also had to drive the refueling truck which was required on some bases (Fig. 6). Between bases, science and helicopter teams operated independently and met just in the morning at the respective airfield.

Figure 6: Photograph of the ground logistics, consisting of (from left to right): EM bird on trolley, MD-500 helicopter, refueling truck, and scientist equipment van.

3.2 Daily flight maps and ice conditions

In the appendix all daily flight tracks and ice conditions observed are presented. Two maps are shown for every flight. The first map shows the flight track superimposed on the daily ice chart provided by FIMR. The second map includes information on the flight altitude (colour coded) and on the locations of event markers (crosses) and photographs (circles). Ice thickness measurements are only available for altitudes between 10 and 20 m (see Sect. 3.1.1).
The information is completed by two photographs representing general ice conditions, as well as a table summarising ice conditions at all locations where photographs have been taken.

4. Data analysis plan

During in-flight data acquisition only the laser heights and relative secondary EM field strengths (in ppm) are displayed in the operators notebook and recorded (Fig. 7). This allows to judge the data quality and noise content in real time already during the flight. Generally, there was a clear signal from ridges and level ice during all flights, even at the low water salinities in the Bay of Bothnia. Unfortunately, due to strong winds on the flights from Raahe there was much noise in the data, which might allow accurate thickness retrieval only after low-pass filtering, thus removing some of the lateral resolution.

Figure 7: Screen shot of data acquisition software display, allowing real time control of all transmit and receive channels of EM field strengths and laser distances for quality control. The example shows a profile across a pressure ridge.

However, thickness retrieval from the EM field data is involved. Thickness profiles will only be available in late fall 2003. On the one hand, we have to develop geophysical inversion procedures which involve imagery and real components of the EM field at both frequencies. This work is under development. On the other hand, thicknesses have to be retrieved manually from each channel using interactive software. Much of this work is still under development and has to be optimised before routine procedures can be used. The main steps involved are presented below for a flight over the Gulf of Finland on February 23.

4.1 Drift compensation

As mentioned above, EM signals are subject to temporal drift due to electronic drift of the analogue electronic components, mainly heating of the coils. The drift can be monitored during high altitude sections, when there should be no signal in the absence of any conductor around the system. The deviation from null between two ascents is the drift, which has to be linearly interpolated and removed from all other samples in between. The procedure is illustrated in Figure 8. Here, drift amounted to 30 ppm which is relatively low because the profile has been obtained after 0.5 hours of operation, when all electronic components had almost achieved their equilibrium temperature.

Figure 8: Typical profile of inphase component of $f_{1}(3.6 \mathrm{kHz})$ showing original (red, stippled) and drift-corrected trace (blue, solid). February 23, $2^{\text {nd }}$ flight, file 200302231204*.

4.2 Calibration

An essential issue in EM sounding is calibration to be able to convert the measured voltages into EM field strength. Normally, absolute calibration is required to invert underground conductivities from the EM signals. This will also be necessary for the development of our geophysical inversion procedures.
However, the case of sea ice thickness measurements is comparatively simple, as normally the data contain some open water sections even in winter. As ice thickness is well known to be zero over open water, these sections provide some independent means for calibrating the data. Because the helicopters altitude is quite variable during a flight, open water sections are crossed at different heights and provide thus information on the relation between EM signal and bird distance to the water surface. This is illustrated in Figure 9. Open water sections are characterised by a maximum EM signal strength for a given bird height and are therefore easily identifiable. Some open water points can then be picked from a scatter plot of EM signal versus laser height, and can be used as sampling points for an exponential fit. The fit provides a transformation equation to convert the EM signal into a distance to the water surface.

Figure 9: F_{1} Inphase signal versus system height above the ice surface for the example from Figure 8. The exponential fit is performed only for open water samplong points.

4.3 Thickness computation

Figure 10a presents profiles of electromagnetically derived bird distance to the water surface computed as explained in 4.2, and the coincident laser height above the ice
surface. For better clarity, only a short section of the profile in Figure 8 is shown. Ice thickness is the difference between both curves (Fig. 10b). Figure 11 shows the corresponding thickness distribution. Mean ice thickness along the profile was 1.36 m with a typical thickness of 1.1 m .

Figure 10: Profiles of bird height above the water (blue) and ice (red) surface (a) and ice thickness (b) derived by subtracting both curves in a). Section from the profile shown in Figure 8.

Figure 11: Thickness distribution of the profile shown in Figures 8 and 10.

4.3 Retrieval of ridge distributions

Ridge sail and keel distributions will be retrieved from both the laser data alone and the ice thickness profiles. With the laser profiles, helicopter motion inherent in the data will first be removed following standard procedures (high pass filtering, picking of minimum sampling points, and reconstruction, low pass filtering, and subtraction of helicopter motion). Both the location of ridge sails and keels along the profiles as well as the derived height, spacing, and cluster distributions will be delivered for subsequent parameterisation in models and for comparison with remote sensing (SAR) data.

5. Experiences and conclusions

Although we could not achieve as much work as originally planned (see IRIS Report No. 1: Field experiment plan: Airborne EM measurements of Baltic ice thickness in February 2003; Part of Deliverable No. 1), the 2003 airborne campaign has to be considered as extraordinarily successful. This was due to favourable weather conditions, professional helicopter service, and good performance of the EM bird over low salinity Baltic Sea ice. Although the latter will become clear only after complete data analysis, sufficient data quality could be judged already during the flights from low noise (4 ppm) and clear ice signals at the edges of ice floes and over ridges. Anyway, we could improve the signal-to-noise ratio by just flying lower (between 10 and 15 m) which did not pose a problem for the helicopter pilot.
Nevertheless, survey flights and transfer shipping of the equipment consumed quite some time, so that no extra flights could be performed for calibration purposes or other ice work. This has to be taken into account for future campaigns.
Around Pori, all EM measurements were seriously disturbed by radio transmissions from Pori radio station. There was extremely strong noise both on the transmitter as well as on the receiver side, which was even saturated.
Our flights provided a great opportunity to validate qualitatively the official FIMR ice charts. The charts proofed to be very accurate and represented all ice regimes very well. However, the representation of ridges was very poor, emphasising the importance of the campaign in putting forward the goals of the IRIS project.
Data processing and analysis has commenced and will be completed in late fall 2003.

6. Acknowledgements

The success of the campaign was only possible through the professionalism and enthusiasm of Helitour Oy, in particular by Pentti Törrönen and pilots and bird catcher Rene Koivisto and Ermo Löytömäki.

APPENDIX I

Daily flight maps and ice conditions

All daily flight tracks and ice conditions observed are presented. Two maps are shown for every flight. The first map shows the flight track superimposed on the daily ice chart provided by FIMR. The second map includes information on the flight altitude (colour coded) and on the locations of event markers (crosses) and photographs (circles). Ice thickness measurements are only available for altitudes between 10 and 20 m (see Sect. 3.1.1).
The tables list every days photographs and prevailing ice types and conditions.

February 17, Flight 1

Flight from Helsinki along the fast ice/ drift ice boundary towards East.

February 17, Flight 2

Flight from Helsinki towards West, and to an extended polynja in the Southeast.

Compact drift ice at the fast ice / drift ice boundary

Dark nilas on polynja adjacent to fast ice in backgrond

FLIGHT 2, 14:45-15:15 local; Film 2, photos 12-13: pilot Rene Koivisto + Mikko Lensu; 14-37: Gulf of Finland (technician: Ermo Löytömäki)

\#	Position N	Position E	Altitude [m]	Remark
001	$60^{\circ} 05.155$	$24^{\circ} 57.635$	103	photo 14
002	$60^{\circ} 03.083$	$24^{\circ} 54.940$	43	photo 15, fragmented fast ice
003	$60^{\circ} 01.394$	$24^{\circ} 52.952$	39	photo 16
004	$60^{\circ} 00.328$	$24^{\circ} 50.161$	43	no photo, open water to the left, heading 280°
005	$59^{\circ} 59.404$	$24^{\circ} 47.324$	43	photo 17
006	$59^{\circ} 58.658$	$24^{\circ} 44.937$	76	photo 18
007	$59^{\circ} 57.404$	$24^{\circ} 39.077$	76	photo 19 , open water to the left, heading 280°
008	$59^{\circ} 55.787$	$24^{\circ} 33.924$	41	no photo, thin ice
009	$59^{\circ} 54.817$	$24^{\circ} 31.062$	40	photo 20
010	$59^{\circ} 54.467$	$24^{\circ} 30.128$	40	photo 21
011	$59^{\circ} 53.360$	$24^{\circ} 26.453$	44	photo 22, to the left in 2 km distance open water
012	$59^{\circ} 52.285$	$24^{\circ} 22.775$	45	this way point shortly after flying along ice edge
013	$59^{\circ} 51.715$	24ำ18.409	44	photo 23
014	$59^{\circ} 51.731$	$24^{\circ} 14.893$	44	photo 24
015	$59^{\circ} 51.778$	$24^{\circ} 16.520$	90	new heading 50°, open water to the right
016	$59^{\circ} 52.628$	$24^{\circ} 21.597$	38	photo 25
017	$59^{\circ} 54.098$	$24^{\circ} 24.563$	35	photo 26
018	$59^{\circ} 55.591$	$24^{\circ} 28.347$	32	photo 27
019	$59^{\circ} 57.460$	$24^{\circ} 33.776$	33	no photo, small and large ice fragments
020	$59^{\circ} 58.131$	$24^{\circ} 35692$	34	no photo, smooth level
021	$59^{\circ} 58.510$	$24^{\circ} 36.724$	34	photo 28
022	$59^{\circ} 59.504$	$24^{\circ} 39.363$	37	larger patches of smooth ice, weak ridging, no sun
023	$60^{\circ} 01.087$	$24^{\circ} 43.177$	30	smooth thin ice, open water to the right in 2-3 km
024	$60^{\circ} 03.156$	$24^{\circ} 48.005$	36	large pieces of broken grey ice, snow covered
025	$60^{\circ} 03.697$	$24^{\circ} 49.721$	37	smooth ice
026	$60^{\circ} 04.067$	$24^{\circ} 51.923$	35	smooth dark grey ice
027	$60^{\circ} 04.799$	$24^{\circ} 56.983$	62	photo 29: open water with ice floe belt
028	$60^{\circ} 04.283$	25 ${ }^{\circ} 01.396$	109	photo 30: ice edge
029	$60^{\circ} 04.833$	2506.464	73	photo 31-34 fragmented ice
030	$60^{\circ} 05.301$	25 09.219	44	photo 35
031	$60^{\circ} 06.608$	$25^{\circ} 19.460$	34	fragmented ice with ridges, ice edge in 2-3km dist.
032	$60^{\circ} 06.662$	$25^{\circ} 24.735$	33	photos 36-37
033	$60^{\circ} 06.102$	25 ${ }^{\circ} 26.787$	130	thin rafted ice, first signs of ridging
034	$60^{\circ} 04.627$	25²8.471	105	open water
035	$60^{\circ} 01.020$	$25^{\circ} 33.604$	39	open water, then lots of broken ice fragments
036	$59^{\circ} 59.344$	$25^{\circ} 35.938$	41	digital camera: ridged ice
037	$60^{\circ} 00.361$	$25^{\circ} 37.663$	34	open water with pieces of broken ice (digital photo)
038	$60^{\circ} 03.544$	$25^{\circ} 32.409$	33	thin ice with rafting and ridging, ice fragments: Film 3, photos 00, 0, 1-2
039	$60^{\circ} 06.271$	25²4.194	32	light house again, see photo 37, film 2
040	$60^{\circ} 09.683$	$25^{\circ} 13.107$	36	Photo 3: shiptrack
Photos 4-5: approaching the coast Disassembling, packing until ca 17:30 local; driving to Pori, arrival ca. 22:00				

February 18, Flight 1

Flight from Pori into Sea of Bothnia covered by dark and light nilas. Bad noise induced by Pori radio station.

Mixed rafted dark and light nilas

Broken grey ice pieces embedded in nilas

18/02/03; film 3, photos 6-8 Pori airfield
flight 3 from Pori, 11:00-11:25 local, photo 9: fast ice, return to base, bird: interference with local transmitter (radio antenna)
Flight 4, 13:15-14:45, film 3, photo 10: flying towards coast

\#	Position N	Position E	Altitude [m]	Remark
041	$61^{\circ} 28.561$	$21^{\circ} 30.971$	129	photo 9
042	$61^{\circ} 26.758$	$21^{\circ} 27.792$	107	photo 11
043	$61^{\circ} 27.212$	$21^{\circ} 25.138$	50	photo 12
044	$61^{\circ} 27.949$	$21^{\circ} 19.297$	28	photo 13: transition fast ice -> pack ice
045	$61^{\circ} 28.103$	$21^{\circ} 16.366$	27	photo 14
046	$61^{\circ} 28.139$	$21^{\circ} 11.204$	30	photos 15-18
047	$61^{\circ} 28.241$	$21^{\circ} 05.036$	28	no photo, same situation, later broken ice fragments: photo 19
048	$61^{\circ} 28.400$	$21^{\circ} 00.344$	28	photo 20, later photos 21-23
049	$61^{\circ} 28.642$	$20^{\circ} 52.721$	61	photos 24-26
050	$61^{\circ} 29.083$	$20^{\circ} 47.773$	102	no photo, same situation
051	$61^{\circ} 29.305$	$20^{\circ} 44.872$	75	same situation, later dollar pancakes: photo 27
052	$61^{\circ} 29.503$	$20^{\circ} 39.269$	31	photo 28: dollar pancakes in waves
053	$61^{\circ} 29.421$	2031.960	30	photo 29: nilas + grey ice; later photo 30: nilas with rafting, frost flowers ? snow drift?
054	$61^{\circ} 30.546$	$20^{\circ} 25.425$	39	photo 31
055	$61^{\circ} 32.508$	$20^{\circ} 26.443$	80	no photo, same situation
056	$61^{\circ} 35.232$	$20^{\circ} 27.892$	41	photo 32: pancakes frozen together
057	$61^{\circ} 36.582$	$20^{\circ} 28.658$	42	photo 33
058	$61^{\circ} 40.553$	$20^{\circ} 30.918$	31	photo 34
059	$61^{\circ} 47.302$	$20^{\circ} 34.972$	25	photo 35: broken pancake cover in dark, rafted nilas; photo 36 ; changing film, photos $00+0$
060	$61^{\circ} 43.011$	$20^{\circ} 42.418$	31	photos 1+2, film 4
061	$61^{\circ} 41.918$	$20^{\circ} 44.117$	31	pancake field, perhaps with ice slick between cakes
062	$61^{\circ} 38.932$	$20^{\circ} 48.623$	33	photos 3+4
063	$61^{\circ} 35.523$	2053.378	89	photo 5
064	$61^{\circ} 32.520$	$20^{\circ} 57.115$	56	same situation: ridging and rafting
065	$61^{\circ} 30.647$	$20^{\circ} 59.692$	37	Larger pieces of ice frozen together
066	$61^{\circ} 29.798$	$21^{\circ} 01.207$	33	photos 6-9
067	$61^{\circ} 28.804$	$21^{\circ} 18.178$	61	rafting + ridging, transition to fast ice
068	$61^{\circ} 28.229$	$21^{\circ} 20.366$	67	fast ice

February 19, Flight 1

Flight from Närpiö towards West, from deformed white ice into rafted nilas.

Deformed grey/white ice adjacent to fast ice in the background

Large stretches of rafted light nilas

19/02/03, departure Kaskinen 8:45. Parking lot of a filling station is used as airfield (film 4, photo 12)				
Flight 5, start 10:30, end 12:00. Photos 13+14 flying towards coast				
\#	Position N	Position E	Altitude [m]	Remark
069	$62^{\circ} 28.378$	$21^{\circ} 26.014$	12	position filling station
070	$62^{\circ} 29.715$	$21^{\circ} 06.230$	103	photo 15: transition fast ice -> pack ice; later photos 16+17: broken, snow covered thin ice
071	$62^{\circ} 30.732$	$20^{\circ} 58.132$	53	between WP $70+72$: photos 18-30
072	$62^{\circ} 34.750$	$20^{\circ} 50.266$	37	nilas, open water
073	$62^{\circ} 35.786$	2048.232	93	photos 31+32
074	$62^{\circ} 36.992$	2045.976	64	photo 33
075	$62^{\circ} 38.845$	$20^{\circ} 42.280$	32	photos 34,35: "milky" ice
076	$62^{\circ} 40.371$	2039.235	26	no photo; 30-40\% open water or dark nilas,
077	$62^{\circ} 43.722$	$20^{\circ} 32.338$	30	film \# 5: photos 0+1
078	$62^{\circ} 45.130$	$20^{\circ} 29.684$	102	photos 2-5
079	$62^{\circ} 39.989$	20²9.202	44	photos 6+7
080	$62^{\circ} 37.452$	20²9.350	45	photo 8
081	$62^{\circ} 33.032$	$20^{\circ} 29.779$	49	photos 9-16
082	$62^{\circ} 30.198$	$20^{\circ} 29.947$	47	about 10\% narrow open leads (no photo)
083	$62^{\circ} 27.146$	$20^{\circ} 30.028$	40	photos 16-23
084	$62^{\circ} 23.145$	$20^{\circ} 30.046$	46	photo 24
085	$62^{\circ} 20.802$	$20^{\circ} 29.984$	35	photos 25-27
086	$62^{\circ} 18.716$	$20^{\circ} 30.074$	43	ice concentration to left side > 90\% (no photo)
087	$62^{\circ} 14.492$	2031.090	99	photos 28-30
088	$62^{\circ} 14.421$	2032.426	130	photo 31
089	$62^{\circ} 14.421$	$20^{\circ} 32.426$	130	photos 32-37
090	$62^{\circ} 15.767$	$20^{\circ} 56.010$	130	no photo, more snow (1-2cm), many ridges, fragmented ice, dark nilas + open water
091	$62^{\circ} 16.719$	$20^{\circ} 58.431$	130	a few ridges getting higher (no photo)
092	$62^{\circ} 18.733$	$21^{\circ} 03.818$	42	larger fragmented ice fields (50\% of total area)
093	$62^{\circ} 19.495$	$21^{\circ} 06.102$	80	large smooth ice patch, flying ca 45° relative to the fast ice edge
094	$62^{\circ} 25.005$	$21^{\circ} 04.613$	45	```parallel transition fast ice -> pack ice, but still over pack ice```
095	$62^{\circ} 26.973$	$21^{\circ} 03.697$	41	thin ice + open water (large lead: ca 1000m long, 150200m wide)
096	$62^{\circ} 30.160$	$21^{\circ} 02.054$	33	zone of heavy ridging
097	$62^{\circ} 31.673$	$21^{\circ} 01.256$	35	2 large thin ice floes, many smaller floes
098	$62^{\circ} 34.843$	$21^{\circ} 00.313$	51	3 digital photos
099	$62^{\circ} 35.410$	$21^{\circ} 02.100$	45	entering into fast ice

February 19, Flight 2

Flight from Närpiö across deformed white ice parallel to fast ice edge.

Broken, heavily deformed white ice floes adjacent to fast ice

19/02, flight 6 13:00-14:45 local, and film 6. Photos 1+2: helicopter shadow; photos 3+4: Finnish landscape				
\#	Position N	Position E	Altitude [m]	Remark
100	$62^{\circ} 29.686$	$21^{\circ} 06.959$	100	transition fast ice / pack ice, photos 5-8 (ice deformations close to fast ice edge)
101	$62^{\circ} 30.112$	$20^{\circ} 59.908$	42	photo 9
102	$62^{\circ} 33.751$	$20^{\circ} 56.716$	29	photo 10, a little later ridged ice, then patches of "milky" ice, photo 11
103	$62^{\circ} 36.752$	2054.565	34	fragmented ice with rims (such as seen on flight 5)
104	$62^{\circ} 40.391$	$20^{\circ} 52.148$	36	photo 12
105	$62^{\circ} 40.994$	$20^{\circ} 51.739$	36	photo 13 (there are also open water patches in the area)
106	$62^{\circ} 44.722$	2049.482	102	photos 14+15
107	$62^{\circ} 46.698$	$20^{\circ} 48.327$	46	photos 16+17
108	$62^{\circ} 47.533$	$20^{\circ} 47.870$	34	photo 18, then ridged + fragmented ice again; photos 19+20
109	$62^{\circ} 51.792$	$20^{\circ} 44.614$	69	photo 21
110	$62^{\circ} 55.201$	$20^{\circ} 42.463$	71	photos 22+23
111	$62^{\circ} 58.309$	2040.620	39	photo 24
112	$62^{\circ} 59.677$	$20^{\circ} 39.588$	37	photo 25
113	$63^{\circ} 02.557$	2038.088	39	ridged and broken ice
114	$63^{\circ} 05.697$	2036.749	35	film 7, photos 0-2
115	$63^{\circ} 08.700$	2035.399	51	photo 3
116	$63^{\circ} 11.283$	$20^{\circ} 34.106$	32	photos 4+5
117	$63^{\circ} 14.296$	$20^{\circ} 32.581$	34	photo 6-9
118	$63^{\circ} 12.145$	$20^{\circ} 31.227$	35	old ship track ?
119	$63^{\circ} 10.650$	$20^{\circ} 31.314$	38	photo 10
120	$63^{\circ} 06.777$	$20^{\circ} 31.247$	24	photo 11
121	$63^{\circ} 02.386$	$20^{\circ} 29.663$	34	area of open water, start
122	$63^{\circ} 00.841$	2029.483	48	area of open water, end
123	$62^{\circ} 58.433$	$20^{\circ} 30.452$	32	photos 12-13
124	$62^{\circ} 56.827$	2031.538	33	still same situation
125	$62^{\circ} 51.649$	$20^{\circ} 37.556$	31	photo 14
126	$62^{\circ} 45.113$	20%4.696	30	photos 15+16
127	$62^{\circ} 44.385$	$20^{\circ} 45.390$	62	photos 17+18
128	$62^{\circ} 38.459$	$20^{\circ} 51.664$	31	same situation
129	$62^{\circ} 35.228$	$20^{\circ} 54.800$	38	large lead (open water + dark nilas) to the right
130	$62^{\circ} 34.131$	$20^{\circ} 55.564$	42	crossing lead
131	$62^{\circ} 32.738$	$20^{\circ} 56.610$	36	along lead edge
132	$62^{\circ} 31.480$	$20^{\circ} 58.168$	33	lead to the left, otherwise rough thin ice
133	$62^{\circ} 30.195$	$20^{\circ} 59.735$	34	photo19
134	$62^{\circ} 29.563$	$21^{\circ} 02.772$	43	over rough ice, lead behind
135	$62^{\circ} 29.400$	$21^{\circ} 05.310$	30	fast ice edge
photo 20: Mikko in front seat of the helicopter, photos $21+22$: filling station "air field"; departure 15:30, arrival Kokkola 17:30 local				

February 20, Flight 1

Flight from Kokkola/Pietarsaari into Quarken, from deformed white ice into dark nilas.

Rafted/deformed light nilas/grey ice in the Quarken

20/02/03 airfield south of Kokkola (photos $23+24$ on film 7, photos $0-11$ on film \# 8). Position63³3.342N $23^{\circ} 07.922 \mathrm{E}$; Flight 7 start 9:45, end 11:30; photos 12-16 on the way to the coast; photo 17: fast ice				
\#	Position N	Position E	Altitude [m]	Remark
136	$63^{\circ} 44.713$	$22^{\circ} 30.584$	92	film \# 8, photos 18+19, transition fast ice / pack ice
137	$63^{\circ} 43.160$	$22^{\circ} 27.296$	34	photo 20
138	$63^{\circ} 41.714$	$22^{\circ} 24.465$	19	photos 21-27
139	$63^{\circ} 38.334$	$22^{\circ} 17.365$	27	still same situation
140	$63^{\circ} 35.564$	$22^{\circ} 11.701$	30	film \# 9, photos 00, 0, 1
141	$63^{\circ} 34.846$	$22^{\circ} 10.198$	31	photo 2
142	$63^{\circ} 33.764$	$22^{\circ} 08.073$	27	photo 3
143	$63^{\circ} 32.575$	$22^{\circ} 05.569$	29	nilas with rafting and ridging
144	$63^{\circ} 31.427$	$22^{\circ} 03.057$	29	patches of pancake covers
145	$63^{\circ} 30.730$	$22^{\circ} 01.506$	97	photos 4-6
146	$63^{\circ} 30.774$	$21^{\circ} 57.680$	55	pancake fields (ridged, broken), 20\% nilas + grey level
147	$63^{\circ} 30.547$	$21^{\circ} 49.152$	27	level ice floes increasing in size, $20-30 \%$ areal coverage; dark nilas $20-30 \%$, rest is pancakes
148	$63^{\circ} 30.398$	$21^{\circ} 45.009$	28	photos 7-10
149	$63^{\circ} 30.333$	$21^{\circ} 42.690$	27	rougher ice again, pancakes hardly recognizable
150	$63^{\circ} 30.219$	21³9.469	28	photo 11
151	$63^{\circ} 30.158$	$21^{\circ} 37.844$	29	heavy ridging
152	$63^{\circ} 30.097$	$21^{\circ} 35.512$	29	new nilas area, photos 12-27
153	$63^{\circ} 29.983$	$21^{\circ} 28.521$	95	same situation
154	$63^{\circ} 30.037$	$21^{\circ} 21.233$	96	same situation
155	$63^{\circ} 30.250$	$21^{\circ} 19.331$	84	same situation
156	$63^{\circ} 32.642$	$21^{\circ} 20.623$	47	same situation
157	$63^{\circ} 34.250$	$21^{\circ} 21.697$	54	same situation
158	$63^{\circ} 36.333$	$21^{\circ} 27.994$	23	same situation
159	$63^{\circ} 37.583$	$21^{\circ} 33.058$	33	first pancake fields again
160	$63^{\circ} 38.246$	$21^{\circ} 35.370$	42	about $50-50 \%$ nilas and pancake ice
161	$63^{\circ} 41.522$	$21^{\circ} 46.758$	44	nilas, pancakes, and smooth grey level ice, film \# 10, photos 00-7, photo \# 8 Mikko
162	$63^{\circ} 42.905$	$21^{\circ} 52.039$	32	photos 9+10
163	$63^{\circ} 44.536$	$21^{\circ} 58.276$	73	photos 11+12
164	$63^{\circ} 45.131$	$22^{\circ} 02.448$	81	same situation
165	$63^{\circ} 45.309$	2207.084	44	photos 13-15
166	$63^{\circ} 45.277$	$22^{\circ} 16.705$	33	photos 16+17
167	$63^{\circ} 45.182$	$22^{\circ} 24.325$	27	photo 18
168	$63^{\circ} 45.137$	$22^{\circ} 27.910$	36	photo 19: fast ice
169	$63^{\circ} 49.088$	$22^{\circ} 26.350$	34	photos 20-23
170	$63^{\circ} 50.464$	$22^{\circ} 25.144$	32	broken ice, with smoother patches imbedded
171	$63^{\circ} 50.332$	22³0.062	37	fast ice, photo 24
film \# 10: approaching the air field (photo 25). The "bird" (photos 26+27)				

February 20, Flight 2

Flight from Kokkola/Pietarsaari along boundary between rafted nilas and deformed white ice.

White ice floes interspersed with nilas

Flight \# 8; Film 11, photos 1-3 on the way				
\#	Position N	Position E	Altitude [m]	Remark
172	$63^{\circ} 45.699$	$22^{\circ} 30.709$	89	photos 4+5, transition fast / pack ice
173	$63^{\circ} 47.367$	$22^{\circ} 27.740$	58	nilas and grey ice, with ridging
174	$63^{\circ} 47.990$	$22^{\circ} 26.349$	58	smooth nilas area, > 100 m across
175	$63^{\circ} 48.453$	$22^{\circ} 25.423$	58	floes with rims, brash ice, smooth grey ice floes
176	$63^{\circ} 49.808$	$22^{\circ} 22.823$	55	crossing a ship track
177	$63^{\circ} 50.285$	$22^{\circ} 21.940$	55	crossing dark nilas
178	$63^{\circ} 50.906$	$22^{\circ} 20.702$	55	photos 6-9
179	$63^{\circ} 53.349$	$22^{\circ} 15.036$	57	photos 10,11
180	$63^{\circ} 54.529$	$22^{\circ} 12.368$	53	photo 12
181	$63^{\circ} 56.255$	$22^{\circ} 08.903$	56	photo 13
182	$63^{\circ} 57.903$	$22^{\circ} 08.493$	62	photos 14+15
183	$64^{\circ} 00.445$	$22^{\circ} 07.663$	33	photos 16-20
184	$64^{\circ} 02.521$	$22^{\circ} 07.306$	32	nilas with small fragments of thicker ice
185	$64^{\circ} 04.092$	$22^{\circ} 07.516$	33	very smooth dark nilas
186	$64^{\circ} 06.264$	$22^{\circ} 08.303$	37	photos 21+22
187	$64^{\circ} 09.275$	$22^{\circ} 07.585$	27	start flooded grey ice
188	$64^{\circ} 10.000$	$22^{\circ} 07.364$	29	end flooded grey ice
189	$64^{\circ} 10.453$	$22^{\circ} 07.241$	31	dark nilas
190	$64^{\circ} 11.046$	$22^{\circ} 07.123$	38	small pancakes; later photo 23
191	$64^{\circ} 13.082$	$22^{\circ} 06.311$	34	floes with raised rims, smooth broken ice floes (flooded)
192	$64^{\circ} 14.022$	$22^{\circ} 05.846$	30	larger patches of smooth grey ice between dark nilas, thicker grey or grey white floes, flooded
193	$64^{\circ} 15.570$	$22^{\circ} 05.355$	30	pancake field
194	$64^{\circ} 15.965$	$22^{\circ} 05.233$	30	pancakes + flooded floes in varying fractions
195	$64^{\circ} 17.093$	$22^{\circ} 04.813$	31	over smooth dark nilas, narrow open water lead
196	$64^{\circ} 18.448$	$22^{\circ} 04.437$	34	flooded grey ice, partly broken
197	$64^{\circ} 20.112$	$22^{\circ} 03.980$	32	dark, smooth nilas
198	$64{ }^{\circ} 21.089$	$22^{\circ} 03.677$	38	ice fragments, mixed with open water and pancake patches: photo 23
199	$64^{\circ} 22.631$	$22^{\circ} 03.078$	31	open water, larger ice fragments, then smooth grey ice: photos 24,25
200	$64^{\circ} 23.445$	$22^{\circ} 03.220$	94	photo 26
201	$64^{\circ} 21.047$	$22^{\circ} 06.859$	90	nilas with broken, wet grey (grey-white ?) ice
202	$64^{\circ} 18.220$	$22^{\circ} 10.234$	36	broken ice with small fragments between floes, also pancakes
203	$64^{\circ} 16.685$	$22^{\circ} 12.159$	34	pancake field to the right
204	$64^{\circ} 14.869$	$22^{\circ} 14.610$	33	bands of pancakes with varying roughness, then broken floes with fragments between them
205	$64^{\circ} 12.559$	$22^{\circ} 16.832$	34	floes with ridging (convergent) or fragments between them (divergent)
206	$64^{\circ} 10.532$	$22^{\circ} 18.964$	38	very inhomogeneous: nilas, grey ice floes, fragments
207	$64^{\circ} 07.969$	$22^{\circ} 21.646$	36	larger grey ice floes with ice fragments between them
208	$64^{\circ} 07.123$	$22^{\circ} 22.541$	35	grey-white ice with ridges
209	$64^{\circ} 03.307$	$22^{\circ} 26.572$	31	photo 27
210	$64^{\circ} 02.968$	$22^{\circ} 26.929$	31	same situation
211	$64^{\circ} 01.923$	$22^{\circ} 27.990$	93	photo 28
212	$63^{\circ} 59.99$	$22^{\circ} 29.833$	123	ship track
213	$63^{\circ} 57.013$	$22^{\circ} 34.753$	31	film \# 12, photo 00, later crossing a ship track
214	$63^{\circ} 54.346$	$22^{\circ} 34.454$	32	ridged level (fast ?) ice, photos 0
215	$63^{\circ} 49.791$	$22^{\circ} 33.101$	32	photo 1+2
216	$63^{\circ} 46.595$	$22^{\circ} 31.641$	32	over narrow strip (100 m) of rubble fast ice
217	$63^{\circ} 45.158$	$22^{\circ} 31.050$	30	end of strip
218	$63^{\circ} 44.566$	$22^{\circ} 31.559$	34	ship track in fast ice, photos 3-6
219	$63^{\circ} 43.996$	$22^{\circ} 40.183$	107	crossing coast line

February 20, Flight 3

Flight from Kokkola/Pietarsaari into thicker and older ice in the North.

White ice fragments baked into nilas at the westernmost point of the profile

Heavily deformed white ice with snow drifts

Flight \# 9, 20/02/03 15:15-16:55 local

\#	Position N	Position E	Altitude [m]	Remark
220	$63^{\circ} 45.135$	$22^{\circ} 30.979$	113	fast ice: snow dunes (photos 7-9 on film \# 12), overview photos 10+11
221	$63^{\circ} 47.764$	$22^{\circ} 28.117$	27	photo 12
222	$63^{\circ} 49.635$	$22^{\circ} 26.210$	25	floes with raised rims, ridged grey ice
223	$63^{\circ} 51.460$	$22^{\circ} 24.334$	23	broken grey ice, more rafting, less ridging
224	$63^{\circ} 55.500$	$22^{\circ} 20.231$	18	photo 13
225	$63^{\circ} 56.110$	$22^{\circ} 19.454$	18	same situation
226	$63^{\circ} 57.403$	$22^{\circ} 17.633$	17	same situation
227	$63^{\circ} 59.807$	$22^{\circ} 15.800$	87	photos 14-16, dark nilas at the horizon to the left
228	$64^{\circ} 03.209$	$22^{\circ} 17.559$	28	same situation
229	$64^{\circ} 08.011$	$22^{\circ} 19.944$	32	before setting WP crossing ship racks
230	$64.12^{\circ} 676$	$22^{\circ} 22.046$	32	photo 17
231	$64^{\circ} 15.195$	$22^{\circ} 23.220$	2	photos 18+19
232	$64^{\circ} 16.120$	$22^{\circ} 23.636$	11	photos 20+21
233	$64^{\circ} 17.691$	$22^{\circ} 24.312$	17	crossing ship tracks
234	$64^{\circ} 19.694$	$22^{\circ} 24.989$	0	ridged grey ice, broken floes
235	$64^{\circ} 20.584$	$22^{\circ} 25.369$	0	photo 22, "rough islands"
236	$64^{\circ} 25.227$	$22^{\circ} 27.626$	6	ship track crossing
237	$64^{\circ} 25.975$	$22^{\circ} 28.000$	8	ship track crossing, ridged ice, no "rough islands"
238	$64^{\circ} 29.009$	$22^{\circ} 29.506$	0	photos 23+24
239	$64^{\circ} 23.953$	$22^{\circ} 31.142$	35	ridged grey + grey-white ice, 10\% nilas
240	$64^{\circ} 18.577$	$22^{\circ} 31.891$	20	same situation, wind induced roughness: photo 25
241	$64^{\circ} 15.484$	$22^{\circ} 32.829$	19	floes with rough surface, ship tracks
242	$64^{\circ} 12.097$	$22^{\circ} 32.966$	21	same situation, many wind induced undulations
243	$64^{\circ} 06.299$	$22^{\circ} 31.881$	39	ship track + narrow lead
244	$64^{\circ} 05.478$	$22^{\circ} 31.823$	13	consolidated pancake cover, later slightly ridged grey ice
245	$64^{\circ} 00.113$	$22^{\circ} 29.950$	35	same situation
246	$63^{\circ} 58.292$	$22^{\circ} 30.179$	37	larger grey ice floes with rafting and a few small ridges
247	$63^{\circ} 55.687$	$22^{\circ} 30.814$	29	broken grey ice
248	$63^{\circ} 55.106$	$22^{\circ} 30.854$	28	rafted grey ice, ship racks
249	$63^{\circ} 54.475$	$22^{\circ} 30.926$	29	ridging
250	$63^{\circ} 53.205$	$22^{\circ} 30.972$	32	ship track, then fast ice with "dunes", photos 26-28
251	$63^{\circ} 49.259$	$22^{\circ} 31.176$	33	same
252	$63^{\circ} 44.203$	$22^{\circ} 36.685$	117	same
Departure from airfield 17:15, arrival in Raahe 19:15				

February 21, Flight 1

Flight from Raahe into thick deformed, snow covered white ice; Some searching for earlier FMHI surface profiles close to Hailuoto.

21/02/03, airfield north of Raahe arrival 9:20; position 6441.256N 24041.659E, Flight 10, 10:30-12:15 local; film \# 13, photos 0-4 on the airfield

\#	Position N	Position E	Altitude [m]	Remark
253	64×45.226	$24^{\circ} 33.721$	107	fast ice
254	$64^{\circ} 47.920$	$24^{\circ} 28.425$	87	photos 5+6
255	$64^{\circ} 50.923$	$24^{\circ} 22.432$	31	photos 7+8, transition fast - pack ice
256	$64^{\circ} 52.480$	$24^{\circ} 19.950$	26	photos 9-12 taken between WP 255 and 257
257	$64^{\circ} 54.823$	$24^{\circ} 14.363$	23	photo 13, wind-induced roughness
258	$64^{\circ} 57.744$	$24^{\circ} 11.913$	51	photos 14-17
259	$64^{\circ} 57.862$	$24^{\circ} 12.588$	30	searching for "validation profile"
260	$64^{\circ} 57.460$	$24^{\circ} 11.406$	36	photos 20+21: "rough islands"
261	$65^{\circ} 00.348$	$24^{\circ} 14.131$	37	photos 22+23
262	$65^{\circ} 07.676$	$24^{\circ} 13.459$	33	photo 24, narrow lead, nilas, grey-white ice under snow
263	$65^{\circ} 09.224$	$24^{\circ} 12.622$	21	photos 25+26, ship tracks
264	$65^{\circ} 11.323$	$24^{\circ} 11.523$	17	photo 27, ship tracks
265	$65^{\circ} 13.109$	$24^{\circ} 10.471$	14	photo 28 , large smooth floes $50-100 \mathrm{~m}$ with ridges between wind-induced roughness
266	$65^{\circ} 10.994$	$24^{\circ} 09.568$	49	more ridged ice, starting film \# 14
267	$65^{\circ} 10.525$	$24^{\circ} 09.191$	33	large smooth floes (scale 1 km), photos 0+1
268	$65^{\circ} 08.945$	$24^{\circ} 07.811$	26	photo 2 to the right: belt of grey ice with heavy ridging
269	$65^{\circ} 07.897$	$24^{\circ} 06.949$	23	photo 3: ship track
270	$65^{\circ} 06.396$	$24^{\circ} 05.666$	23	photos 4-12
271	$65^{\circ} 03.915$	$24^{\circ} 03.929$	23	photos 13-15
272	$65^{\circ} 00.963$	$24^{\circ} 01.346$	24	photos 16+17
273	$64^{\circ} 57.286$	$23^{\circ} 59.077$	25	photos 18-20
274	$64^{\circ} 55.787$	$23^{\circ} 58.851$	75	photos 21-23, ridges with flooding; photo 24
275	$64^{\circ} 53.219$	$23^{\circ} 58.254$	36	photo 25
276	$64^{\circ} 48.617$	23.57.168	34	photo 26
277	$64^{\circ} 46.599$	$23^{\circ} 56.614$	23	entering a very rough zone; photo 27: ridge flooding
278	$64^{\circ} 43.339$	$23^{\circ} 55.654$	22	film \# 15, starting with Mikko's hat
279	$64^{\circ} 39.332$	$23^{\circ} 54.177$	27	photos 1+2
280	$64^{\circ} 38.312$	$23^{\circ} 53.986$	29	photo 3
281	$64^{\circ} 36.418$	$23^{\circ} 54.223$	64	photos 4+5
282	$64^{\circ} 36.611$	$23^{\circ} 58.135$	32	photos 6+7
283	$64^{\circ} 37.898$	$24^{\circ} 09.917$	23	photos 8+9 (transition to fast ice)
284	$64^{\circ} 38.318$	$24^{\circ} 14.074$	26	reaching the fast ice
285	$64^{\circ} 38.842$	$24^{\circ} 17.558$	23	crossing ship track to harbour
286	$64^{\circ} 39.794$	$24^{\circ} 23.086$	22	harbour area, photos 10+11

February 21, Flight 2

Flight from Raahe towards west, into more broke ice fields with refrozen leads in between.

Grounded ridges at fast ice / drift ice boundary

Old floes interrupted by refrozen leads

Phot	2-14, break;	ight 11: 13:5	15:45, still film	\# 15
\#	Position N	Position E	Altitude [m]	Remark
287	$64^{\circ} 38.278$	$24^{\circ} 26.467$	105	photo 15
288	$64^{\circ} 36.912$	$24^{\circ} 16.635$	68	first single ridges on fast ice
289	$64^{\circ} 36.107$	$24^{\circ} 11.486$	24	photo 16: huge ridge; after this level ice with a rougher surface, ridged, snow covered, single spots of grey ice
290	$64^{\circ} 34.953$	240.02.729	23	ridged ice
291	$64^{\circ} 34.505$	$23^{\circ} 59.182$	25	smooth level with wind-induced roughness
292	$64^{\circ} 34.177$	$23^{\circ} 56.830$	26	smooth grey ice with rough "islands", later ridged ice
293	$64^{\circ} 33.703$	$23^{\circ} 53.527$	25	photo 17
294	$64^{\circ} 32.125$	$23^{\circ} 43.356$	87	photos 18+19 (high altitude), photo 20: wind features
295	$64^{\circ 31.249}$	23×37.245	73	distinct ridge
296	$64^{\circ 30.885}$	23×34.821	28	next distinct ridge belt
297	$64^{\circ} 30.745$	$23^{\circ} 33.851$	26	next distinct ridge belt, then grey ice: photo 21
298	$64^{\circ} 30.211$	$23^{\circ} 30.883$	28	ridged grey ice
299	$64^{\circ} 29.958$	$23^{\circ} 29.747$	31	same
300	$64^{\circ} 30.024$	$23^{\circ} 26.246$	33	photos 22+23
301	$64^{\circ} 29.995$	$23^{\circ} 25.198$	31	enter snow covered zone, very mixed surface types (smooth, rough, ridged), spots of bare grey ice; photo 24: ridge with flooding
302	64³0.006	$23^{\circ} 20.500$	31	smooth level with wind-induced roughness, 1 ship track, cracks in the ice
303	$64^{\circ} 29.995$	$23^{\circ} 16.997$	32	ridge belt
304	$64^{\circ} 30.003$	$23^{\circ} 14.905$	33	ridged grey ice with snow patches
305	$64^{\circ} 30.031$	$23^{\circ} 13.754$	36	bare and snow covered grey ice 50/50 areal coverage
306	$64^{\circ} 30.060$	$23^{\circ} 10.122$	36	photo 25
307	$64^{\circ} 29.919$	$23^{\circ} 04.630$	30	ship track
308	$64^{\circ} 29.953$	$23^{\circ} 01.848$	30	grey ("milky") ice, partly snow covered, with cracks, closing ship tracks, very low ridge density
309	$64^{\circ} 29.939$	$22^{\circ} 59.205$	51	photo 26
310	$64^{\circ} 31.610$	$23^{\circ} 00.562$	85	photo 27
311	$64^{\circ} 33.882$	$23^{\circ} 04.753$	32	for a short while flying almost parallel to a ship track
312	$64^{\circ} 36.464$	$23^{\circ} 09.848$	30	ridge density higher than before; photo 28
313	$64^{\circ} 38.989$	$23^{\circ} 15.084$	27	ridge density low again
314	$64^{\circ} 40.530$	$23^{\circ} 18.695$	27	closing ship track
315	$64^{\circ} 42.145$	$23^{\circ} 22.390$	29	ship track
316	$64^{\circ} 42.639$	$23^{\circ} 23.589$	26	entering a rougher zone with more roughness islands and larger, broader ridges. But there are still larger smooth floes.
317	$64^{\circ} 45.088$	23×30.566	112	same situation; ice fragments between ice floes, ice is cracked, most parts are snow covered
318	$64^{\circ} 44.398$	$23^{\circ} 41.716$	31	same situation
319	$64^{\circ} 44.356$	$23^{\circ} 44.145$	30	high ridge density
320	$64^{\circ} 44.225$	$23^{\circ} 46.942$	46	ridges and rubble ice
321	$64^{\circ} 44.134$	$23^{\circ} 48.521$	41	start of a smooth ice floe
322	$64^{\circ} 44.004$	$23^{\circ} 50.415$	38	end of the smooth floe, later: ship track
323	$64^{\circ} 43.694$	$23^{\circ} 54.687$	14	centre of very rough area
324	$64^{\circ} 43.259$	$24^{\circ} 00.852$	27	entering a ridged area
325	$64^{\circ} 43.172$	$24^{\circ} 02.448$	32	leaving the ridged area
326	$64^{\circ} 43.032$	2405.909	0	crossing narrow grey ice lead (smooth surface)
327	$64^{\circ} 42.651$	$24^{\circ} 10.094$	32	crossing smooth grey ice, then rough snow covered ice again
328	$64^{\circ} 42.357$	24⒕240	31	smooth fast ice
329	$64^{\circ} 42.053$	$24^{\circ} 20.660$	31	crossing first islands at the coast
330	$64^{\circ} 41.837$	$24^{\circ} 25.394$	36	crossing coastline

February 23, Flight 1

Western flight from Helsinki to Estonia, over white ice floes with refrozen leads and open water in between.

Nilas covered coastal polynja off Helsinki

Broken white ice floes

| $23 / 02$ leaving hotel 9:00, Flight 13 10:15-12:00, still film \#16; photos 18, 19: Malmi Airfield (60 | | |
| :--- | :--- | :--- | :--- |
| 25 | | |

February 23, Flight 2

Eastern flight from Helsinki to Estonia, over white ice floes with refrozen leads and open water in between.

Man-made leads in the central Gulf of Finland

Recently formed ridges close to Finnish fast ice edge

APPENDIX II

File inventory

This appendix summarises all files acquired with the EM bird and laser. The tables show columns with:

1. File name
2. File size
3. Date of acquisition
4. Time of acquisition
5. Comments on file contents

Feburary 17

Second flight from Helsinki, towards West

02171308.dat	526.59	17.02 .2003	$13: 09$	1 null
02171309.dat	4.173 .486	17.02 .2003	$13: 19$	2 profile
02171333.dat	8.239 .896	17.02 .2003	$13: 52$	3 null + cal
02171319.dat	501.744	17.02 .2003	$13: 20$	4 profile, unintentionally
				interrupted
02171320.dat	4.892 .452	17.02 .2003	$13: 31$	5 null, cal; out of cal?
02171331.dat	559.540	17.02 .2003	$13: 33$	6 profile
02171352.dat	494.736	17.02 .2003	$13: 53$	7 null, cal, null
02171354.dat	3.421 .466	17.02 .2003	$14: 02$	8 profile
02171403.dat	545.182	17.02 .2003	$14: 04$	9 null, cal
02171404.dat	8.416 .065	17.02 .2003	$14: 24$	10 profile \& channel
02171424.dat	1.234 .042	17.02 .2003	$14: 27$	11 null, radio

Feburary 18

Too much noise around Pori!

02181139.dat	6.679 .446	18.02 .2003	$11: 55$	1 approach \& profile
02181155.dat	3.851 .641	18.02 .2003	$12: 04$	2 new trial with profile
02181205.dat	1.190 .649	18.02 .2003	$12: 07$	3 null + cal check
02181208.dat	2.345 .139	18.02 .2003	$12: 14$	4 profile, better noise
02181214.dat	754.690	18.02 .2003	$12: 16$	5 some nulling + call'ing
02181216.dat	4.919 .098	18.02 .2003	$12: 29$	6 profile, reasonable
02181229.dat	509.337	18.02 .2003	$12: 30$	7 null
02181231.dat	2.869 .454	18.02 .2003	$12: 40$	8 increased altitude (40 m)just for laser
02181249.dat	912.941	18.02 .2003	$12: 51$	9 repeated landing after system re-start

Feburary 19

First flight out of Kaskinen

02190835.dat	442.174	19.02 .2003	$8: 36$	1 Null, cal
02190836.dat	3.539 .780	19.02 .2003	$8: 45$	2 profile
02190845.dat	527.148	19.02 .2003	$8: 46$	3 Null, cal
02190846.dat	4.280 .893	19.02 .2003	$8: 56$	4 profile
02190856.dat	566.578	19.02 .2003	$8: 58$	5 Null, cal
02190858.dat	8.010 .486	19.02 .2003	$9: 17$	6 profile
02190917.dat	540.491	19.02 .2003	$9: 18$	7 Null, cal
02190919.dat	2.557 .848	19.02 .2003	$9: 25$	8 profile
02190925.dat	2.400 .113	19.02 .2003	$9: 31$	9 profile after turn
02190931.dat	613.303	19.02 .2003	$9: 33$	10 Null, cal
02190933.dat	6.190 .516	19.02 .2003	$9: 47$	11 profile
02190947.dat	654.783	19.02 .2003	$9: 49$	12 Null, cal
02190949.dat	48.705	19.02 .2003	$9: 49$	13 ???

Second flight out of Kaskinen

02191115.dat	631.639	19.02 .2003	$11: 17$	1 Null, cal check, cal
02191117.dat	5.932 .251	19.02 .2003	$11: 31$	2 profile
02191131.dat	514.35	19.02 .2003	$11: 32$	3 Null, cal
02191133.dat	7.780 .381	19.02 .2003	$11: 51$	4 profile
02191151.dat	616.193	19.02 .2003	$11: 52$	5 Null, cal
02191152.dat	1.304 .645	19.02 .2003	$11: 55$	6 profile \& turning
02191156.dat	8.932 .751	19.02 .2003	$12: 17$	7 profile cont'd to south
02191218.dat	586.234	19.02 .2003	$12: 19$	8 Null, cal
02191219.dat	3.735 .816	19.02 .2003	$12: 28$	9 profile
02191228.dat	859.148	19.02 .2003	$12: 30$	10 profile
02191231.dat	551.034	19.02 .2003	$12: 32$	11 Null, cal check

Feburary 20

First flight out of Kokkola; synchronous with ENVISAT

02200805.dat	1.799 .786	20.02 .2003	$8: 09$	1 Null, cal check, null
02200810.dat	609.530	20.02 .2003	$8: 11$	2 profile, unintentionally stopped
02200811.dat	5.458 .104	20.02 .2003	$8: 24$	3 profile, cont'd
02200824.dat	431.096	20.02 .2003	$8: 25$	4 Null, cal check
02200825.dat	4.490 .075	20.02 .2003	$8: 36$	5 profile
02200836.dat	2.741 .398	20.02 .2003	$8: 43$	6 Null, cal check, null, cal
				check
02200843.dat	5.748 .821	20.02 .2003	$8: 56$	7 profile
02200857.dat	480.386	20.02 .2003	$8: 58$	8 Null, cal
02200858.dat	3.820 .199	20.02 .2003	$9: 07$	9 profile
02200907.dat	571.463	20.02 .2003	$9: 08$	10 Null, cal check, null
02200908.dat	3.597 .404	20.02 .2003	$9: 17$	11 profile, ENVISAT
02200917.dat	975.172	20.02 .2003	$9: 19$	12 Null, cal check

Second flight from Kokkola; shortly after ENVISAT

02201024.dat	1.202 .673	20.02 .2003	$10: 27$	1 Null, cal
02201027.dat	5.427 .490	20.02 .2003	$10: 40$	2 profile
02201040.dat	833.882	20.02 .2003	$10: 42$	3 Null, cal
02201042.dat	9.036 .888	20.02 .2003	$11: 03$	4 profile
02201103.dat	804.942	20.02 .2003	$11: 05$	5 Null, cal
02201105.dat	6.704 .532	20.02 .2003	$11: 21$	6 profile
02201121.dat	780.494	20.02 .2003	$11: 23$	7 Null, cal
02201123.dat	4.725 .729	20.02 .2003	$11: 34$	8 profile
02201134.dat	501.472	20.02 .2003	$11: 35$	9 Null, cal

Third flight from Kokkola; few hours after ENVISAT

02201322.dat	3.037 .831	20.02 .2003	$13: 30$	1 Noise analysis, null, cal check
02201330.dat	4.909 .807	20.02 .2003	$13: 41$	2 profile
02201341.dat	542.657	20.02 .2003	$13: 42$	3 Null, cal
02201342.dat	9.822 .358	20.02 .2003	$14: 06$	4 profile
02201406.dat	779.698	20.02 .2003	$14: 07$	5 Null, cal
02201407.dat	12.717 .359	20.02 .2003	$14: 37$	6 profile
02201438.dat	785.535	20.02 .2003	$14: 39$	7 Null, cal check

Feburary 21

First flight from Raahe; strong wind, therefore serious oscillations in f 2 due to bird pitch; partially compensated by flying at 40 ft

02210842.dat	650.347	21.02.2003	8:44	1 Null, cal
02210844.dat	4.198 .651	21.02.2003	8:54	2 profile
02210854.dat	1.112.980	21.02.2003	8:56	3 Null, cal, turning to look for FIMR profiles
02210901.dat	1.308.231	21.02.2003	9:04	4 Looking for flags, Null, cal
02210907.dat	556.175	21.02.2003	9:08	5 Looking for second line, Null, cal
02210909.dat	3.703 .572	21.02.2003	9:17	6 profile to Kemi
02210917.dat	577.142	21.02.2003	9:19	7 Null, cal
02210919.dat	6.727 .097	21.02.2003	9:35	8 profile
02210935.dat	633.606	21.02.2003	9:36	9 Nul , cal
02210936.dat	1.426 .695	21.02.2003	9:39	10 flying at 40 ft to increase signal
02210939.dat	5.302.504	21.02.2003	9:52	11 cont'd after unintentional break
02210952.dat	4.043 .891	21.02.2003	10:02	12 cont'd after turn
02211002.dat	1.122.368	21.02.2003	10:04	13 Null, cal

Second flight from Raahe; string wind, extreme bird pitch and oscillations in f2; played with flight speed and altitude

02211156.dat	97.950	21.02 .2003	$11: 57$	1 short noise test on ground
02211210.dat	775.048	21.02 .2003	$12: 12$	2 Null, cal
02211212.dat	5.709 .485	21.02 .2003	$12: 25$	3 profile
02211225.dat	1.092 .096	21.02 .2003	$12: 28$	4 Null, cal, reduce speed to 50
				kn
02211228.dat	8.304 .634	21.02 .2003	$12: 47$	5 profile
02211248.dat	866.856	21.02 .2003	$12: 50$	6 Null, cal check
02211250.dat	6.581 .457	21.02 .2003	$13: 05$	7 profile, 60 knts
02211305.dat	1.005 .119	21.02 .2003	$13: 08$	8 Null, cal
02211308.dat	7.658 .734	21.02 .2003	$13: 26$	9 profile
02211326.dat	791.625	21.02 .2003	$13: 27$	10 Null, cal

Feburary 23

First flight from Helsinki to Estonia, more towards west

02230945.dat	397.065	23.02 .2003	$9: 46$	1 Null, cal check
02230926.dat	7.886 .990	23.02 .2003	$9: 44$	2 Profile, cont'd
02230924.dat	829.783	23.02 .2003	$9: 26$	3 Profile, interrupted
				accidentially
02230922.dat	725.528	23.02 .2003	$9: 24$	4 Null, cal
02230916.dat	2.636 .702	23.02 .2003	$9: 22$	5 Profile
02230915.dat	544.107	23.02 .2003	$9: 16$	6 Null, cal
02230909.dat	2.426 .075	23.02 .2003	$9: 14$	7 Profile
02230907.dat	791.271	23.02 .2003	$9: 09$	8 Null, cal
02230855.dat	4.864 .513	23.02 .2003	$9: 07$	9 Profile
02230854.dat	630.399	23.02 .2003	$8: 55$	10 Null, cal
02230845.dat	3.747 .787	23.02 .2003	$8: 54$	11 Profile
02230844.dat	521.333	23.02 .2003	$8: 45$	12 Null, cal
02230835.dat	3.612 .512	23.02 .2003	$8: 44$	13 Profile
xxx				14 Nulling not recorded; system
				restart \& FID reset
02230826.dat	3.083 .344	23.02 .2003	$8: 35$	15 Approach to profile

Second flight from Helsinki to Estonia, more to the East

02231254.dat	442.086	23.02 .2003	$12: 55$	1 Null, cal
02231232.dat	9.545 .081	23.02 .2003	$12: 54$	2 Profile, costal polynja first
02231231.dat	507.261	23.02 .2003	$12: 32$	3 Null, cal check
02231221.dat	4.222 .293	23.02 .2003	$12: 30$	4 Profile
02231219.dat	624.703	23.02 .2003	$12: 21$	5 Null, cal
02231204.dat	6.551 .176	23.02 .2003	$12: 19$	6 Profile
02231202.dat	698.434	23.02 .2003	$12: 04$	7 Null, cal
02231149.dat	5.425 .783	23.02 .2003	$12: 02$	8 Profile
02231148.dat	515.071	23.02 .2003	$11: 49$	9 Null, cal
02231137.dat	4.852 .020	23.02 .2003	$11: 48$	10 Profile, costal polynja first
02231136.dat	522.498	23.02 .2003	$11: 37$	11 Null, cal

