Nährstoffe im Porenwasser

Zur Gewinnung von Porenwasser wurden die Sedimentkerne segmentiert und mittels einer Teflon-Niederdruck-Presse (SCHLÜTER, 1990) ausgepreßt. Nitrat und Phosphat wurden mit einem TechniconTM Autoanalyser nach GRASSHOFF et al. (1983) an Bord analysiert.

Nitrat wird aus angesäuerter Lösung im Cu-Cd-Reduktor zu Nitrit reduziert und zusammen mit Sulfanilamid in ein Diazoniumion überführt. Dieses kuppelt mit Naphtyl-Ethylendiamin zu einem Azofarbstoff, dessen Intensität der NO₃-Konzentration proportional ist. Bei zu stark angesäuerten Proben wird Nitrit weiter reduziert, während in zu stark alkalischen Proben das Nitrat nicht vollständig reduziert werden kann. In beiden Fällen wird NO₃-unterbestimmt. Aus diesem Grunde wurde Nitrat an nicht angesäuerten Porenwasserproben gemessen.

Phosphat wird mit Heptamolybdat und dreiwertigem Antimontartrat im sauren Milieu zu einem tiefblauen Molybdophosphatkomplex umgesetzt, welcher photometrisch bestimmt wird.

Mangan

Ein Konzentrationsanstieg zweiwertigen Mangans im Porenwasser weist im Sediment auf die Grenze zwischen oxisch und anoxisch hin, da Mn²⁺ in sauerstoffhaltigem Porenwasser als (basisches) Oxid ausgefällt wird (z.B. Braunstein, MnO₂). Korrespondierend mit der großen Sauerstoffeindringtiefe in den Sedimenten der Grönlandsee findet sich dieser Anstieg der Mn²⁺-Konzentrationen nur in wenigen Kernen, meist an flachen Lokationen. Die Bestimmung des Mangans wurde aus saurer Lösung mit einem Graphitrohr-Atomabsorptions-Spektrometer des Typs Perkin ElmerTM 4100ZL durchgeführt.

Corg-Gehalt

Zur hochauflösenden Bestimmung des C_{org} -Gehaltes wurden Unterproben aus Sedimentkernen in 2 mm- (0 bis 30 mm Sedimenttiefe) bzw. 5 mm-Segmenten genommen und mittels eines C/N-Analysers des Typs Carlo ErbaTM analysiert. Die damit erhaltenen Ergebnisse enthalten sowohl den Anteil an abbaubarem als auch refraktärem Kohlenstoff.

Literatur:

Grasshoff, K., Erhard, M., Kremling, K. (1983) Methods of seawater analysis. Verlag Chemie, Weinheim, 417 p.

SCHLÜTER, M. (1990) Zur Frühdiagenese von organischem Kohlenstoff und Opal in Sedimenten des südlichen und östlichen Weddellmeeres. Geochemische Analyse und Modellierung. *Ber. Polarforsch.*, **73**, 156 S.