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Chapter 1                
General introduction 

 
Planktonic organisms have by definition a very limited ability to choose their habitat by active 

migration to favourable habitats. They are constantly exposed to external forces, which 

themselves are highly dynamic, such as wind and temperature. Even more important, 

however, are the influences of these abiotic parameters on key factors such as food 

availability or physiological processes like growth and reproduction. As an evolutionary 

consequence of the inability to escape unfavourable conditions like neustonic organisms do 

by simply swimming away, planktonic organisms have developed sophisticated mechanisms 

to cope with varying conditions. In the case of autotrophic organisms, these comprise varying 

light intensities which are tackled by restructuring or activating and deactivating of pigments 

(Falkowski & Raven 1997) or several adaptations to fluctuating nutrient levels (Klausmeier et 

al. 2004). In the case of heterotrophs, these are the storage of energy in the form of lipids in 

food-rich times (Sargent & Falk-Petersen 1988), and the production of resting eggs in 

unfavourable conditions as done by daphniids during the clear-water phases in summer in 

freshwater systems (Alekseev & Lampert 2001) or by copepods during the winter in many 

marine systems (Uye 1985). Another adaptation is the wide range of trophic levels 

zooplankters can prey upon. Especially copepods can feed on autotrophs, microzooplankton 

as well as on their own conspecifics and congenerics. This maximises the chance of finding 

food in a variety of different environmental situations. The planktonic stages of fish have still 

other adaptations to the highly variable conditions: they simultaneously exploit internal (yolk) 

and external food sources and rapidly develop to enhance their swimming ability, which 

significantly improves both their escape as well as their hunting abilities. Whereas the 

reactions of crustacean zooplankters to different environmental conditions are fairly well-

studied, and the effects of temperature and feeding environment are well established, this 

information is largely lacking for the next trophic level, the larval fish. Hence, in this thesis I 

concentrate on the reaction of larval fish to changes in the environmental conditions, 

especially since the larval phase of many fish is pivotal in the regulation of year-class 

strength.  

The German Bight is a typical example for a highly variable marine ecosystem. It is part of 

the North Sea, a temperate marine shelf sea of the North East Atlantic. The water 

temperature varies from a mean minimum temperature of 2°C in winter to 18°C as the mean 

maximum temperature in summer (Wiltshire & Manly 2004). Day length varies from 7 to 17 

hours and the area is frequently hit by storms in the winter half year, while the summer is 

usually calm. This leads to a mixed water body in winter and a certain degree of stratification 

during the summer months (Haren & Howarth 2004). The dissolved nutrient levels vary from 
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2µmol l-1 phosphate in winter to below the detection limits in late spring, nitrate decreases 

from 100µmol l-1 to virtually zero and silicate usually decreases from 30µmol l-1 to zero in late 

spring as a result of primary production. The mean diatom day, a proxy for the occurrence of 

the spring diatom bloom is usually found between the middle of February and the middle of 

March (Wiltshire & Manly 2004), with carbon concentrations of the phytoplankton as high as 

1000µg l-1 (Wiltshire, pers. comm.). Zooplankton densities are very low during winter and 

they increase rapidly in response to increasing primary production (Greve et al. 2004). 

Overall, the biotic and abiotic processes involved in structuring the North Sea ecosystem 

around Helgoland show a high variability and seasonality. The way in which larval fish cope 

with such a magnitude of variability is the overall subject of this thesis. 

 

In the following, the introduction will continue with a review of hypotheses developed to 

explain the large variations in year-class strength of many fish species, including some 

examples of studies supporting the single concepts. This is followed by a description of 

several attempts to include larval stages of fish into studies on the recruitment of fishes, 

which leads to a description of possible causes for the general failure to predict recruitment 

by the use of larval fish proxies. This leads to the introduction of alternative larval fish 

measures and how they might potentially be implemented into recruitment studies. This 

introduction ends with a description of the structure of this thesis and how the single chapters 

fit into the topics addressed in this introduction. 

 

Concepts of year-class strength regulation 
Even though larval fish are to a certain degree adapted to environmental variability the 

effects of such variable conditions on larval survival are limited, as mortality rates in the early 

life history of fish are very high, and large inter-annual fluctuations in year-class strength are 

known to occur in fish stocks. As this is such a relevant issue, especially in economically 

exploited stocks, many researchers have studied potential mechanisms determining year-

class strength regulation through larval survival. These are briefly introduced here. Hjort 

(1914) was the first to recognize that there was a possible link between early life stages of 

fishes and the large variation in year-class strength. He pointed out that the larval phase is of 

utmost importance for consecutive year-class strength and hypothesized that larval mortality 

is not constant but that there are critical periods with elevated vulnerability. He speculated 

that one of these periods might be the transition phase from internal to external feeding. In 

his second important contribution to the understanding of year-class fluctuations Hjort (1926) 

stressed the possible impact of losses of larvae caused by unfavourable drift patterns to 

food-poor offshore areas on consecutive year-class strength. He stated: “I had myself to 

leave the possibilities and their respective influence [starvation mortality at first feeding 
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larvae vs. transport to unfavourable regions], if any, on the formation of the stock undecided, 

and the final decision in this matter may still be said to be open for discussion” (my italics). 

This was over eighty years ago, and although our knowledge on recruitment of fish has 

expanded enormously, the concluding statement made by Hjort is still very valid today. 

Several additional concepts to those developed by Hjort were put forward to disentangle the 

myriad of factors behind year-class variation. The possible regulation of population size by 

density-dependent mechanisms was introduced by Solomon (1949), who reported the 

possibility of density-dependent mortality and density-dependent fecundity as natural 

regulators of animal populations. This aspect was picked up by Ricker (1954) and Beverton 

and Holt (1957), who considered density-dependent mortalities more important than density-

dependent mechanisms acting on growth or fecundity. Cushing reverted to Hjort’s findings on 

seasonality of food availability and larval occurrence in the plankton, formulating his 

match/mismatch hypothesis (Cushing 1974). He showed that in temperate marine systems 

the hatch of fish species is temporally rather constant with a standard deviation of 5 to 10 

days of peak spawning, but that the periods of maximum primary production and 

subsequently zooplankton production are highly variable. Hence, he hypothesized that the 

year-class strength of fish populations is regulated by a temporally match or mismatch 

between the timing of larval production and timing of primary production and the subsequent 

growth of zooplankton which can be utilized as food by larval fish. Support from field studies 

for his hypothesis is given in Cushing’s update of his match/mismatch hypothesis (Cushing 

1990) in which he extends his hypothesis from temperate marine systems to specific areas of 

mesotrophic subtropical and tropical seas. The equator-wards extension of his approach is 

mainly focused on upwelling systems, which act similar to spring blooms in temperate marine 

systems by a temporary outburst of biomass in upwelling situations. In case of coastal 

systems, the problem of advective losses in severe upwelling situations was addressed by 

several authors (Bakun & Parrish 1982, Cury & Roy 1989, “optimum environmental window 

concept”) and there is evidence that recruitment depends on upwelling events in the absence 

of turbulence which is the case under moderate upwelling conditions. In offshore systems, 

however, high wind stress leads to local divergence. Such conditions enable an upward flux 

of cold, nutrient-rich deepwater to the surface, enhancing plankton production. Tunas, for 

example, are known to exploit such local and temporal restricted upwelling events in the 

pacific to meet their feeding demands as well as the demands of their larvae. Yamanaka 

(1978) established a relationship between water temperature and year-class strength for four 

tuna stocks in the pacific. He found a higher proportion of strong year-classes at lower 

temperatures, and thus, a strong correlation to years with high upwelling activity. 

As an alternative, Sinclair offered his “member/vagrant hypothesis” (Sinclair 1988). This 

hypothesis mainly states that regulation of population sizes can be attributed to spatial 
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processes alone and that there may be no need to introduce “energy processes” like 

mortality due to starvation, predation or diseases. Sinclair reasons that staying a member of 

a given population is most important. This can only be achieved by being retained in a 

restricted geographically area. Although prey densities are also important, Sinclair argues 

that, on the population level, it does not matter whether the larva that has become a vagrant 

(which means being dispersed out of the restricted area) was a feeding one or one that will 

die since it is anyhow lost for the population. Obviously, support for this explanation also 

exists, most notably for anchovy in the South African Benguela current. Here, Hutchings et 

al. (2002) attribute most of the year-class variability to larval losses to offshore regions by 

advective mechanisms. Sinclair’s hypothesis has recently received strong support from 

studies of mitochondrial DNA of cleaner gobies in the Caribbean (Palumbi & Warner 2003, 

Taylor & Hellberg 2003). The authors found distinct genetic populations of these gobies 

between island groups as well as within the waters of the same island. The striking aspect of 

these studies is the fact that the planktonic larval phase of the species lasts three weeks, a 

period that is long enough for the larvae to drift a distance of several hundreds of kilometres. 

Nevertheless, these populations are distinct and locally very restricted, which is attributed to 

hidden mechanisms of dispersal avoidance by the larvae. There is evidence for the existence 

of retention mechanisms, as larvae of these species are commonly found further inshore 

than the larvae of other comparable reef fishes. 

Simultaneously to the publication of Cushing’s match/mismatch hypothesis, Lasker (1975) 

was able to show that only increased prey densities in the chlorophyll layer compared to the 

low prey densities in the rest of the water column during stratified situations were able to 

maintain larval growth. These findings were based on on-board experiments, where surface 

water and water from the chlorophyll maximum was offered as a food source to larval 

northern anchovy (Engraulis mordax). In these experiments only the higher densities of prey 

typically found in the chlorophyll maximum layer were enough to ensure a sufficient food 

supply. Furthermore, a validation and ecological significance for Lasker’s hypothesis was 

reported as the stratified water body was mixed by a storm and obliterated the chlorophyll 

layer. Water from all depths did not contain sufficient numbers of prey to maintain growth in 

the experiments of the two following days. The findings led to the stable ocean hypothesis 

(Lasker 1981), which is supported by several studies (Cury & Roy 1989, Lough & Mountain 

1996) and has been implemented into population dynamic models (Megrey et al. 1996).  

In addition to these more general hypotheses and concepts, some more local hypotheses on 

fishes’ adaptations to their environment were put forward. Frank and Legget (Frank & 

Leggett 1981, 1982a, 1983) set up a concept for capelin (Mallotus villosus) as well as larvae 

of other fish species in Conception Bay (Newfoundland), that hatch from demersal eggs. 

Their “safe-site concept” states that there are favourable and unfavourable periods for a larva 
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to enter the plankton. The bad period is characterized by prevailing offshore winds, which are 

responsible for upwelling events. These cold water masses feature low prey densities and 

high invertebrate abundances. The safe-site period is characterized by onshore winds which 

bring warm water to the coast, leading to a high density of suitable prey organisms and low 

predator densities. The adaptive emergence strategy states that larvae from demersal eggs 

emerge during these safe-site situations, triggered by rapidly rising temperatures. 

Furthermore, Gronkjaer and Clemmesen (1997) reported the necessity of ascending to the 

surface for Baltic cod larvae in the Bornholm Basin to reach areas of low predation and high 

food concentrations. 

In short, many theories exist on larval survival and recruitment, none of them is so general 

that it can be used in every case, and all of these concepts have their advantages and 

disadvantages.  

 

Application of larval fish proxies in recruitment studies 
Until now, only a few attempts were satisfying in linking dynamics of early life stages of fish 

to population dynamics. Those that were used are mixtures and combinations of the 

concepts introduced above. These include studies on Baltic cod (Gadus morhua); (Köster et 

al. 2001), on North Sea plaice (Pleuronectes platessa) (Van der Veer et al. 1998) and on 

South African anchovy (Engraulis capensis) (Hutchings 1992, Hutchings et al. 1998, Painting 

et al. 1998, Hutchings et al. 2002). Köster et al. (2001) were able to explain 69% of the 

observed variability in 0-group year-class strength of Baltic cod by linking it to larval 

abundance. Van der Veer et al. (1998) demonstrated that inter-annual variability in dispersal 

of plaice eggs and larvae from the spawning area in the Southern Bight of the North Sea 

towards the Dutch coastal nursery areas was a key factor in determining year-class strength 

of plaice. Hutchings et al. (Hutchings 1992, Hutchings et al. 1998, Hutchings et al. 2002) also 

showed that a successful egg and larval transport from the spawning grounds at the Agulhas 

Bank to the nursery ground in the north of South Africa determines later recruitment. 

However, all the studies share one major problem: the calculation of mortality rates and 

abundances of the different live stages of fish are derived from field surveys. A good 

temporal and spatial match between the surveys and larval production as well as a good 

knowledge of spatio-temporal variation is imperative for obtaining reliable results. Even two 

of the successful applications of larval proxies into recruitment studies report of years of total 

miscalculations. In both instances, the surveys didn’t match the production period or area 

because of a delayed spawning season (Köster et al. 2001) or did not match the area of egg 

dispersal (Huggett et al. 1998, Painting et al. 1998). The risk of a lack of match between 

larval production and surveys can be minimized by a good knowledge about the ecology of 

the target species. For many marine ecosystems including the North Sea, detailed 
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information on the timing and duration of larval fish in the ichthyoplankton is mostly lacking 

(but see von Westernhagen et al. 2002, but see Greve et al. 2005). Chapter 2 of this thesis 

contributes to fills this gap. 

 

Alternative larval proxies including survival probability 
None of the three above-mentioned examples for the successful link between early life 

stages of fish and subsequent recruitment goes further than using “simple” measures like 

larval abundances, even if it is clear that mortality is not constant over the larval development 

(Hjort 1914). Mortality in the field is caused by either predation or starvation. The actual 

predation pressure is very hard to study in marine systems but as predation is believed to be 

a function of fitness (Elliott & Leggett 1998) and fitness is believed to be a function of 

nutritional condition (Frank & Leggett 1982b, Peterson & Wroblewski 1984), there is hope to 

overcome the predation problem indirectly by means of condition indices. Pepin et al. (1999) 

were the first to demonstrate condition-selective mortality in a field study. Numerous studies 

on larval condition have been conducted, using histological measurements (Johnston et al. 

1975, Ehrlich et al. 1976), nucleic acid-based indices (Clemmesen 1994, 1996, Suthers et al. 

1996, Clemmesen et al. 2003, Clemmesen & Röhrscheidt 2004), protein-based indices 

(Buckley 1982, Goolish et al. 1984, Mathers et al. 1993, McLaughlin et al. 1995a, Gronkjaer 

et al. 1997, Buckley et al. 2004), lipids (Ehrlich 1974) as well as digestive enzymes (Govoni 

1986, Segner et al. 1989, Troschel et al. 1991, Segner et al. 1993). Ferron and Leggett 

(1994) reviewed this topic extensively and concluded that nucleic acid- and protein-based 

indices are the most promising ones. The most-widely accepted method as a proxy for fish 

condition has been the normalisation of RNA content to DNA content expressed as the 

RNA:DNA ratio. Typically when RNA:DNA, RNA:protein, protein/DNA and RNA 

concentrations are correlated with recent growth, RNA:DNA ratios explain the largest part of 

the variance (Malloy & Targett 1994). The basic idea is that the amount of DNA per cell is 

constant, whereas the amount of RNA varies with the feeding situation and thus reflects 

growth very well. In addition to defining the nutritional situation of the organisms, the 

RNA:DNA ratio can also be applied as a proxy for growth rate and survival probability if water 

temperatures are known. This approach has been validated in many laboratory and field 

studies (Buckley 1984, Clemmesen 1994, Theilacker et al. 1996, Gronkjaer et al. 1997, 

Rooker et al. 1997, Caldarone et al. 2003, Caldarone 2005). Estimation of recent growth or 

condition from larval nucleic acid content requires, however, normalisation and adjustment 

for larval age, developmental stage or size (Buckley et al. 1999). Most field studies revealed 

a high degree of variation between individuals, but the general outcome was that usually a 

high proportion of good-conditioned larvae are caught (Ferron & Leggett 1994, Clemmesen 

1996, Chicharo 1997, Chicharo et al. 2003). Nevertheless, there are also studies that found 
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no clear link between the nutritional condition of larval condition and prey densities. McGurk 

et al. (1992) found no relationship between the condition of sandeel and pacific herring 

caught at Port Moller (Alaska) to either temperature or prey abundance. Caldarone et al. 

(2003) also found no relationship between prey densities and RNA:DNA ratios in a laboratory 

experiment, although their interpretation was different. This shows, that there is an urgent 

need for studies designed to explain the degree of dependence on prey densities and other 

factors affecting larval condition. To gain a better understanding of mechanisms influencing 

larval nutritional condition, and therewith survival, the work described in Chapter 3 was 

carried out. 

 

The role of food quality 
In addition to food availability and hydrographic conditions, the availability of nutrients is an 

important agent in controlling planktonic processes in aquatic systems. During phytoplankton 

blooms the nutrient availability for primary producers decreases drastically with the duration 

of the bloom. Algae do not keep the nutrient ratios within individuals constant i.e. they are not 

homeostatic (Sterner & Elser 2002). This enables them to adapt their physiology to unstable 

nutrient conditions by adjusting their anabolic strategies to the available nutrient levels. 

Under phosphorus-rich conditions, algae allocate the assembly machinery (ribosomes, P-

rich), whereas under phosphorus-poor situations the investment into the resource acquisition 

machinery is enhanced (nutrient uptake proteins and mitochondria, N-rich) (Klausmeier et al. 

2004). This ultimately leads to a high variability of nutrient ratios in algae and they therefore 

represent a food source of variable quality for herbivores. In contrast, zooplankton organisms 

retain their elemental composition to a high degree, displaying a strong homeostasis (Sterner 

& Elser 2002). Under the assumption that an animal is not energy-limited, food with high 

C:nutrient ratios creates costs due to the need of having to deal with ingested excess carbon. 

These costs rise with an increase in the difference between producer and consumers 

C:nutrient ratios and may be paid by a decrease in growth and reproductive rates (Boersma 

2000, Boersma et al. 2001, Boersma & Kreutzer 2002). 

Algae serve as the base for most aquatic food webs not only by transforming CO2 into highly 

energetic molecules, but also by constructing essential food components like fatty acids and 

pigments (Partali et al. 1985, Anderson et al. 2003). Essential fatty acids are needed e.g. for 

the maintenance of membrane fluidity (Farkas et al. 2001), they act as precursors for longer 

chained fatty acids (Olsen 1999, von Elert 2002), or as precursors for hormones and play a 

role in gene expression as e.g. DHA regulates genes involved in skeletal development (Cahu 

et al. 2003). Pigments play a major role as antioxidants (Hairston 1976, Edge et al. 1997) 

and in vision.  
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Poor food quality can influence primary consumers in two ways; on the one hand by the 

alterations in biochemical composition of the consumers as these are mostly not homeostatic 

when it comes to biochemical molecules, and on the other hand by decreased growth and 

reproductive rates (DeMott et al. 1998, Elser et al. 2000). For secondary consumers (e.g. 

larval fish) this can result either in variable prey qualities, if primary consumers adjust their 

biochemical composition to their food, or in prey quantity if the primary consumers 

compensate low food quality by low growth and reproductive rates. During the succession of 

a spring bloom this means that a fish larva potentially encounters low numbers of prey of 

high nutritional quality during the early bloom while during the decaying period of the bloom a 

high prey abundance of low food quality is encountered. Thus, high prey availability does not 

necessarily mean a high larval growth. In view of Cushing’s match/mismatch hypothesis, this 

means that the match window between larval fish, a suitable quantity of prey items as well as 

their quality might be smaller or even shifted in time than it would be expected from prey 

quantity alone (Fig. 1). 

The incorporation of food quality aspect into concepts on early life stages of fishes has a high 

potential to improve the existing models and to increase our knowledge on fish population 

dynamics in general. The incorporation of food quality may explain the failure of the above-

cited studies to link condition indices to prey densities. Hence, there is an urgent need to 

understand processes regulating nutritional quality in the planktonic realm and to assess the 

relative importance of the impact of variable food quality on zooplankton and consequently 

on larval fish survival. A first promising step to improve our understanding on the role of food 

quality in food webs is described in Chapter 4.  
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Fig. 1 Schematic sketch of a reasonable match between primary and secondary 
production. Larval fish feeding on zooplankton would face food of varying quality 
indicated by the Carbon:nutrient ratio. 
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Structure of the thesis 
The above-cited concepts on the regulatory mechanisms of larval survival and subsequent 

year-class strength can be boiled down to Hjort’s two main statements: factors related to 

feeding or drift patterns. This thesis takes up the food-related thread and mainly tests the 

validity of Cushing’s match/mismatch hypothesis (Cushing 1974, 1990). As it consists of 

several assumptions, no study following a single approach can serve to test it. The fist 

assumption of the theoretical framework of Cushing is that the timing of larval fish production 

is temporally fixed to a great extent. This can only be tested by a field survey over several 

years, and the results are given in Chapter 2 of this thesis. 

Chapter 2 is based on a three years ichthyoplankton survey featuring a temporal resolution 

of at least three samples per week at Helgoland Roads, a fixed station near the Island of 

Helgoland in the German Bight, North Sea. A detailed description of the larval fish 

community and recurring assemblages, the occurrence, duration and peak abundance is 

given to gain knowledge about the degree of variability, but also about stability within and 

between years. 

The second assumption of Cushing’s hypothesis is the necessity of a temporal match 

between larval and prey production, i.e. the dependence of larval fish on high prey 

concentrations to survive the larval stages. This hypothesis is tested in Chapter 3 by the use 

of a high temporal resolution set of environmental data and of data on the nutritional 

condition of larval dab and sandeel, covering the complete occurrence of larvae of these two 

species in the ichthyoplankton. 

The low dependence of larval fish nutritional condition on prey availability shown in Chapter 3 

and in several other studies (examples cited in (Sinclair 1988) leads to investigations on 

other food-related aspects such as food quality. The vast majority of field and laboratory 

studies in fisheries oceanography on growth and survival of larval fish focussed on food in 

terms of abundance. Chapter 4 deals with an extension of Cushing’s hypothesis. His work 

was based on abundance only, but not only food quantity but also food quality varies with 

time (Fig. 1). In this chapter, two experiments on the propagation of food quality signals 

through tri-trophic food chains are used to test the hypothesis that food quality effects of 

mineral-limited algae are compensated by primary consumers and hence play no role for 

larval fish nutrition. 

This thesis leads from observations of variation on the population level to variation in the 

nutritional condition on the individual level in field samples, to the lowermost level causing 

variable nutritional conditions, the effects of mineral nutrients assessed in laboratory 

experiments. Due to the unique three-pronged approach of investigating larval abundance, 

condition and the factors that lead to changes in fish densities and conditions, this study is a 

major step forward towards a better understanding of processes that govern survival of larval 
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fish and hence improves our ability to understand and successfully predict recruitment and 

year-class strength in fish. 
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Chapter 2                
Year-to-year variation in larval fish assemblages of the 

Southern North Sea 
 
 
In order to test the temporal stability within and the reproducibility of larval fish assemblages 

between years, the larval fish community at Helgoland Roads, North Sea (NE Atlantic) was 

quantitatively sampled on an almost daily basis from 2003 to 2005. The survey resulted in a 

total of 462 samples containing 50.000 larval fish of at least 42 species. The larval fish 

assemblage was mainly dominated by larvae emerging from demersal eggs in winter. This 

changed gradually to larvae hatching from pelagic eggs. These larvae dominated the 

ichthyoplankton community in summer. A remarkably stable seasonality with recurring, 

season-specific fish assemblages was observed over the three years, despite substantial 

variation in environmental conditions. After removal of the lesser sandeel (Ammodytes 

marinus) from the analysis, the most abundant larvae in the samples, and the only species 

which showed significant fluctuations in abundance between the years, the dominance 

patterns of the remaining fish species were also very close.  
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2.1 Introduction 
 

On any timescale, planktonic communities are never static. Changes in community structure 

might occur as a result of disturbance events such as storms, or be caused by more gradual 

environmental changes. The intra-annual succession in temperate marine ecosystems is 

characterized by slight changes in timescales of days, but by strong environmental changes 

in terms of months or seasons. These changes happen regularly and predictably. 

Environmental signals such as light and nutrients for phytoplankters or temperature and food 

availability for zooplankters are the main forcing factors of the seasonal succession of 

plankton communities. These factors can vary substantially between years (Edwards & 

Richardson 2004, Wiltshire & Manly 2004) and therefore open windows for different 

phytoplankton and zooplankton species adapted best to the combinations of the different 

factors. The level of response to e.g. temperature changes varies between functional groups 

and trophic levels (Edwards & Richardson 2004) and temporal mismatches between 

producers and consumers may be the consequence. Cushing (1974, 1990) proposed in his 

match/ mismatch hypothesis that fish year-class strength could be regulated by these 

mechanisms, i.e. a match or mismatch between the production of larval fish and their food. 

While holoplanktonic organisms can be found in the plankton, at least in small numbers, 

throughout the year, meroplanktonic organisms like the larvae of most fish species have a 

temporally limited occurrence in the planktonic community. Greve et al. (2005) used the 

strong coupling of temperature and the phenology of most fish species to predict the 

occurrence of several meroplanktonic species on the basis of the ambient temperatures, and 

was very successful in doing so, as long as the occurrence of the different species is of a 

short to moderate duration. Together with the observations of Köster et al. (2001), who 

showed that larval fish abundance can be used as a recruitment predictor this is a major step 

forward in our understanding of recruitment and year-class strength determination of marine 

fish. However, knowledge of the duration of the planktonic larval fish stages is essential to be 

able to implement these findings properly into recruitment models. For the design and 

interpretation of fish larvae surveys it is vitally important to match the period of larval 

occurrence in the plankton (Wieland et al. 2000, Köster et al. 2003), otherwise abundance 

will be underestimated and this will result in weak larval abundance-recruitment-relationships 

(Bradford 1992). 

The majority of marine organisms exhibit life stages exposed to be dispersed by currents 

(Cowen et al. 2000). In the case of fish, these are planktonic eggs and larvae, or in case of 

species with demersal eggs, only the larval stages. In general, species with pelagic eggs 

tend to reproduce in the proximity to consistent hydrographic phenomena such as gyres and 

fronts that increase food abundance (Harden Jones 1968, Loeb 1980). In contrast, the 
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strategy of spawning demersal eggs bets more on local conditions at the time of larval 

emergence as the drift period is shortened by the time of egg incubation. Dispersal can have 

positive and negative effects on the survival probability and recruitment success of larval fish 

(Sinclair 1988). For example, Hutchings (1992) showed that recruitment of South African 

anchovy relies on a successful transport to nursery grounds and that unfavourable winds can 

result in a massive loss of larvae to offshore waters. Even without invoking changing currents 

one can make predictions whether producing demersal or pelagic eggs is the best strategy 

under which conditions. Egg development as well as the duration of the larval stage is highly 

temperature-dependent with low temperatures leading to long egg incubation times. Hence, it 

is likely that in different spawning seasons pelagic and demersal eggs have different success 

rates. Because developmental rates are low in winter, a moderate drift time can be realized 

by the combination of demersal eggs and planktonic larvae; in summer, however, pelagic 

eggs might prolong the pelagic phase by the time of egg incubation. We thus hypothesize 

that a large proportion of larval fish caught in winter should hatch from demersal eggs and 

that this changes gradually to pelagic eggs in summer. 

Cushing’s match/mismatch hypothesis (Cushing 1974) on fish year-class strength regulation 

is based on two main assumptions: (1) The timing of food production is variable and (2) The 

timing of larval production is fixed in time. In this study we investigate this second 

assumption of the match/mismatch hypothesis using a three year, high temporal resolution, 

single location ichthyoplankton survey at Helgoland Roads, located in the North Sea (NE 

Atlantic). 

 

2.2 Material and Methods 
 

The ichthyoplankton community was surveyed over a three year period at 54°11.18´N and 

07°54.00´E, which is known as Helgoland Roads. Weather-permitting, the station was 

sampled on a work daily basis, usually resulting in three to five samples per week. The 

station is located between the Island of Helgoland and the adjacent dune in the German 

Bight, North Sea. The water depth at the station is approximately 10 m and the water column 

is mixed throughout the year due to strong tidal currents (up to 1.5 knots). The area is 

characterized by a strong seasonality. The water temperature ranges from 0-3°C in February 

up to 20°C in August. After subtraction of tidal currents, the residual flow direction in the area 

is northerly from the English Channel to the Northern North Sea. The salinity varies between 

30 and 33. Usually, a spring phytoplankton bloom develops in early March (Wiltshire & Manly 

2004) and the secondary production follows the phytoplankton growth (Greve et al. 2004). A 

second, smaller phytoplankton bloom often can be found later in the year. 
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For the larval surveys, a CalCOFI ring trawl with a 500µm mesh net (aperture 100 cm, length 

400 cm, equipped with a flow meter) was towed for 15 min from a research vessel. The 

samples were transferred to the laboratory, fish larvae were sorted out immediately and 

classified to the species level according to Halbeisen (1988) and Russel (1976). Larval 

abundance was normalized to larvae m-3. Members of the family Syngnathidae (pipefishes 

and seahorses) were excluded from the analyses as they are not a regular part of the 

ichthyoplankton and occurred only occasionally after storms. 

In order to test seasonal changes in the contribution of demersal and pelagic eggs, the 

attributes “demersal” and “pelagic” were assigned to each species of larvae found during this 

study. A value of zero or one was attributed to demersal and pelagic eggs respectively. 

Afterwards, the mean for each sampling was calculated. To detect general patterns rather 

than the influence of single dominant species, no weighting for larval abundance was done, 

i.e. a sample containing 20 larval sandeel emerged from benthic eggs and a single larval cod 

hatched from a pelagic egg would result in a value of 0.5. 

A nested ANOVA was used to test for differences in larval abundance between years as well 

as months, in a similar way as this was done by Witting et al. (1999). The 12 most abundant 

species of the study were used for the analysis. The weeks used for the analysis were not 

calendar weeks but were established using 7 day intervals from the first day of the year on, 

months were intervals of 4 weeks, making them slightly different from calendar months. Only 

the months in which larvae of a certain species were caught were included in the 

corresponding analysis except in the case of Arnoglossus laterna and Sardina pilchardus. 

For the first, month 4 and 5 were omitted as in both only one specimen was caught. Month 

10 was excluded from the sardine analysis for the same reason. The larval abundance data 

were log-transformed prior to the analysis. The variance components for each hierarchical 

level were calculated following Sokal and Rohlf (1995). 

The abundance dominance rank for each species was calculated by the percentage 

contribution of each species to the total abundance of the given year. The coefficient of 

variation of the ranks between the years was calculated by the division of the standard 

deviation of the ranks by the mean rank multiplied by 100. Spearman rank correlations were 

calculated for the detection of variability in dominance rankings between the years. Species 

diversity was investigated using Shannon Wiener diversity (Shannon & Weaver 1963) and 

Pilou´s evenness (Pielou 1969). Community analyses were conducted by calculating Bray-

Curtis similarities of square root-transformed weekly mean abundance data. The similarities 

were entered in a hierarchical cluster analysis. The calculations of diversity measures, 

similarities and clusters were done using the software package PRIMER 5.0 (© 2001 Primer-

E Ltd.). ANOVA and Spearman’s rank correlations were calculated by the software package 

Statistica 6.1 (StatSoft, Inc.) 
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2.3 Results 
 

During the three year of investigation a total of 462 samples were taken. These samples 

contained 50,632 larval fish of at least 42 species. The three years of the investigation 

differed strongly in terms of total larval abundance. 2003 and 2004 showed two pronounced 

abundance peaks from the mid of February to the end of April and a second peak in June 

and July. Additionally, 2004 exhibited high abundances in the middle of January. 2005 

generally showed lower catches and no pronounced abundance peaks (Fig. 2).  

 
The mean temperatures of the first 8 months, in which 99% of the cumulative abundance 

was reached in all three years under investigation didn’t show significant differences (9.9°C 

in 2003, 9.9°C in 2004 and 9.7°C in 2005). In contrast, the mean winter temperatures (week 

1-10) showed more pronounced differences, with 2003 showing the coldest winter and 2004 

and 2005 being more similar (4.0, 4.8 and 4.8 respectively). A major difference between 

winter 2004 and 2005 was the temperature trajectory. While 2004 showed only a slight 
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Fig. 2 Mean weekly larval abundances of the years 2003-2005. 
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decrease in temperature from week 1-10 (6.0°C to 4.3°C), 2005 was characterized by a 

decrease from 6.9°C to 2.9°C (Fig. 3). 

The total larval cumulative abundance showed similar shapes but differences in timing. The 

development of the cumulative abundance in 2004 was always two to three weeks ahead of 

those of 2005 and even one week longer compared to 2003. In week 10 of 2004, 55% of the 

total larval abundance was already caught, while in 2005 it was 35% and in 2003 it was just 

20% (Fig. 3). Removing the dominant sandeel from the cumulative abundance curves, a 

higher temporal match between the years was observed. As the 2004 and 2005 curves were 

virtually congruent, it seems that in species other than sandeel the development of the 

cumulative abundance seemed to be triggered by mean temperatures rather than by 

temperature trajectory (Fig. 4) 
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Fig. 3 Cumulative relative abundance of the total larval catch from 2003-2005 (total 
abundance scaled to 100%) and the weekly temperature means. Sandeel included. 
Thick lines are larval cumulative abundances and thin lines represent temperature 
in the different years. 
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A nested ANOVA was used to test for temporal differences in larval abundance. The lowest 

level of the nested ANOVA explained the largest part of the total observed variation (Table 

1). Nevertheless, eight of the twelve most abundant species showed significant variation in 

months nested within years. Variation between the years was significant only in case of the 

lesser sandeel. In three of the twelve species none of the two higher levels explained a 

significant part of the observed variation. This implies no significant differences between 

years and between months within years and hence, a high degree of temporal stability for 

sculpin, sardine and the great sandeel. The great sandeel and the sardine showed 

comparable results in the ANOVA, but the CV in the first species was just half of that 

observed in sardine, giving the great sandeel the highest predictability of the species 

addressed in this study.  
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Fig. 4 Cumulative relative abundance of the total larval catch from 2003-2005 (total 
abundance scaled to 100%) and the weekly temperature means. Sandeel excluded. 
Thick lines are larval cumulative abundances and thin lines represent temperature 
in the different years. 
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Fig. 5 Cumulative dominance plot of the three years of the investigation. Species 
sorted by dominance ranks. Lesser sandeel (A. marinus) included. 

Table 1 Nested ANOVA results of the 12 most abundant species of this study. Data 
analysed are weekly mean larval densities. 4 values for weeks are nested within 
month, months are nested within years. The percentages of explained variance by 
each level are given. (ns= p>0,05, * =p<0.05, **p<0.01, *** p<0.001).   

Year
Week within 
month and 

year
Month range Mean density  

(Ind 100 m-3)
CV%

Ammodytes marinus 23.2 * 13.4 ns 63.4  1-5 64.5 90.4
Limanda limanda 0.1 ns 52.6 *** 47.3  1-7 17.1 80.5
Sardina pilchardus >0.1 ns 6.6 ns 93.4  6-9 15.9 114.1
Gobiidae spp. 7.2 ns 31.8 ** 61.0  4-8 11.3 77.9
Trachurus trachurus >0.1 ns 75.0 *** 25.0  6-9 8.8 81.4
Agonus cataphractus >0.1 ns 43.4 ** 56.6  1-4 8.5 31.2
Callionymus lyra >0.1 ns 49.2 *** 50.8  4-9 6.1 52.0
Myoxocephalus scorpius 1.2 ns 11.5 ns 87.3  1-3 6.0 106.9
Buglossidium luteum >0.1 ns 35.5 ** 64.5  5-8 5.7 56.0
Arnoglossus laterna >0.1 ns 53.8 *** 46.2  4-9 3.9 46.1
Hyperoplus immaculatus >0.1 ns 6.7 ns 93.3  4-10 3.7 64.3
Taurulus bubalis 4.2 ns 30.1 ** 65.7 3-7 3.2 82.6

Month within 
year
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The dominance patterns clearly separated 2004 from the other two years. The lesser 

sandeel made up 75% of the total catch in 2004 (Fig. 5) while it accounted for roughly 30% in 

the other two years. In 2003 and 2005 the ten most dominant species accounted for 90% of 

the total catch; in the sandeel-dominated 2004 it took only eight species to reach the same 

level. Excluding sandeel from the dominance analysis revealed remarkably similar curves 

(Fig. 6). The rankings within the years were significantly correlated between the three years 

(Spearman’s Rank correlation, p<0.05) with correlation coefficients from 0.85 to 0.88. 

Dominance ranks are given in Table 2.  
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Fig. 6 Cumulative dominance plot of the three years of the investigation. Species 
sorted by dominance ranks. Lesser sandeel (A. marinus) excluded.  
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Table 2 List of species caught during the study period. Given are the total catch 
(individuals), the months of occurrence in the ichthyoplankton, the amount of hauls 
containing the given species (Freq.), the relative contribution to the total catch (%), 
the rank of the contribution to the total abundance for each year, the mean rank of 
the contribution to the total yearly abundance and the temperature range in which 
larvae of a given species were caught. 
 

Species Total catch
Months of 

occurrence Frequence % of total catch
Rank abundance 

2003
Rank abundance 

2004
Rank abundance 

2005
mean Rank ± 

S.D.
Temperature 

(°C)
Ammodytes marinus 28,184 1 -5 142 55.7 1 1 1 1±0 2,7 - 10,2

Limanda limanda 4,387 1 -7 150 8.7 2 2 5 3±1.8 2,8 - 18

Agonus cataphractus 2,867 1 -4 99 5.7 7 6 2 5±2.7 2,8 - 6,6

Gobiidae spp. 2,850 4 -8 132 5.6 3 3 9 5±3.5 7 - 19,1

Trachurus trachurus 1,910 5 -9 112 3.8 4 10 4 6±3.5 11,1 - 19,1

Sardina pilchardus 1,584 5 -10 69 3.1 11 11 3 8.4±4.7 11,2 - 18,5

Callionymus lyra 1,504 4 -9 122 3.0 5 4 6 5±1 7 - 18,7

Buglossidium  luteum 1,155 5 -8 109 2.3 6 5 8 6.4±1.6 9,9 - 18,8

Arnoglossus laterna 916 4 -9 97 1.8 9 8 10 9±1 7 - 19,7

Hyperoplus 
immaculatus

735 4 -9 82 1.5 10 16 7 11±4.6 6,2 - 18,2

Engraulis 
encrasicolus

682 6 -8 22 1.3 n.c. 9 16 12.5±5 14,6 - 19,1

Taurulus bubalis 639 12 -3 73 1.3 17 7 12 12±5 2,9 - 17,3

Pholis gunnellus 537 1 -3 42 1.1 13 13 14 13.4±0.6 2,9 - 6,2

Liparis spp. 505 1 -6 102 1.0 16 19 11 15.4±4.1 2,8 - 13,7

Myoxocephalus 
scorpius

443 1 -3 41 0.9 8 14 18 13.4±5.1 2,8 - 5,6

Gadus morhua 367 1 -5 62 0.7 22 15 15 17.4±4.1 2,8 - 7,9

Sprattus sprattus 353 4 -8 59 0.7 12 18 13 14.4±3.3 6 - 18,7

Platichthys flesus 306 2 -7 34 0.6 14 12 21 15.7±4.8 3,5 - 16,4

Indet species 202 1 -9 46 0.4 15 17 26 19.4±5.9 4,3 - 19,7

Scomber scombrus 104 6 -8 27 0.2 25 21 17 21±4 13 - 18,3

Rocklings 73 1 -7 38 0.1 n.c. 20 22 21±1.5 5,2 - 15,8

Eutrigla gurnadus 57 4 -8 34 0.1 20 26 20 22±3.5 7 - 18,7

Merlangius merlangus 52 1 -5 22 0.1 18 23 23 21.4±2.9 2,9 - 9,8

Ctenolabrus rupestris 51 6 -8 24 0.1 24 27 19 23.4±4.1 14,3 - 18,6

Trisopterus esmarkii 28 1 -2 6 0.1 n.c. 22 n.c. 28.4±5.6 4,5 - 5

Gymnammodytes  
semisquamatus

21 10 -12 9 >0.1 21 n.c. n.c. 30.7±9.1 8,2 - 12,6

Clupeide indet 17 6 -8 6 >0.1 30 24 n.c. 27±4.3 13,2 - 19,7

Chirolophis ascanii 16 1 -2 9 >0.1 n.c. 29 24 26.5±3.6 4,5 - 6,2

Raniceps raninus 16 5 -7 11 >0.1 27 28 27 27.4±0.6 8,2 - 18,1

Psetta maxima 14 6 -8 10 >0.1 29 31 25 28.4±3.1 12,8 - 18,4

Belone belone 12 7 -7 3 >0.1 23 30 n.c. 26.5±5 15,2 - 17,3

Pollachius pollachius 11 5 -5 2 >0.1 n.c. 25 n.c. 28±4.3 8,6 - 10,1

Blennius spp. 9 5 -10 7 >0.1 26 32 n.c. 30±3.5 9,7 - 18,1

Pleuronectes platessa 7 2 -7 4 >0.1 19 n.c. n.c. 29±14.2 3,2 - 14,6

Cyclopterus lumpenus 4 5 -5 3 >0.1 n.c. n.c. 28 32.7±5.7 10,2 - 10,4

Hippoglossoides 
platessoides

3 6 -8 3 >0.1 28 n.c. 31 29.5±2.2 15,6 - 17,5

Microchirus variegatus 3 5 -7 3 >0.1 n.c. 36 29 32.5±5 11,2 - 15,2

Trachinus vipera 3 4 -7 3 >0.1 n.c. 34 30 32±2.9 7,2 - 16,8

Clupea harengus 2 3 -3 2 >0.1 n.c. 33 n.c. 32±1 5,2 - 5,3

Mullus surmuletus 1 7 -7 1 >0.1 n.c. 38 n.c. 33.7±3.8 14,8 - 14,8

Phycis blennoides 1 8 -8 1 >0.1 n.c. 35 n.c. 32.7±2.1 18,1 - 18,1

Scophtalmus rhombus 1 7 -7 1 >0.1 n.c. 37 n.c. 33.4±3.3 16,8 - 16,8
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The Shannon Wiener diversity of the larval fish assemblage showed an annual recurring 

pattern. The first part of the year was characterized by a relatively low diversity in the range 

of 0.3 to 1.0. This changed roughly at the end of May to values around 1.5 and was more or 

less constant until the middle of August. Afterwards the diversity decreased dramatically 

indicating the end of the larval fish production season (Fig. 7).  

 
The clustering of samples revealed two distinct clusters at a similarity of 10%. These were a 

winter/spring and a summer cluster. The winter/spring cluster itself could further be 

separated into a distinct January group, consisting of weeks 2-5 of all the three years and a 

spring cluster uniting the weeks 5 to 16. The spring cluster consisted of several groups, 

which could be divided into a distinct sandeel-dominated group from 2004, a big cluster 

representing the whole spring 2005 and a last cluster consisting of spring samples from 2003 

and 2005. These latter two clusters were separated at a similarity of roughly 50%. The 

summer cluster could be divided into an early summer group, ranging from May to mid-June 

(weeks 18- 25), and a later summer group aggregating weeks 25-35 (mid-June to end of 

August). Samples from autumn and the beginning of winter showed no clear cluster as 

catches were rare and displayed usually a single species at very low densities (Fig. 8). Fig. 8 
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Fig. 7 Shannon Wiener diversity of the larval fish community sampled from 2003-
2005 



CHAPTER 2 

 25

represents a cluster analysis of all data from 2003-2005 and because there were no obvious 

differences between the years, it is used as representative for the single years. 

Cluster analysis on the species caught revealed stable, recurrent species assemblages over 

the years. Again, two main clusters represented distinct winter/spring and summer larval fish 

communities. The winter/spring community could be broken down to two groups. One always 

contained seasnail species (the two native species Liparis liparis and L. montagui were not 

discriminated in this study), the rock gunnel Pholis gunnellus and the sculpin Myoxocephalus 

scorpius. The second always contained the lesser sandeel Ammodytes marinus, dab 

Limanda limanda and the bullhead Tauruulus bubalis. Hooknose, cod, plaice, whiting and 

flounder (Agonus cataphractus, Gadus morhua, Pleuronetes platessa, Merlangius 

merlangus, and Platichthys flesus) could be found in both clusters during the three years. 

The summer cluster was always composed of solenette, dragonet, gobies, scaldfish, pilchard 

and horse mackerel (Buglossidium luteum, Callionymus lyra, undetermined Gobiidae, 

Arnoglossus laterna, Sardina pilchardus and Trachurus trachurus) and some other species, 

which where minor abundant or not caught in all years (Fig. 9).  
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Fig. 8 Cluster analysis of Bray-Curtis similarities of samples from 2003- 2005. 
Similarities are calculated using mean weekly fish larvae abundance. Data are 
square root-transformed. 1: winter; 2: spring (2a spring 2003 & 2004; 2b sandeel-
dominated weeks all years; 2c spring 2005); 3: summer (3a early summer; 3b late 
summer)  
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Larvae collected during the monitoring campaign showed a clear trend in egg types 

(demersal vs. planktonic). In winter, most of the larvae emerged from demersal eggs. This 

changed gradually until summer, where the majority of the larvae hatched from pelagic eggs 

(Fig. 10).  
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Fig. 9 Cluster analysis of Bray-Curtis similarities of larval fish assemblages for 
2003-2005. Bray-Curtis similarities of mean weekly fish larvae abundance are given. 
Data are square root-transformed 
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2.4 Discussion 
 

Larval fish communities have been found to be influenced by a large variety of factors such 

as currents (Meekan et al. 2006), upwelling systems (Hutchings et al. 1998, Painting et al. 

1998, Hutchings et al. 2002)  or haline fronts (Grioche et al. 1999, Munk et al. 2002). 

Implicitly, this means that to find significant differences between areas the variation within 

areas must be relatively low. This has not been made explicit in any of the studies cited 

above. Hence, the aim of our study was to look at the temporal stability of larval fish 

communities within one locality. Furthermore we wanted to investigate whether the premise 

of Cushing’s match/mismatch hypothesis that larval fish production is temporally constant 

really holds. 

Processes in poikilotherm organisms are regulated by temperature. In this study we showed 

that the winter temperature influenced the succession of total larval fish abundance in the 

ichthyoplankton. The relative cumulative abundance showed pronounced differences 

between the years of observation with the coldest year led to delayed larval occurrence. 

Contrasting to Greve et al. (2005), two of the three years showed a pronounced difference in 
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Fig. 10 Egg index corresponding to the larvae observed in the ichthyoplankton. (0 
means all larvae in the sample emerged from demersal eggs; 1 means all species in 
the sample had pelagic eggs.) 
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the cumulative abundance despite the same mean winter temperatures. This could be 

explained by differences in temperature trajectory between the years. The exclusion of the 

dominant species, the lesser sandeel, suggests a development which is triggered by the 

mean temperature rather than by temperature trajectory. This indicates that the hatch of the 

lesser sandeel is triggered by temperature rather than by cumulative temperatures and may 

be used as an explanation why Greve et al. (2005) were not able to predict sandeel 

seasonality by mean winter temperatures. A similar observation has been reported by Frank 

and Leggett (1981, 1982a). They were able to demonstrate that the emergence of larvae of 

several species to the pelagial was strongly triggered by rising temperatures. Our results are 

not as pronounced as those reported by Frank and Legget (1981, 1982a), and this may be 

attributed to the more severe changes in water temperature in Conception Bay, 

Newfoundland, than those observed in the North Sea. 

We observed some temperature-related shifts in the development of the cumulative larval 

abundances between the three years of observation, which were solely attributable to lesser 

sandeel. Leaving sandeel out of the analysis we observed no differences between the years 

when adding all of the caught fish together. 

What about the different species in the larval community? The results of the nested ANOVAs 

indicated that the largest part of the observed variability in the temporal abundance 

distribution of single species was within the two lower levels, weeks and months. This implied 

a strong stability between years, which is further corroborated by the results from the cluster 

analysis. Only in the case of the lesser sandeel, the abundances differed significantly 

between years. Additionally, the cluster analysis revealed clear, distinct species 

assemblages and a recurring seasonality. A relatively low inter-annual variation as well as a 

high stability of species assemblages was also described in the few studies comparing 

assemblages between years for different temperate marine areas (Allen & Barker 1990, 

Witting et al. 1999). Variation between years was highest in spring as shown by the distinct 

spring 2005 cluster and the clustering of the strongly sandeel dominated samples in spring 

2004. The summer situation did not display distinct groups of different years, suggesting 

similar recurring abundances and reflecting the stable dominance patterns.  

The two diversity states found in spring and summer are characterized by differences in 

species richness. The summer assemblage consisted of 7-10 species, while the spring 

assemblage usually comprised 3-5 species. The only other study carried out in the German 

Bight (von Westernhagen et al. 2002) sampled the pelagic eggs of fish rather than their 

larvae, between 1984 and 2000. Von Westernhagen et al. (von Westernhagen et al. 2002) 

reported a positive relationship between the amount of species collected and the water 

temperature during their sampling period from February to July. When we concentrated on 

the same period as the authors cited above, we also observed this relationship, but 
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incorporating the species-poor late summer and autumn samples clearly disturbed the 

correlation between temperature and species richness.  

In this study we showed a clear succession of larvae emerged from demersal eggs in winter 

to larvae hatched from pelagic eggs in summer. Richards (1959) observed a similar trend of 

changes in egg types from demersal to pelagic with ongoing season for the Long Island 

waters (USA) as we described it for Helgoland Roads in the North Sea. The proportion of 

larvae emerged from demersal eggs in the cold season was somewhat higher in this study 

compared to the 60% Richards (1959) reported. Frank and Legget (1983) observed a similar 

pattern in Conception Bay, Newfoundland, and attributed these finding to the “adaptive 

emergence” and the “safe site” concept they established earlier (Frank & Leggett 1981, 

1982a). The “safe site” concept states that there are favourable and unfavourable times for a 

larva to enter the plankton. The bad one in the case of Frank and Legget (1981, 1982a) is 

characterized by prevailing offshore winds, which are responsible for upwelling events. 

These cold water masses contain low prey densities and high invertebrate abundances. The 

safe site is characterized by onshore winds bringing warm water to the coast, which is rich in 

suitable prey organisms and shows low predator densities. The adaptive emergence strategy 

then states that larvae from demersal eggs emerge in these safe site situations, triggered by 

rapidly rising temperatures. These concepts are reflected in rapid changes in the abundance 

of larvae hatched from pelagic or demersal eggs and can therefore not explain the more 

gradual change from demersal to pelagic observed in our study. This can be explained with 

the absence of such strong differences between water masses in the North Sea. At the 

Helgoland Roads station, changes in abiotic and biotic features of the water masses due to 

changes in prevailing wind directions are only detectable in rare and very harsh weather 

conditions and therefore, the evolutionary mechanism selecting for rapid reactions acting on 

the Newfoundland species probably did not work on the species in our study. Nevertheless, 

we observed the change from demersal to pelagic eggs, but in our case it is more likely that 

long egg incubations at low temperatures combined with pelagic eggs would be a 

unfavourable strategy because it makes the fate of these pelagic eggs unpredictable in terms 

of drift patterns. A drift period of several weeks in the North Sea might well result in a drift out 

of the shallow North Sea, which would mean the end e.g. for sandeel larvae, which are 

dependent on suitable sandbanks at the end of their drift phase. Advection has indeed been 

shown to be a major cause of egg and larval losses e.g. in the Baltic Sea (Baumann et al., 

Hinrichsen et al. 2003) and the Benguela System (Hutchings et al. 2002). Additionally, a 

prolonged drift phase may increase egg mortality (McGurk 1986). A second explanation 

might be the harsh conditions in the shallow North Sea in winter. Bunn (2000) discussed the 

potential of egg mortality caused by mechanical stress due to storms for several species with 

pelagic eggs and concluded that wind-induced stress may be a cause of massive mortality 
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for pelagic fish eggs. Hence, frequent storms in winter will lead to a mixed water body and 

may increase the risk of eggs being mechanically damaged by wave action, which may also 

favour demersal eggs in winter. On the other hand, a moderate amount of dispersal is 

needed to explore new habitats or reach nursery grounds (Van der Veer et al. 1998, Van der 

Veer et al. 2000, Köster et al. 2003). This seems to be achieved by a compensation of the 

decrease of the duration of the planktonic phase caused by warmer water and by the 

preference towards pelagic eggs with rising temperatures. 

In summary, the larval fish community around Helgoland is remarkably stable in terms of the 

occurrence of the different meroplanktonic fish larvae as well as the species composition 

despite changes in environmental conditions. The larval fish assemblages could clearly be 

separated into several recurring seasonal assemblages over the three years of investigation. 

The dominance patterns were also stable and showed little variation from year to year and a 

clear succession from demersal eggs in winter to pelagic eggs in summer was shown. In 

conclusion, this study supports Cushing’s assumption that larval fish production is fixed in 

time, with the exception of the lesser sandeel.  
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Chapter 3                
Changing environments and the nutritional condition of 

larval dab and lesser sandeel 
 

 

We investigated the nutritional condition of larval fish caught in daily ichthyoplankton hauls 

carried out from February to June 2004. We concentrated on larvae of dab (Limanda 

limanda) and lesser sandeel (Ammodytes marinus) in order to contrast early life stages of 

iteroparous and nearly semelparous fish. Larvae were analysed for length, weight and their 

RNA:DNA ratio as a proxy for the condition of the larvae. The relationship between larval 

nutritional condition and larval size gave indication for condition selective mortality due to a 

loss of poorly-conditioned larvae at larger size-classes. In larval sandeel, well conditioned 

larvae were present in all size-classes, whereas in larval dab the maximum larval condition 

rose with size. Variability in both standard length and condition was high in the two species 

during their planktonic stage. Both species showed a good nutritional condition in the early-

mid-season and declines in condition in late April. This was more pronounced in larval dab, 

which showed a higher dependency on feeding conditions than larval sandeel did. Together 

these findings gave indication for a more conservative strategy of early life stages of the 

nearly semelparous sandeel. 

 



CHAPTER 3 

 32

3.1 Introduction 
 

The only noteworthy parental care numerous larval fish species get is the amount of 

resources contained in the egg. This initial parental gift to their descendents varies among 

species and between pelagic and demersal eggs. Demersal eggs are usually larger in size, 

and the energy content of the eggs is positively related to egg size. Furthermore, demersal 

eggs are richer in energy than pelagic eggs of the same size (Loenning et al. 1988). Larvae 

that hatch from the more energy-rich demersal eggs have thus a better ability to cope with 

unfavourable nutritional conditions than larvae which emerge from smaller eggs (Miller et al. 

1988, Einum & Fleming 2000, Fuiman 2002). Moreover, the variability in environmental 

conditions should select for larger egg sizes (McGinley et al. 1987). One could hypothesise 

that short-lived species, with only one or two spawning events during their lifetime should 

have an evolutionary history such that a specific proportion of larval survival is guaranteed 

under all circumstances. This is because the relative importance of a single spawning event 

is higher compared to long-lived species, which have a more iteroparous life-history. We thus 

hypothesize that short-lived species, living in highly variable environments, should have 

adapted to more conservative reproductive strategies through the production of larger eggs, 

longer spawning periods and longer transition phases from internal to external feeding to 

ensure that at least subsets of their offspring will survive.  

There are many ways to assess performance of fish larvae, such as enzyme activity, otolith 

growth or the ratio between RNA:DNA in tissue. In this study, we assessed the condition of 

larval fish by means of the analysis of the ratio between RNA and DNA content in the 

organisms, a method commonly used in larval ecology and fisheries research. The general 

assumption is that the amount of DNA per cell is constant, while the amount of RNA per cell 

varies with anabolic activity. It has the advantage that it integrates the feeding history over a 

period of approx. three days (Clemmesen 1987, 1994), which makes it robust against short-

term effects as shown for digestive enzymes (Ferron & Leggett 1994). The RNA:DNA ratio 

can be used in several ways; it can be used as a tool to investigate the nutritional condition 

and survival potential in laboratory experiments (Clemmesen 1987, 1994, 1996, St. John et 

al. 2001) as well as in field studies (Bulow 1987, Gronkjaer et al. 1997, Gronkjaer & Sand 

2003) by comparing the ratios itself. Another widespread and promising use is its predictive 

power for protein growth as long as species-specific models are available (Buckley 1984, 

Buckley et al. 1984, Caldarone et al. 2003, Buckley et al. 2004). One shortcoming, however, 

is the temperature dependence of the RNA:DNA ratio itself. Higher RNA:DNA ratios at lower 

temperatures are believed to be a compensatory mechanism for the reduced efficiency of the 

anabolic machinery (Goolish et al. 1984). This makes comparisons over a wide range of 

temperatures, and hence the use in field studies, difficult as the same RNA:DNA ratio may 
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mean a different condition at different temperatures. Indeed, Malzahn et al. (2003) reported 

significant differences in RNA:DNA between larval coregonid fish reared under ad libitum 

food supply at two different temperatures (8°C and 18°C). However, albeit significant, the 

differences in RNA:DNA were only around 0.03 °C-1, whereas studies with different food 

levels often report differences in the RNA:DNA ratio ranging from 1 to 3 in comparisons 

between fed and unfed larvae (McNamara et al. 1999, Suneetha et al. 1999, Rossi-

Wongtschowski et al. 2003). Hence, the RNA:DNA ratio as a measure of nutritional condition 

can be used for larvae with a different thermal background.  

Our hypothesis that shorter-lived species are more conservative translates directly into the 

prediction that larvae of short-lived species should be more independent of the current 

feeding conditions. We tested this prediction by contrasting larval stages of lesser sandeel 

(Ammodytes marinus) and dab (Limanda limanda), investigating their condition in the light of 

the prevailing environmental conditions. The lesser sandeel (A. marinus) is a short-lived 

species. It comprises up to one third of the total fishery yield in the North Sea (Arnott & 

Ruxton 2002) and it is a major food source for several predatory fish (Carruthers et al. 2005) 

and bird species (Furness & Tasker 2000, Rindorf et al. 2000, Furness 2002, Oro & Furness 

2002). Sandeels normally reproduce in their second year; they produce large demersal eggs 

and because of extremely high natural mortalities, they do not become much older than three 

years. As a contrast to the larval performance of the short-lived lesser sandeel we chose the 

temporally co-occurring dab (L. limanda), which spawns several times during their 10 years 

lifespan, producing smaller pelagic eggs. It is generally accepted that in flatfish the relative 

importance of the larval stages is of minor importance compared to the density-dependent 

mechanisms acting on the settled juveniles, which normally dampens year-class strength 

variations (Van der Veer et al. 2000). Hence, we would expect that lesser sandeel larvae 

grow better and show less starvation symptoms under various biological and physical 

conditions than larval dab. 

 

3.2 Material and Methods 
 

The ichthyoplankton community was surveyed on a work daily base at 54°11.18´N and 

07°54.00´E, which is known as “Helgoland Roads”. The station is located between the island 

of Helgoland and the adjacent dune in the German Bight, North Sea. A CalCOFI ring trawl 

equipped with 500µm mesh net (aperture 100 cm, length 400 cm, equipped with a flow 

meter) was towed for 15 min from a research vessel. For a detailed description of the 

sampling and the fish caught during the surveys see Chapter 2. Water depth at the station is 

app. 10 m and the water column is mixed throughout the year due to strong tidal currents (up 
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to 1.5 knots). The samples were transferred to the laboratory and fish larvae were sorted out 

immediately, classified and stored in -80°C for later biochemical analyses. Zooplankton 

samples were taken using a 150µm mesh net (aperture 17cm, length 100cm, equipped with 

a flow meter), hauled vertically through the water column by hand. Zooplankton samples 

were taken weekly from 15.Jan 2004 to 12.Feb 2004 and two times a week from 17.Feb 

2004 until 29. Jun 2004. Zooplankton data were pooled to suitable prey organisms for larval 

fish based on their size, where all zooplankter smaller than 300µm were considered as 

potential food sources for larval fish. As different size-classes of fish larvae were present in 

all catches, no further division into specific plankton size-classes was conducted. Suitable 

prey organisms are given in Table 3. Weekly means of diatom carbon were calculated from 

daily phytoplankton counts following Hillebrand et al. (1999). Sea surface temperature was 

measured daily using a mercury thermometer. 

The analysis of RNA and DNA concentrations was performed using a modification of the 

method of Clemmesen (1993) and Belchier et al. (2004). Samples of lesser sandeel and dab 

were thawed and measured for standard length using a stereomicroscope. Larvae were 

freeze-dried to constant weight (16 hours, using a Christ Alpha 1-4 freeze-dryer at –51°C) 

and were weighed to the nearest 0.0001 mg (Sartorius microbalance SC2). The freeze-dried 

larvae were rehydrated in Tris-SDS-buffer (Tris 0.05M, NaCl 0.01M, EDTA 0.01M, SDS 

0.01%) for 15 minutes. Cells were disrupted by shaking in a cell mill with different sized glass 

beads (diameter 2 mm and 0.17-0.34 mm) for 15 minutes. The homogenate was then 

centrifuged at 6000 rpm at 0°C for 8 min, and the supernatant used for the analysis. The 

amount of nucleic acids was measured fluorometrically in a microtiter fluorescence reader 

(Labsystems, Fluorescan Ascent) using the fluorophor ethidiumbromide. Total nucleic acids 

were measured first. Subsequently, RNAse was applied to the sample in order to digest the 

RNA. After the enzyme treatment (30 min at 37°C) the remaining DNA was measured. The 

RNA fluorescence was calculated by subtracting the DNA fluorescence from the total nucleic 

acid fluorescence. RNA calibrations were set up on every day of measurement. The DNA 

concentrations were calculated using the relationship between RNA and DNA fluorescence 

described by Le Pecq and Paoletti (1966). All steps were done on ice. 

The approach of this paper was to detect small changes in condition, which can potentially 

be lost in statistical approaches based on means. These changes are normally found at the 

extremes of distributions and they have usually only minor influences on common statistical 

tests. Hence, for the detection of these small-scale changes in distribution patterns of the 

parameters analysed, a nonparametric approach proposed by Pepin et al. (1999) and Evans 

(2000) was used. This approach examines how the probability distribution of a random 

variable Y depends on some other variable X, without any assumptions about the form of the 

distributions or about the form of the dependence. The goal is achieved by estimating 
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cumulative probability distributions and by computing local influences of X on Y. This is 

based on the idea of locally weighted estimates of the cumulative probability distribution by 

kernel smoothing (Pepin et al. 1999, Evans 2000). In this study the scatter between the 10th 

percentile (lower extreme) and the 90th percentile (upper extreme) of the distribution was 

analysed. This was done by the creation of 500 synthetic datasets originated by randomly 

assigning pairs of variables (length and RNA:DNA ratio) from the original dataset and by 

performing Monte Carlo simulations revealing the probability that the patterns of change in 

the cumulative probability distribution of the original data are caused by chance alone. 

 

3.3 Results 
 

Environmental conditions: 
The water temperature dropped from 6°C in the beginning of January to 3°C in early March 

and increased again to 12°C until the end of May (Fig. 11). Zooplankton data were pooled to 

suitable prey organisms for larval fish according to Table 3. Total potential prey densities 

showed an increase from January to the middle of April from 1.2 to 10 individuals litre-1. This 

increase was followed by a steep drop in density to around two zooplankter litre-1 within just 

one week around the 20. Apr 2004 (Fig. 11). The collapse of zooplankton abundance was 

directly followed by a sharp increase in phytoplankton biomass from 25 to 230µg diatom 

carbon litre-1, which indicates top down mechanisms acting on phytoplankton growth in 

spring 2004.  

 

 

Table 3 List of zooplankters combined to suitable prey for larval fish in this study 

Asteroidea (Gastrula) 

Aphroditidae (Larvae) 

Polychaeta (Trochophora) 

Gastropoda (Veliger) 

Evadne sp. 

Podon sp. 

Bryozoa (Larvae) 

Balanidae (Nauplia) 

Copepoda, (Nauplia) 

Copepoda, (Copepodites) 

 



CHAPTER 3 

 36

 

Species occurrence: 
Larval dab were first caught at the end of February and their mean abundance in 2004 was 

0.2 individuals m-3. Two distinct peaks in dab abundance were observed in the middle of 

March and at the end of April with densities of up to 1 larva m-³. From April on until late June, 

when the last dab larva was caught the abundance remained low. Lesser sandeel larvae first 

occurred in the ichthyoplankton in early February. In general, February was characterized by 

high sandeel numbers in the catches ranging from 2 to 50 individuals m-³. A second peak in 

sandeel abundance was observed in late March and early April with densities of up to 8 

individuals m-³. Thereafter, numbers remained low with 0.01 to 0.1 larvae m-³ until the last 

larva was caught in the middle of May (Fig. 12). 

1.2.04  1.3.04  1.4.04  1.5.04  1.6.04  1.7.04  

Te
m

pe
ra

tu
re

 (°
C

)
Zo

op
la

nk
to

n 
pr

ey
 a

bu
nd

an
ce

 (I
nd

 l-1
)

0

2

4

6

8

10

12

14

D
ia

to
m

 c
ar

bo
n 

(µ
g 

l-1
)

0

50

100

150

200

250

Prey
Temperature
Diatom carbon

 

Fig. 11 Development of zooplankton prey, temperature and diatom carbon. 
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Nutritional condition of dab 
A total of 419 larval dab were analysed for their standard length, dry weight and their 

RNA:DNA ratio. Variability in the standard length of larval dab was high but fairly constant 

throughout the whole period of their occurrence in the plankton as was the variability in 

RNA:DNA ratios (Fig. 13). None of the flatfish larvae analysed in this study showed a 

beginning asymmetry as a sign for forthcoming settlement. A high proportion of better-

conditioned larvae were found in the middle of the sampling period. This caused a steady 

elevation of the 90th percentile until the middle of April. While the lower parts of the RNA:DNA 

ratio distribution, indicated by the 10th and 50th percentile, decreased just slightly from the 

20th of April onwards, better-conditioned larvae were missing later in the season. This 

resulted in a sharp decrease of the 90th percentile. As a result, the mean RNA:DNA ratio 

decreased.  
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Fig. 12 Abundance of lesser sandeel (A. marinus) and dab (L. limanda) larvae. Note 
the different scales for the two species. 
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In order to distinguish between periods of high and low food availability (before and after the 

20th of April, see also Fig. 11), the slopes of the regression lines resulting from RNA:DNA and 

length data from the 46 larvae caught within the two weeks prior and the 78 larvae caught 

within two weeks after the breakdown in zooplankton abundance were compared. The 

standard length of the larvae was included into the analysis to investigate whether all size-

classes were affected in the same way by the reduction of zooplankton prey. The 

temperature difference between the two weeks was 2.1°C. Significantly different slopes 

where shown with the higher slopes observed in larvae caught before the breakdown in food 

availability at the 20th of April (0.53 vs. 0.18) (Fig. 14; p < 0.01). The exclusion of two small 

larvae (4.5 and 3.8 mm) with unusually high RNA:DNA ratios (3.9 and 4.7 respectively) from 

the dataset of the food deprived weeks resulted in a r² of 0.40 and a slope of 0.2. Further 

analyses of the RNA:DNA ratio in larvae smaller than 4 mm, before and after the food 

deprivation revealed no significant difference in RNA:DNA ratios (t-test, p > 0.05) which 

means that larger larvae were affected by the decrease in prey availability, while smaller 

larvae were not. 
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Fig. 13 RNA:DNA ratio and standard length of larval dab (L. limanda) over time. 
Solid (RNA:DNA ratio) and dotted (standard length) lines from bottom to top: 10th, 
50th, 90th percentile. 
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Nutritional condition of sandeel 
In contrast to the dab size distribution, the variability and the standard length of the 366 

sandeel larvae analysed increased with time. A constant supply with small larvae kept the 

10th percentile at roughly 5 mm while the 50th and 90th percentile increased until the middle of 

April, reaching values between 11 and 14 mm (50th and 90th percentile respectively)(Fig. 15). 

Late in the season a decrease in larval length due to a lack of larger larvae in the catches 

was observed. The RNA:DNA ratios in larval lesser sandeel were highly variable throughout 

the season, ranging from 2 to 9. The data density later than the middle of April is low, but 

nevertheless, no RNA:DNA ratio greater than 4 was found in the 16 larvae caught in the last 

30 days of the sandeel season, which was well below the mean RNA:DNA for the whole 

season (Fig. 15).  
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Fig. 14 Relationship of RNA:DNA ratio and standard length in larval dab (L. limanda) 
divided into the categories all data, before and after day 20.4.2004. 
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Inter-specific comparisons 
Analysis of the relationship between larval size and their RNA:DNA ratios revealed a different 

pattern for the two species. In both species the 50th percentile increased with larval size. This 

elevation was caused by the loss of poor-conditioned sandeel larvae whereas the maxima 

ratios remained constant (Fig. 16). Larval dab also showed a loss of poor-conditioned larvae 

but contrasting to sandeel, a massive increase in the RNA:DNA ratios maxima with size was 

observed (Fig. 17). 
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Fig. 15 RNA:DNA ratio and standard length of larval lesser sandeel (A. marinus) 
over time. Solid (RNA:DNA ratio) and dotted (standard length) lines from bottom to 
top: 10th, 50th, 90th percentile. 
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The probability that the observed relations between length and RNA:DNA ratio are produced 

by chance alone (dotted lines in Fig. 16 & Fig. 17) ranged between 5 and 20 % for larger 

sandeel, which means that indeed in larger sandeel size-classes only the better-conditioned 

animals were found. For dab, a probability of nearly 100 % at the larger size-classes was 

calculated, which means that the scatter was significantly higher than the average scatter of 

the dataset. This reflects the large scatter and the evenly distributed RNA:DNA ratios 

observed in larger size-classes. It was obvious, that this elevation in scatter was caused by 

the gain of extremely well-conditioned larvae which were not present in the population at 

smaller size-classes. 
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Fig. 16 RNA:DNA ratio and standard length of larval sandeel (A. marinus) over time. 
Solid lines from bottom to top: 10th, 50th, 90th percentile. The dotted line is the 
probability of measuring the estimated scatter between the 10th and the 90th 
percentile relative to a randomization of the data (right y-axis). 
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Fig. 17 RNA:DNA ratio and standard length of larval dab (L. limanda) over time. 
Solid lines from bottom to top: 10th, 50th, 90th percentile. The dotted line is the 
probability (in percent) of measuring the estimated scatter relative to a 
randomization of the data (right y-axis). 
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3.4 Discussion 
 

This study provides insights into the early life history of two fish species of contrasting 

reproductive strategies in the North Sea. Both species are characterized by a similar 

seasonality and the manner in which they cope with strongly changing environments. Both 

species have a prolonged hatching season compared to other species in this region Chapter 

2, which presumably represents a bet-hedging strategy to deal with a high variability in 

environmental conditions. Since feeding conditions are variable intra- and inter-annually, this 

bet-hedging seems a good strategy. In 2004, the larvae that hatched before mid-April 

seemed to be the winners. However, as the timing of the zooplankton peak is in general 

highly variable (Greve et al. 2004), it is likely that in other years larvae that hatch at different 

times are the survivors. 

Nevertheless, low food availability at low temperatures early in the season does not 

necessarily mean that this characterizes a bad situation. Since growth is, however, 

accelerated by temperature, low temperature conditions results in a slow growth, leading to a 

longer duration of the most-vulnerable larval stages and a prolonged phase of a high 

predation risk. Later in spring, temperature and food availability usually rises; a pattern which 

this is well-reflected by the higher condition for both dab and sandeel shown for early April. In 

2004, we observed a drastic reduction in food availability from the middle of April to the end 

of May. This may have had several consequences for the larval fish. On the one hand, the 

larvae ran the risk of starvation while on the other hand the risk of predation increased with 

decreasing condition of the larvae. Late during season, larvae faced better feeding conditions 

after the recovery of the zooplankton abundance. However, the larval condition did not react 

to such an increase in prey abundance. This could be the result of changes in nutritional 

quality of the zooplankton as food for larval fish (as shown in Chapter 4), but also a result of 

higher temperatures, which were potentially outside the optimal temperature range for the 

larvae of investigation. Thus, during this period, they were not able to transfer the 

plenteousness of food effectively into growth. 

Consequently, only a short period of the year yielded favourable conditions for the larval fish 

species in our study, a pattern which was already proposed by Hjort (1914) and later by 

Cushing (1974, 1990). In fact, several studies concentrating on growth rates or hatch date 

distribution derived from otolith readings revealed similar results. Hovenkamp and Witte 

(1991) as well as Baumann et al. (2003) found the highest growth rates and thus the highest 

survival probability of larval plaice (Pleuronectes platessa) and radiated shanny (Ulvaria 

subbifurcata) at intermediate temperatures. Wright and Bailey (1996) compared the observed 

hatch dates of larval sandeel and back-calculated hatch dates derived from otolith 

microstructures of juvenile sandeel in three consecutive years. They found that the survivors´ 
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hatch dates were rather different between years; an early hatch was favoured in 1990, a late 

hatch in 1991 and an intermediate hatch date were advantageous in 1992. They concluded 

that there is an indication for a seasonal cycle of growth opportunity in the three years of 

investigation, that inter-annual differences occur and that a coupling of hatching and the 

onset of secondary production may be an important factor for year-class variability. The 

results of our study also showed a strong seasonality of the development of larval condition, 

but contrasting to Cushings’ (1974, 1990) predictions, the period of highest larval condition 

was not at the peak of food availability but two to three weeks earlier.  

In general, a low food availability is known to lead to a reduced growth and an increased 

mortality in larval fish (Clemmesen 1987, McGurk et al. 1992, Clemmesen 1994, McLaughlin 

et al. 1995b, Theilacker et al. 1996, Gwak & Tanaka 2001, St. John et al. 2001). In this study, 

low RNA:DNA ratios where found being linked to poor feeding conditions only at times of an 

extreme decrease in food availability. By the division of data into two weeks before and two 

weeks after the breakdown of the prey abundance, the slope of the length-condition-

regression was significantly higher than the one of the two food-deprived weeks. The 

temperature difference during this four-week timeframe was within the window of direct 

comparability of RNA:DNA ratios (Caldarone et al. 2003) and thus, it is unlikely that 

temperature-related effects can serve as explanation for the results. In fact our findings show 

that larger larvae suffered from poor feeding conditions while smaller larvae showed no 

significant decline with the decrease in prey abundance. Suneetha et al. (1999) reported less 

serious starvation effects in small herring larvae (Clupea harengus) than in bigger ones and 

attributed this finding to benefits derived from leftover yolk. This fits well to our findings that 

smaller larvae were not affected by the decline in zooplankton prey densities. They might 

have thus benefited from their ability to exhaust two sources of energy, internal yolk reserves 

as well as external food. Additionally, young stages of larval fish are known to feed on 

phytoplankton in the first days of external feeding (Last 1978, Kane 1984, Monteleone & 

Peterson 1986). It can be hypothesized that smaller larvae may have switched food sources 

in order to exploit the rapidly increasing diatom biomass, a phenomenon which is additionally 

supported by our unpublished results on isotopic signatures of the larvae. 

The relationship between maximum larval nutritional condition and size showed a diametral 

pattern in the two species under investigation. Larval dab showed a clear increase of 

condition with size. Similar patterns were shown by Clemmesen et al. (2003) for Atlantic cod 

larvae in mesocosm studies and by Gronkjaer et al. (1997) for wild cod larvae from the Baltic 

Sea. The pattern of displaying the same maximum condition at all larval size-classes, as 

reported for lesser sandeel in this study, was previously reported by Pepin et al. (1999) for 

several species originated from Conception Bay, Newfoundland. In their study, they 

demonstrated condition-dependent mortality by showing that the maximum condition 
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remained constant with growth, but that the poorly-conditioned larvae were missing at larger 

size-classes. The species with the clearest signal in the investigation of Pepin et al. (1999) 

were short-living one. The production of larvae that are already at maximum condition at the 

time of hatch can be interpreted as a more conservative strategy when compared to the 

strategy of producing larvae that are far from their maximum possible condition at hatch and 

that first have to develop a good condition. 

Larval sandeel, as a representative for a short-lived fish species, did not show a strong 

dependency on high prey densities and they performed well under various food/temperature 

conditions. Only at the end of the season a breakdown of larval growth coincided with 

decreasing prey levels. In general, high temperatures are considered as counterproductive 

for sandeel production. Arnott and Ruxton (2002) found a negative correlation between 

sandeel recruitment and water temperature in the North Sea, with strongest effects in the 

southern part of the North Sea, which represents the southernmost distribution limit of this 

species. In contrast, a positive relationship between condition and prey availability was found 

in dab, the representative of a long-lived species. This can be taken as an indication for a 

higher dependency of dab larvae on environmental conditions.  

Our hypothesis that short-lived species have more conservative reproductive strategies than 

long-lived forms is supported by the fact that that sandeels produce large and energy-rich 

eggs as well as by their long transition time from internal to external feeding. To summarize, 

these characteristics display a relatively high independence of sandeels from environmental 

factors like temperature or prey densities thus enabling this short-lived fish species to 

produce extremely well-conditioned larvae.  
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Chapter 4                
Primary production under nutrient limitation indirectly 

affects larval fish condition 
 
It has become increasingly clear that food quality plays a very important role in aquatic 

systems. The main investigations, however, were carried out at the interface between 

primary producers (algae) and primary consumers (zooplankters). Here, we conducted 

laboratory experiments to track the cascading impact of algal mineral limitations through food 

webs. We used tri-trophic food chains, under the hypothesis that the homeostasis of the 

primary consumers is not strong enough to completely dampen negative limitation effects of 

the primary producer and that these negative effects affect the next higher trophic level. The 

cryptophyte Rhodomonas salina was cultured under nutrient sufficient as well as N- and P- 

limited conditions. Subsequently, the copepod Acartia tonsa was reared to the fifth naupliar 

stage on these manipulated algae and fed to two different age classes of larval herring. The 

effect of nutrient limitations was traced through the food chain by measures of the 

stoichiometry, fatty acids analysis and the RNA:DNA ratio of the herring as an indicator for 

larval fish condition. Fatty acids showed significant differences between the treatments in 

algae as well as copepods and so did the stoichiometry of the two lower trophic levels. Our 

hypothesis was supported, as the larval herring showed a significant response to the 

treatments, growing best on copepods reared on N- limited algae and worst on the P-limited 

food chain.  

 



CHAPTER 4 

 47

4.1 Introduction 
 

Phytoplankton blooms are never a stable and predictable food source for primary 

consumers. The phytoplankton biomass often rises in the order of 3 magnitudes (Irigoien et 

al. 2005) within days. This does, however, not necessarily mean that the edible part of the 

seston rises significantly, as blooms often comprise those phytoplankton species that 

manage to avoid predation due to special avoidance mechanisms like spines, thick cell-walls, 

layers of mucus (Irigoien et al. 2005, Mitra & Flynn 2005) or form colonies, like e.g. 

Phaeocystis species. In the case of an exploitable phytoplankton bloom, however, the rising 

food availability enhances reproductive activity in the holoplankters participating in the 

exploitation of the bloom. Depending on the life history strategy of the consumers, the bloom 

can be utilized by several generations as shown for daphniids in freshwater systems 

(Sommer et al. 1986), just by the standing stock of consumers, for example in the case of 

copepods with an annual life-cycle which target their main reproductive output to coincide 

with the bloom (Mauchline 1998), or by a mixture of older individuals and their offspring as is 

the case with many copepod species with a shorter generation time (Sommer et al. 2003). 

Blooms are either terminated by bottom-up or top-down mechanisms, which is by the 

depletion of nutrients and subsequent sedimentation (Sommer et al. 1986) or by grazing 

pressure leading to a clear-water phase (Sommer et al. 1986, Alekseev & Lampert 2001). 

Interestingly, the exact mechanisms of bloom termination in many oceanic blooms are still 

unresolved. 

Nevertheless, nutrient concentrations do decrease during the course of a bloom, and the low 

availability of nutrients at the peak of bloom situations leads to reduced phytoplankton growth 

rates, maintained mostly by the very limited regeneration of nutrients from the decaying algal 

material and ultimately this leads to drastic changes in food availability for the organisms that 

feed on the bloom-forming species. Apart from the dramatic decrease of primary production 

in decaying bloom situations, consequently leading to lower food availability for the herbivore 

biomass, algal quality as food for the herbivores is also likely to deteriorate. This is caused 

by decreases in edibility as a result of altered cell-wall morphology (Van Donk et al. 1997), 

changes in the stoichiometry of the macronutrients in the algae as a result of nutrient 

depletion, and biochemical changes in the algae such as changes in amino acids, proteins 

and fatty acids (Ahlgren & Hyenstrand 2003). The direct consequence of the nutrient 

depletion in algae is that the nutrient ratios are deviating more and more from Redfield ratios. 

This ultimately leads to a high variability of nutrient ratios in algae and they therefore 

represent a food source of variable quality for herbivores. Contrasting, zooplankton 

organisms retain their elemental composition to a high degree, displaying a strong 

homeostasis (Sterner & Elser 2002). Under the assumption that an animal is not energy-
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limited, food with high C:nutrient ratios ultimately creates costs due to the need of having to 

deal with ingested excess carbon. These costs rise with an increase in the difference 

between producers’ and consumers’ C:nutrient ratios. Zooplankters seem to pay these costs 

by reduced growth and reproductive rates (Boersma 2000, Boersma et al. 2001, Boersma & 

Kreutzer 2002). 

The reproductive phase in fish is normally not initiated by an enhanced primary production 

(but see Walsh et al. 1978). The more common strategy of many fish species is to try to 

synchronize the hatch of their larvae with enhanced primary and secondary production by the 

timing of spawning (Cushing 1974, 1990, 1995). As the onset of the spring bloom is hard to 

predict for reproducing fish, batch spawning over a prolonged period is a common 

reproductive strategy in temperate marine systems to match favourable feeding conditions 

for the offspring. This led Cushing to propose the match/mismatch hypothesis (Cushing 

1974, 1975) stating that fish year-class strength depends to a large proportion on a match 

between the occurrence of larval fish and peak production of suitable food sources. This 

aspect has been in the focus of aquatic ecology since decades and several studies 

confirmed and widened the applicability of this hypothesis (Cushing 1990, and references 

herein). Nevertheless, even in the case of a perfect match between larval occurrence and 

high productivity, the time span of plenty for the larvae is limited as bloom situations last 

mostly no longer than 1-2 weeks, which is shorter than the pelagic phase of most larval fish. 

Following Hjort’s critical life stage concept (Hjort 1914) this does not necessarily mean that 

larval fish suffer in post-bloom situations, as they become efficient predators very rapidly. A 

bloom and the following high zooplankton abundance may be interpreted as a boost in 

growth, channelling the early larvae through the first critical days of their lives.  

Brett (1993) stated in a dispute on ecological stoichiometry held in “Limnology and 

Oceanography” in 1993, that carnivores should be limited by food quantity rather than by 

food quality, as the stoichiometric needs are similar to the stoichiometry of their prey. 

Furthermore, relatively strong homeostasis of herbivore zooplankters (Hessen 1990, 

Andersen & Hessen 1991, Sterner & Elser 2002) should act as a buffer for effects of mineral 

limitations on the primary production level, and such differences should therefore not be 

transferred through food webs to higher trophic levels. Recent evidence, and more detailed 

investigations have, however, shown that homeostasis in planktonic animals is far from 

perfect (Plath & Boersma 2001). This variability is usually neglected using the argument that 

the differences observed in zooplankters are at least one order of magnitude lower than 

those observed in primary producers (Sterner et al. 1998). Nevertheless, 50% differences in 

zooplankton C:nutrient ratios have been observed depending on their food (Carrillo et al. 

2001, Boersma & Kreutzer 2002, Acharya et al. 2004). Hence, given the argument of Brett 

(1993) that stoichiometric needs of secondary consumers and the stoichiometry of prey are 
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normally so finely tuned, this means that there is ample opportunity for quality differences 

between prey of different nutritional status to be transferred to the next trophic level. Hence, 

we hypothesize that mineral limitation effects are indeed channelled through the food web 

and that their negative effects can be observed at higher trophic levels. 

In order to test this hypothesis, we conducted two experiments to track the impact of mineral 

limitation through a tri-trophic food chain, from primary producers to primary and secondary 

consumers. 

 

4.2 Material and Methods 
 

In order to simulate the response of several trophic levels to succession patterns during 

phytoplankton blooms, algae, copepods and larval herring were reared under three nutrient 

regimes. 

A stock culture of Rhodomonas salina was cultivated in enriched seawater, following Guillard 

and Ryther (1962). For our experiments, we cultivated algae at 18°C under a 16/8 hours 

(light/dark) light regime in enriched natural seawater (salinity ~15), as well under 

phosphorous- and under nitrogen- limitation. Prior to the experiment, the entire volume of 

water used in the experiments was 0.2µm sterile filtered and stored cold and dark until use. 

The first treatment simulated a non-limited bloom situation and consisted of f/2-enriched 

seawater (f/2 in the following), as described by Guillard and Ryther (1962), the other two 

treatments simulated decaying bloom situations under N- or P-limitation. The algae of the 

two limitation treatments were enriched with just one macronutrient (no P- or N-addition; -P 

and -N in the following) and could therefore only utilize the natural P- or N-sources present in 

the seawater at the moment of filtration. Several tests on algal growth rates were done prior 

to the experiments to detect the “carrying capacity” of the three different media and to define 

the duration until the algae were properly limited by the element of choice in the different 

treatments. Concentrations of algae were determined using fluorometric measurements 

(Turner, 10-AU-005-CE) at an excitation wavelength of 436 nm and an emission wavelength 

of 680 nm. Prior to the experiments a cell number-fluorescence relationship was set up using 

flow cytometer counts at 7 concentrations ranging from 0.05 to 1.7 106 cells ml-1. 

To ensure constant food quality, new cultures of each of the treatments were inoculated 

every day with roughly 0.2 106. cells ml-1 for the –N treatment and 0.3 for the –P and f/2 

treatment. Algae were harvested at densities of app. 0.5, 1.0 and 1.3 106. cells ml-1 (–N, -P 

and f/2 respectively) after the predefined growth phase of 6 days for –N and 7 days for f/2 

and -P. These were the maximum densities possible with the natural N- or P-sources 

contained in the seawater. 
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Eggs of the calanoid copepod Acartia tonsa had been produced in 200 l cylindrical tanks, 

where the animals were cultivated at 18°C at a 12/12 light cycle. Copepods were fed on a 

mixture of the algae Rhodomonas salina, Dunaliella sp. and the flagellate Oxhyrris sp. Eggs 

were siphoned from the bottom of the tanks daily and stored in seawater at 4°C for later use. 

No eggs older than three months were used in the experiments.  

The stored eggs were incubated in fresh seawater. The hatch rate of the eggs was around 

20%. The copepods used for the experiments were reared from the egg to the fifth naupliar 

stage in 5 l plastic bags at 18°C at densities of 1500 ind. l-1. The cultured algae were fed to 

the copepods at app. 1.0 mg carbon l-1 d-1 on five consecutive days. In order to guarantee 

that the algal deficiencies were not changed by uptake of nutrients during the incubations 

with the copepods, the copepods were reared in artificial, N- and P-free seawater (hw-

Marinemix, www.hw-wiegandt.de). Copepods were first fed 48 hours after adding the eggs to 

the rearing bags, assuming two days for the development from the egg to the first feeding 

second naupliar stage. Copepods were harvested after seven days of cultivation when app. 

80% of all the animals was in their 5th naupliar stage and app. 20 % in the fourth. For each 

day of the feeding experiment, three new copepod bags were started to ensure a constant 

food quality for the secondary consumers, the larval herring Clupea harengus. 

Herring larvae were obtained by means of artificial fertilisation. Adult ripe Baltic herring 

Clupea harengus were purchased from a local fisherman. The fish were transported 

immediately to the institute and kept on ice the whole time. Female fish were strip-spawned 

on glass plates. The eggs were applied in single rows to ensure a good oxygen supply during 

the incubation phase and the glass plates were placed in a plastic box. Milt was stripped to 

the eggs and activated by the addition of seawater. Fertilization was allowed for five minutes; 

afterwards the eggs were washed and transferred to the incubation containers. Eggs were 

incubated in a flow-through system, using 4µm pre-filtered natural seawater at 13°C. The first 

hatch took place on the night of day 10; peak hatch took place the following night. Only 

larvae from the hatch peak were used in the experiments. Larvae were transferred to 

cylindrical 200 l stock tanks. The stock tanks were operated as a flow-trough system and 

gently supplied with pre-filtered water. Experiment 1 was started using 4 days post-hatch 

larvae, which had no feeding experience. The larvae in the stock tanks were fed from day 4 

on Brachionus plicatilis reared on Nannochloropsis sp.. B. plicatilis were taken from routine 

cultures of the facility. Experiment 2 was started using 9 days post-hatch larvae. 

 

Experiments: 
20 larvae each were transferred to 1 l glass beakers filled with GF/F filtered seawater. The 

four treatments (-P, -N, f/2 and starving) were replicated 10 times in Experiment 1 and three 

times in Experiment 2. Both experiments were conducted at 15°C and ran for 6 days. Larvae 
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were fed different qualities of food around noon for the duration of five days. Food density in 

the experimental containers was 1 copepod ml-1, which is higher than the densities that are 

usually reported for food-saturated growth in larval herring (Clemmesen 1994). This was 

corroborated by the fact that in all of the experimental vessels copepods were still present 

after one day of feeding. The experiments were terminated on the morning after the 5th day 

of feeding. More than 80% of the water was replaced daily. Water was changed before 

feeding to ensure that the vast majority of uneaten prey organisms were in the experimental 

container for a maximum of 24 hours. This was essential in order to avoid alterations of the 

body composition of the copepods due to starvation and hence to assure a constant food 

quality over the trial period.  

 

Analytical procedures: 
The nutritional condition of larval herring was assessed by means of the analysis of the ratio 

between RNA and DNA content in the organisms, a method commonly used in larval fish 

ecology and fisheries research. The analysis of RNA and DNA concentrations was 

performed using a modification of the method by Clemmesen (1993) and Belchier et al. 

(2004). Larval herring were thawed and measured for standard length using a 

stereomicroscope. Larvae were freeze-dried to constant weight (16 hours, using a Christ 

Alpha 1-4 freeze-dryer at –51°C) and were weighed to the nearest 0.0001 mg (Sartorius 

microbalance SC2). The freeze-dried larvae were rehydrated in Tris-SDS-buffer (Tris 0.05M, 

NaCl 0.01M, EDTA 0.01M, SDS 0.01%) for 15 minutes. Cells were disrupted by shaking in a 

cell-mill with different sized glass beads (diameter 2 mm and 0.17-0.34 mm) for 15 minutes. 

The homogenate was then centrifuged at 6000 rpm at 0°C for 8 min, and the supernatant 

used for the analysis. The amount of nucleic acids was measured fluorometrically in a 

microtiter fluorescence reader (Labsystems, Fluorescan Ascent) using the fluorophor 

ethidiumbromide. Total nucleic acids were measured first and subsequently RNAse was 

applied to the sample in order to digest the RNA. After the enzyme treatment (30 min at 

37°C) the remaining DNA was measured. The RNA fluorescence was calculated by 

subtracting the DNA fluorescence from the total nucleic acid fluorescence. RNA calibrations 

were set up every measurement day. The DNA concentrations were calculated using the 

relationship between RNA and DNA fluorescence described by Le Pecq and Paoletti (1966). 

For the analysis of carbon and nitrogen contents of the algae, an estimated amount of 150µg 

algal carbon was filtered on precombusted Whatmann GF/F filter. For the analysis of 

copepod carbon and nitrogen, 500 individuals were counted into tin capsules. For the C and 

N content of the fish larvae, we pooled four individuals to ensure enough material for the 

analysis and packed them into tin capsules. The elemental analyses were done using a 

Fison 1500N CHN analyser. Phosphorus was analysed as orthophosphate after acidic 
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oxidative hydrolysis with 5% H2SO4 (Grasshoff et al. 1999). Unfortunately, P data of the 

algae are only available for Experiment 1. For that reason the copepod C:P ratios of 

Experiment 1 and 2 were pooled, as no significant difference was found between the ratios of 

both experiments. C:N- and C:P ratios are given as the molar ratio. 

The fatty acids of algae and copepods were measured as fatty acid methyl esters (FAMEs). 

Lipids were extracted from the samples by dichloromethane/methanol in an ultrasound bath 

for 30 min. Water soluble fractions were removed after centrifugation by washing with 0.88% 

KCl buffer. The water phase was removed and the organic remainder was evaporated using 

nitrogen gas. The esterification was done using methanolic sulphuric acid at 70°C for 30 min. 

The FAMEs were washed from the methanolic sulphuric acid using n-Hexane. Excess n-

Hexane was evaporated using nitrogen gas. All chemicals used were suprasolv or GC grade. 

FAMEs were analysed by gas chromatography using a Varian CP 8400 gas chromatograph 

equipped with a DB-225 column (J&W Scientific, 30 m length, 0.25 mm ID, 0.25µm film). The 

injector temperature was set to 250°C. The column oven was set to 60°C, which was held for 

1 min after injection. The oven was heated to 150°C at 15°C min-1, then to 170°C at 3°C 

min-1, and finally to 220°C at 1°C min-1, which was held for 21 min. The carrier gas was 

helium at a constant pressure of 12 psi. The flame ionisation detector was set to 300°C and 

the total run time was 82 min sample-1. The injection of the 1µl aliquots of the samples was 

done in a split less mode. FAMEs were quantified using calibrations set up for each fatty acid 

separately and a known amount of C 23:0 was added at the first step of the preparation as 

an internal standard. 

C:N and RNA:DNA ratios were statistically analysed by means of a two factorial ANOVA with 

treatment and experiment as independent variables and C:N or RNA:DNA as the dependent 

variable. Fatty acids and C:P ratios were analysed by one-factorial ANOVA using treatment 

as factor and the various fatty acid proxies or the C:P ratio as the dependent variable. 

Duncan’s tests for unequal n were used as post hoc test. 

 

4.3 Results 
 

Algal molar C:N differed significantly between treatments in both experiments. We were able 

to create similar values in both experimental runs, so that the factor “Experiment” had no 

significant influence in the two-way ANOVA. Algae grown under N-limitation showed the 

highest C:N ratios, while f/2 and P-limited algae showed significantly lower C:N ratios (~ 10, 

~ 7.5 and ~8.0; p< 0.05). Copepod C:N ratio showed significant differences between 

treatments. In Experiment 1, copepods fed on N- as well as P-limited algae showed 

significantly higher C:N ratios in comparison with those copepods fed on non-limited algae. In 

Experiment 2, no differences where found due to the unexpectedly low C:N ratios in the N- 
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limited treatment (Fig. 18). The only significant difference in herrings’ C:N ratio was between 

the start groups of Experiment 1, which were yolk sac larvae, and all other treatments (4.6 

vs. 5.4). The other groups did not differ and showed remarkably low variation. The C:P ratio 

also differed significantly between treatments in algae (f/2~ 230, -N~180 and –P~ 580) as 

well as in copepods (f/2~ 180, -N~186 and –P~ 280). The -P treatment created significantly 

higher C:P ratios in algae and in copepods than the f/2 and the –N treatments did (p<0.01). 

The latter two did not differ significantly (Fig. 19). 

 
The different mineral limitation treatments caused different fatty acid spectra in the algae 

(Table 5). The –P treatment showed not only the highest concentration of fatty acids (µg FA 

mg carbon-1), but also the highest amount and proportion of unsaturated fatty acids, Omega 

3 and Omega 6 fatty acid concentrations as well as the lowest percentage of saturated fatty 

acids in the experiment (all p< 0.05 to f/2 and no differences to -N). Exactly the same pattern 

was found for copepods reared on different algae treatments (Table 5). 
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Fig. 18 Molar C:N ratio of R. salina cultured under nutrient-sufficient (f/2), N-limited 
(-N) and P-limited (-P) conditions. C:N ratios of the copepod A. tonsa reared on the 
different R. salina cultures and C:N ratios of larval herring (C. harengus), reared on 
the copepods from both experiments. Error bars: 1 standard error. * marks 
significant differences (p<0.05) from the other treatments of the given species and 
experiment. 
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In general it can be said that for both higher trophic levels, the best food quality in terms of 

fatty acids was produced under P-limitation, followed by the N-limited conditions. The f/2 

cultivated algae seemed to be of the poorest food quality. On the other hand, in 

stoichiometric terms f/2 produced the highest food quality and the respective limitation 

created food of the worst quality. This enabled us to distinguish differential effects of nutrient 

and biochemical originated food quality. 
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Fig. 19 Molar C:P ratio of R. salina cultured under nutrient-sufficient (f/2), N-limited 
(-N) and P-limited (-P) conditions and the C:P ratios of the copepod A. tonsa reared 
on the different R. salina cultures. Error bars: 1 standard error. * marks significant 
differences (p<0.05) from the other treatments of the given species. 
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The age of the larvae had a significant impact on the RNA:DNA ratio with older larva showing 

generally a better condition (Table 4). For young larvae (Experiment 1), no significant 

differences between the treatments were detected. All fed treatments showed significantly 

different values than the starved larvae of Experiment 1. Older larvae of Experiment 2 

showed the same pattern as those of experiment one, but these patterns were more 

pronounced and differences were significant. All fed treatments differed significantly in their 

RNA:DNA ratios from each other (Duncan’s Test p<0.05). The N-limited treatment showed 

the highest RNA:DNA ratios, followed by the f/2 treatment. The –P treatment showed the 
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Fig. 20 RNA:DNA ratios of larval herring (C. harengus) reared on copepods which 
were fed on R. salina cultured under nutrient-sufficient (f/2), N-limited (-N) and P-
limited (-P) conditions. Error bars: 1 standard error. Significant differences between 
treatments are indicated with different letters for Experiment 2. In both experiments, 
all fed treatments were significant different from the corresponding starving group. 

Table 4 Summary table of the analysis of variance with experiment and treatment as 
independent factors and the RNA:DNA ratio as the dependent variable. 

MS df F p
Experiment 3.13743 1 31.9402 < 0.001
Treatment 2.34235 3 23.8460 < 0.001
Exp. * Treat. 0.82783 3 8.4277 < 0.001
Error 0.09823 251  

 



CHAPTER 4 

 56

poorest nutritional condition of the fed groups. All three fed treatments differed significantly 

from the corresponding food-deprived groups (Fig. 20).  

 

 
 

4.4 Discussion 
 

Consumers have to take up their nutrients from their food. At the interface between primary 

production and herbivore grazers, the nutrient supply and demand often show dramatic 

imbalances in terrestrial as well as aquatic systems (Elser et al. 2000). The biochemical 

reworking of the ingested food creates costs which rise with increasing carbon/nutrient ratios. 

These costs may even exceed the benefit of ingesting food and may lead to a rejection of 

poor quality food (Mitra & Flynn 2005). As nutrients are needed for metabolic processes and 

for the construction of various structures, algae have adapted their physiology to unstable 

nutrient conditions by adjusting their anabolic strategies to the available nutrient levels. 

Under P-rich conditions, algae invest in assembly machinery such as ribosomes (P-rich), 

whereas in P-poor situations the investment in the resource acquisition machinery (nutrient 

uptake proteins and mitochondria, N-rich) is enhanced (Klausmeier et al. 2004). This 

Table 5 Fatty acid composition of R. salina, grown under nutrient-sufficient (f/2), N-
deficient (-N) and P-deficient (-P) conditions and the fatty acid composition of A. 
tonsa, reared on different algal treatments. Values are means of 19 samples per 
algal treatment and 10 samples per copepod treatment. Values are given in µg mg-1 
C (standard errors in brackets), and as a percentage of the total fatty acid content 

µg mgC -1 % µg mgC -1 % µg mgC -1 % µg mgC -1 % µg mgC -1 % µg mgC -1 %

C 16:0 19.06 (4.42) 34.58 68.82 (42.25) 43.75 36.72 (13.71) 28.93 47.26 (13.84) 60.83 67.98 (32.52) 56.71 70.43 (32.02) 49.47
C 16:1 n7 0.66 (0.32) 1.18 3.38 (6.71) 2.21 7.12 (8.76) 3.4 0.59 (0.27) 0.76 1.08 (0.5) 0.91 2.83 (1.68) 1.88
C 16:2n4 0 0 0 0 0 0 0 0 0 0 0 0.00

C 17:0 0.47 (0.23) 0.84 0.94 (0.52) 0.62 0.58 (0.68) 0.47 2.41 (1.11) 3.06 1.69 (1.09) 1.34 2.64 (1.47) 1.81
C 17:1 n7 0.1 (0.08) 0.18 0.26 (0.31) 0.18 0.14 (0.17) 0.13 0.26 (0.27) 0.30 0.42 (0.61) 0.41 0.69 (0.66) 0.51

C 18:0 2.92 (1.14) 5.31 8.51 (7.01) 5.5 3.25 (0.8) 3.49 10.47 (3.75) 13.23 12.15 (8.5) 9.52 13.3 (9.53) 8.81
C 18:1 n9 4.46 (2.77) 7.23 13.18 (7.91) 8.96 12.91 (7.77) 8.24 6.41 (2.6) 8.53 11.43 (4.71) 10.15 12.39 (5.22) 9.46
C 18:1n7 0 0 0 0 0 0 0 0 0 0 0.58 (1.82) 0.59
C 18:2 n6 4.03 (3.11) 6.02 7.93 (4.38) 5.11 19.96 (18.63) 9.65 0.81 (1.06) 0.88 1.78 (3.38) 1.14 6.56 (4.35) 4.21
C 18:2 n9 0.4 (0.43) 0.76 0.62 (0.64) 0.39 0.39 (0.49) 0.39 0.2 (0.18) 0.33 0.25 (0.18) 0.21 0.78 (0.47) 0.52
C 18:3 n3 11.15 (7.98) 16.53 18.18 (12.56) 12.43 40.78 (31.37) 20.52 2.43 (2.61) 2.70 5.1 (4.56) 3.84 10.45 (7.45) 6.67
C 18:3 n6 0.85 (0.88) 1.23 1.16 (0.6) 0.76 2.12 (1.9) 1.09 0.12 (0.19) 0.13 0.27 (0.29) 0.20 0.57 (0.4) 0.37
C 18:3n4 0 0 0 0 0 0 0 0 0 0 0 0
C 18:4n3 0 0 0 0 0 0 0 0 0 0 0 0

C 20:0 0.21 (0.09) 0.38 0.28 (0.15) 0.24 0.2 (0.11) 0.2 0.57 (0.15) 0.75 0.75 (0.6) 0.57 0.7 (0.36) 0.49
C 20:1 n9 0.07 (0.09) 0.14 0.23 (0.21) 0.14 0.16 (0.18) 0.09 0.03 (0.06) 0.03 0.21 (0.22) 0.15 0.21 (0.15) 0.14
C 20:2  n6 0.05 (0.05) 0.08 0.08 (0.08) 0.06 0.05 (0.06) 0.03 0.09 (0.12) 0.09 0.11 (0.09) 0.09 0.32 (0.19) 0.21
C 20:3 n3 0.03 (0.07) 0.03 0.11 (0.09) 0.08 0.14 (0.15) 0.07 0.07 (0.08) 0.08 0.03 (0.03) 0.03 0.03 (0.05) 0.02
_20_3 n6 0.1 (0.09) 0.18 0.14 (0.16) 0.09 0.23 (0.49) 0.6 0.02 (0.03) 0.03 0.04 (0.03) 0.04 0.03 (0.06) 0.02

C 20:4 n6 (ARA) 1.16 (0.71) 2.01 1.2 (0.92) 0.82 0.96 (0.81) 0.82 0.6 (0.37) 0.80 0.78 (0.6) 0.73 1.03 (0.56) 0.77
C 20:4n3 0 0 0 0 0 0 0 0 0 0 0 0

C20:5 n3 (EPA) 8.83 (7.31) 12.78 10.7 (5.78) 7.54 16.2 (10.65) 9.06 2.23 (2.79) 2.44 3.39 (3.59) 2.65 5.81 (3.35) 3.90
C 21:0 0 0 0 0 0 0 0.04 (0.06) 0.05 0.07 (0.07) 0.06 0.02 (0.03) 0.02
C 22:0 0.08 (0.03) 0.13 0.11 (0.07) 0.08 0.09 (0.06) 0.09 0.31 (0.13) 0.40 0.46 (0.66) 0.29 0.4 (0.19) 0.28

C  22:1 n9 0.06 (0.06) 0.11 0.01 (0.03) 0.01 0.01 (0.02) 0.01 0.17 (0.14) 0.20 0.07 (0.07) 0.05 0.23 (0.11) 0.16
C 22:2 n6 0 0 0 0 0 0 0 0 0.03 (0.04) 0.03 0.01 (0.03) 0.01

C 22:5n3 (DPA) 0 0 0 0 0 0 0 0 0 0 0 0
C 22:6 n3(DHA) 6.62 (4.92) 9.71 16.52 (17.3) 10.78 23.82 (39.08) 12.31 3.25 (3.34) 3.71 13.06 (12.3) 10.15 12.52 (8.25) 9.13

C 24:0 0.27 (0.14) 0.47 0.29 (0.13) 0.23 0.28 (0.18) 0.39 0.42 (0.18) 0.58 0.56 (0.57) 0.42 0.46 (0.25) 0.32
C 24:1 n9 0.05 (0.12) 0.11 0.03 (0.05) 0.02 0 (0.01) 0.01 0.09 (0.08) 0.10 0.38 (0.21) 0.32 0.33 (0.16) 0.23
total FA 57.54 (22.65) 144.75 (55.93) 146.16 (90.22) 78.05 (25.18) 120.31 (53.44) 136.74 (58.75)

sum saturated 23 (5.2) 41.71 78.96 (49.43) 50.41 41.11 (14.16) 33.58 61.47 (18.11) 78.90 83.66 (43.19) 68.91 87.94 (42.7) 61.20
sum unsaturated 34.54 (22.05) 58.29 65.79 (32.15) 49.59 105.05 (78.6) 66.4 16.58 (9.57) 21.10 36.65 (21.54) 31.09 48.8 (17.82) 38.80

sat/unsat 0.96 (0.65) 0.85 1.68 (1.54) 1.41 0.98 (1.61) 0.91 4.39 (1.78) 4.27 2.62 (1.13) 2.58 1.82 (0.42) 1.63
n 3 26.63 (19.86) 39.06 45.51 (26.65) 30.84 80.96 (67.49) 41.97 7.98 (8.78) 8.93 21.58 (19.71) 16.66 28.81 (13.91) 19.72
n 6 6.19 (4.4) 9.52 10.52 (5.28) 6.83 23.32 (20.85) 12.19 1.64 (1.48) 1.93 3.01 (3.47) 2.22 8.52 (5.15) 5.60

n 3/n 6 4.26 (1.76) 4.26 5.28 (5.25) 5.28 6.47 (10.36) 6.47 4.55 (2.24) 4.55 10.1 (7.31) 10.10 3.83 (1.55) 3.83

f/2  -N  -P
Acartia tonsaRhodomonas salina

f/2  -N  -P
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ultimately leads to a high variability of nutrient ratios in algae and they therefore represent a 

food source of variable quality for herbivores. 

It is still under debate whether the changes of quality of phytoplankton as food for 

zooplankters are direct, i.e. mineral limitations directly affect growth and reproduction  (Urabe 

et al. 1997, Boersma 2000, Plath & Boersma 2001), or whether accompanying changes such 

as changes in the fatty acid spectrum (Müller-Navarra 1995) are responsible for the observed 

quality effects. Algal fatty acid compositions as well as their concentrations are known to 

change drastically under mineral limitation (Müller-Navarra 1995) and this is considered to 

represent food of poor quality. Park et al. (2002), however, reported no effects of nutritional 

limitation on different fatty acid measures (total fatty acids, unsaturated fatty acids, n6, n3 

and EPA) in several algal species cultivated on various C:P ratios. In our study, the 

cryptophyte Rhodomonas salina produced significantly more total fatty acids, unsaturated 

fatty acids, EPA and DHA under both, N- and P-limitation, and thus in our case the limited 

algae showed enhanced food quality. This could explain the observations of (Augustin & 

Boersma in press) who observed increases in reproductive output of Acartia species fed N-

limited algae. Similar, but not as pronounced findings were shown by Jonasdottir (1994), who 

presented fatty acid profiles for three algal species in relation to their growth phase; the 

differences between early exponential growing and senescent cultures were not large, but 

the trends were the same for Thalassiosira weissflogii and Rhodomonas lens. The most 

realistic view of fatty acid profiles of algae under nutrient limitation may be that given by 

Reitan et al. (1997) who summarized that increasing nutrient limitations may lead either to an 

increase or decrease of fatty acid levels, depending on the algal species. 

For a long while common knowledge has been that zooplankters, despite feeding on food 

sources of highly variable nutrient stoichiometry, maintain a large degree of homeostasis, i.e. 

they keep their nutrient ratios constant (Hessen 1990, 1992, Sterner 1997, Anderson et al. 

2005). Even though this has recently been contested by such authors as Plath & Boersma 

(2001), DeMott et al (1998) and Sterner et al (1993) who reported variation in the body C:P 

of freshwater zooplankton (mainly Daphnia), the general opinion is still that changes in 

stoichiometry only play a small role in comparison to the much larger ranges in algae. Our 

results contradict this concept, as the copepods dampened the variation of carbon:nutrient 

ratios of their food, but not to a degree suggested by homeostasis theory derived form 

freshwater crustacean zooplankters (Andersen & Hessen 1991). It remains unclear whether 

this is caused by differences between systems (e.g. marine and freshwater), by differences 

between taxonomic groups (copepods vs. cladocerans) or simply by different interpretations 

of data. 

In our experiments the C:P ratios of the algae were similar to those reported by the above-

cited studies, but the dampening effects of the consumers, in our case copepods, were not 
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as pronounced. We found significantly higher C:P ratios in copepods grown on P-limited 

algae, but unaffected C:N ratios of copepods grown on N-limited algae. The apparent 

contrasts in C:P ratios might be explained by differences between daphnids and copepods. A 

high variability in C:P ratios is reported for several copepod species taken from field samples. 

Variability was high between species, within species between seasons as well as within 

species between developmental stages (Gismervik 1997). In addition, differing P-demands 

occur in young and older daphnids and therefore comparable results for inter-developmental 

stage variability of C:P ratios was reported by Boersma (2000). DeMott (2003) doubts the 

findings of Boersma as he found the opposite, but nevertheless, he also reported variation 

between life stages. In any case, the data reported by Gismervik (1997) in combination with 

our data suggests a less strong homeostasis in copepods than in daphnids. Consequently, 

copepods represent changing nutritional values to their consumers. 

In this study, the copepod fatty acid composition reflected well those of their diets, a pattern 

which is in good correspondence to studies by Sargent and Falk-Petersen (1988), and 

enabled the use of fatty acids as trophic markers (Peters et al. 2006). This was likely 

because long-chained unsaturated fatty acids like EPA and DHA can not be synthesized de 

novo by copepods. Different levels of fatty acids are known to influence growth in larval fish. 

St. John et al. (2001) were able to demonstrate significant effects of dietary EPA as well as 

DHA levels on larval cod growth. Additionally, Sterner (1993) reported lower growth rates but 

higher lipid levels in Daphnia sp. reared on limited Scenedesmus sp.. Growth rates of the 

copepods were not monitored in our study; however a similar amount of copepods of all 

treatments reached the fifth naupliar stage within the same time. Thus, the copepods reared 

on P-limited algae represented the best food offered to larval herring in terms of fatty acids in 

our experiments. 

The C:N ratios of the larval herring showed no response to the different diets offered. Indeed, 

in contrast to the findings of Von Westernhagen et al. (1998) who proposed that the C:N ratio 

may be a useful indicator of condition in marine fish larvae, there is doubt that the C:N ratio is 

a valid predictor for condition of larval fish (Ferron & Leggett 1994). The C:N ratio mostly 

reflects the ratio of lipids to proteins. The storage of lipids is not common in larval fish as the 

energy taken up with food is usually directly channelled into growth (Kioerboe et al. 1987). 

The RNA:DNA ration is a valid predictor for nutritional condition of larval fish. This has been 

validated in many laboratory and field studies (Buckley 1984, Clemmesen 1994, Theilacker 

et al. 1996, Gronkjaer et al. 1997, Rooker et al. 1997, Caldarone et al. 2003, Malzahn et al. 

2003, Caldarone 2005). The RNA:DNA ratio of herring larvae in our experiments revealed 

that the N-limited food chain produced the best nourished larvae. This is contrary to the 

predictions which could be drawn from the fatty acid profiles, where the P-limited food chain 

displayed the best food quality. Aquaculture studies (Vielma et al. 2002) have shown that it is 
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very well possible for fish to be limited by phosphorus. Despite this fact, almost no studies 

exist investigating this in an ecological context (but see Hood et al. 2005). Schindler and Eby 

(1997) demonstrated the possibility of fish growth rates being P-limited by means of model 

exercises. Three out of 186 cases showed P-limited growth rates while another five cases 

where probably close to limitation. This study focussed on freshwater fish, where 

benthivorous fishes permanently subsidize the pelagial by excreting nutrients originating from 

the benthos. The authors further included several piscivorous fish species in which short 

term P-limitation due to seasonal nutrient depletion of the water column is very unlikely. The 

three cases they reported where for vendace, a zooplanktivorous whitefish species and for 

sockeye salmon fry, also exhibiting an obligate planktivorous feeding habit. Contrasting to 

the dominant P-rich cladocerans, marine systems are dominated mainly by copepods, which 

have a much higher N:P ratio than cladocerans (50 for calanoid copepods and 15 for 

Daphnia Elser et al. 1996). In terms of phosphorus content, planktivorous fish in marine 

systems are therefore more regularly faced by food of lower quality than their freshwater 

relatives are. Additionally, the fertilizing impact of benthivorous fish is obviously of minor 

importance in the majority of marine systems. Consequently, this potentially makes marine 

fish more susceptible to P-limitation. The copepods in our experiments reared on P-starved 

algae showed the best fatty acid contents, but at the same time the worst C:P ratio. In 

combination with food in excess, our results suggest that larval herring reared on the P-

starved food chain displayed P-limited growth. These findings correspond well to the findings 

of Boersma (2000), who demonstrated for Daphnia sp. that both mineral and biochemical 

limitations of food play a role in the growth and population dynamics of zooplankters, but that 

mineral requirements need to be met first. 

 
CONCLUSIONS 
The long-accepted hypothesis, that effects of mineral limitation at the primary producer level 

are compensated by the stoichiometric needs of primary consumers and hence are not 

transported through food webs in terms of food quality must be rejected in favour of our 

hypothesis that effects of nutrient limitation indeed cascades through trophic levels. Larval 

herring reared on a P-starved food chain showed a significantly lower condition than their 

counterparts reared on N-starved or nutrient-sufficient food chains. This could not be 

explained with biochemical components of the food, as the fatty acid profiles of the P-limited 

food chain displayed a significantly higher food quality than the N-limited or nutrient sufficient 

food chains did and is more likely to be caused by P-limitation of the larvae. 

These findings may have implications for the predictions of fish population dynamics using 

larval proxies, as larval fish might have lower growth rates at the end of bloom situations than 

the actual prey availability would suggest. Hence, larval fish growth in the field is not likely to 

be limited by food quantity only, but also by food quality. 
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Chapter 5                
General discussion 

 
The life cycle of fish is complex and consists of several distinct phases, each of them 

influenced by different processes and hence the size of a fish stock is determined by a 

variety of forces. Based on that, Paulik (1973) proposed not to concentrate on “simple” 

attempts to link stock to recruitment but to partition the life of a fish into the main phases and 

to understand the mechanisms which are essential for each life stage. Ultimately a better 

understanding of the different stages should lead to improved predictions of recruitment and 

year-class strength. Unfortunately, this approach has seldom been completely implemented 

in recruitment studies mainly because of the obvious difficulties such an approach involves. 

The consideration of the whole life cycle requires fundamental knowledge of the mechanisms 

acting on the particular life stages. As the necessary knowledge comes from multiple 

scientific disciplines, it can only be assembled from the work of many scientists, who are 

doing research on their respective topics of the different life-stages of fish. This thesis 

addressed several questions on larval life stages of fish to contribute to the pool of 

knowledge to ultimately come to a complete understanding of fish recruitment. 

The questions addressed in this thesis were: (1) what are the seasonal patterns of fish larval 

assemblages at Helgoland Roads and what are the factors influencing species diversity and 

abundance; (2) what are the factors controlling nutritional condition of larval fish; and (3) to 

which extent does food quality influence the growth and condition of larval fish? 

These questions were addressed at different levels of organisation in this thesis, ranging 

from species assemblages in Chapter 2 (question 1) through single species populations in 

Chapter 3 (question 2) to the individual level in Chapter 4 (question 3). 

Each chapter contains a specific discussion of the results. This general discussion will bring 

the results of the single chapters in a context with published work but will focus on four main 

topics of larval fish studies in a broader manner than discussed in the single chapters. These 

questions are: 

 

1) What are the general motivations to study larval fish? 

2) What can we learn from monitoring surveys? 

3) Why conduct field process studies on larval fish? 

4) How can experimental work on larval fish extend our understanding of processes acting in 

the field? 
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1) What are the general motivations to study larval fish? 

As described above one of the main missing links in fisheries research is the predictive link 

between standing stocks of adult fish and recruitment. If we were able to predict recruitment 

from standing stocks properly, there would be no need to study larval fish, other than out of 

pure scientific interest. As it is, predicting year-class strengths is still in its infancy, despite 

the constant interest in the topic for the past 100 years or so. Therefore, there is a strong 

need to study larval proxies, whereby the value of year-class strength predictions rises with 

the time between the forecast and the actual exploitation of the target (Heath 1992, Painting 

et al. 1998). A longer duration between the forecast and the fishing allows more time to 

adjust management strategies like mesh size adjustments or changes in the target species of 

the fleet among others. The processing industry also benefits from early forecasts as they 

can adjust their production capacities and strategies to the availability of fish on the market. 

Two good examples for the need and implementation of early and reliable forecasts are the 

South African anchovy fishery, where this has worked very well and the fishery for sandeel in 

the North Sea, the yields of which have plummeted in recent years. 

The South African anchovy fishery lands between 0.4 and 1.5 million tons per annum and is 

a major branch of South Africa economics (FAO). This target species is a short-lived small 

pelagic fish, which spawns at an age of one year. Spawning takes place from November to 

January at the Agulhas Bank, off the southernmost tip of South Africa. Eggs and larvae are 

then transported northwards by a coastal jet current to the nursery areas in the north-west of 

South Africa. The fishery consists to 70% of young of the year fish, and the total allowable 

catch (TAC) is fixed in January on the base of echo-surveys targeting the brood stock, so 

virtually at a time when the incoming year-class is still in the larval stage (Hutchings 1992, 

Fowler & Boyd 1998, Hutchings et al. 1998, Painting et al. 1998, Hutchings et al. 2002). This 

means that fast and near-time predictions with a high accuracy are necessary as from the 

biological point of view there is no real chance to adjust the TAC effectively to save the stock 

in case of an overestimation of harvestable biomass and from an economic point of view the 

industry needs a certain degree of planning certainty. For the management of the stock of 

the anchovy indirect larval proxies proved to be useful (Boyd at al. 1997, cited in Painting et 

al. 1998). The first is a confirmation of Sinclair’s member/vagrant hypothesis (Sinclair 1988). 

The south-easterly wind anomaly during the larval transport is strongly correlated to 

subsequent year-class strength. In years with high south-easterly wind speeds a huge 

proportion of larvae is lost to food deprived offshore waters. The second proxy is partly a 

confirmation of Cushing’s match/mismatch hypothesis (Cushing 1974, 1990). It is the oil to 

meal ratio derived from adult anchovies caught at the nursery grounds prior to the arrival of 

the larvae. The oil to meal ratio reflects the feeding conditions at the nursery area which 

shows a positive correlation with recruitment.  
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A second example is the Danish sandeel fishery. Sandeel is also a small fish which school at 

daytime and feed on zooplankton while they dwell into the sediment at night and during 

winter. Sandeels spawn in winter and, thereafter, the larvae hatch and initiate their pelagic 

life phase in early spring. After several weeks in the plankton they settle at appropriate sandy 

habitats and enter their sediment dwelling life phase (Holland et al. 2005). As soon as they 

emerge from the sediment during the following spring season they are recruited to the 

fishery. This means that an early recruitment forecast is necessary as the fishery relies 

mainly on the incoming year-class (ICES 1999, 2006). The sandeel stocks in the North Sea 

are in a serious state at present since they have been in decline for several years now. 

Despite the historical minimum of the stocks, the first real management approaches were 

initiated only in 2004 by significantly reducing the TAC, by compiling a plan to be responsive 

to a possible recruitment failure and to adjust fisheries in 2005 (ICES 2005, 2006). A real-

time monitoring was conducted in spring 2005 which showed that the incoming year-class 

was again very weak. This led to a closure of fishery with severe economical consequences 

for the fleet and the processing industry such as a massive fishmeal and oil shortage for the 

pharma-, cosmetic- and the aquaculture industry. The use of proper larval proxies would 

have prevented the economic disaster for the fleet and the industry by leaving more time to 

develop alternative plans (more information at www.ices.dk and www.999.dk). One possible 

measure could be an index of successful larval drift to suitable sand bank habitats for the 

larvae to settle. The biggest problem in setting up such a proxy is our lack of knowledge of 

the range of sandeels’ active habitat choice. 

In general, a broader knowledge on larval fishes temporal, spatial as well as growth and 

survival dynamics may provide required explanatory power to accurately manage fisheries. 

To broaden this knowledge we need proper implementation of a combination of monitoring, 

field experiments and laboratory experiments. This is exactly what was aimed for in this 

thesis. 

  

2) What can we learn from monitoring surveys? 

Basic Monitoring approaches are often considered time-consuming and sometimes even 

trivial enterprises with a low potential of producing publishable results. Nevertheless, routine 

monitoring programs sampling all trophic levels as well as abiotic information serve as a 

secure basis for a broad scale of studies ranging from phenological studies on single species 

via studies on population structure and species assemblages to the impact of global change 

in aquatic ecosystems and they are thus essential for the detection of such major events like 

regime shifts.  

On a small scale, such monitoring approaches can be used to predict the seasonal 

occurrence of different species. Phenological studies published by Greve et al. (Greve et al. 
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2004, Greve et al. 2005) demonstrated that predictions on the appearance and the duration 

of species occurrence in the zooplankton are possible and that such phenologies are linked 

to the mean temperature during winter. This holds true for most of the fish species under 

investigation in Chapter 2, but for the lesser sandeel the temperature trajectory seemed to be 

of more importance than the mean temperatures. Provided that forecasts like these show a 

high degree of reliability, match situations between zooplankton production and larval fish 

occurrence in the plankton can be predicted. These predictions can then be used to test 

hypothesis like Cushing’s match/mismatch hypothesis in the field with a comparatively low 

sampling effort, by sampling at those times that are predicted to have a match or a mismatch 

situation based on the models and sample food densities and larval growth proxies. 

The level of species assemblages is investigated in Chapter 2, which is based on a three 

year monitoring approach and mainly focussed on the stability of species occurrence and 

larval fish assemblages. It supports Cushing’s assumption that the occurrence of larval fish 

of a given species is relatively fixed in time, as the largest part of the observed variability in 

larval fish abundance over the three year monitoring was found within weeks, the lowest 

temporal unit analysed, whereas the variability on the next higher level, within months, was 

small. Similar robust temporal ichthyoplankton communities were reported by Witting et al. 

(1999). These authors also found the largest variability of larval fish abundance between 

weeks within months in an estuary in southern New Jersey/USA. Despite the robust pattern 

of species composition described in Chapter 2, there was large inter-annual variability of the 

total larval abundance. The maximum larval abundance was roughly 10 times higher in 2004 

than it was in 2005, which was almost exclusively attributable to the mass occurrence of the 

lesser sandeel in spring 2004. Relatively high inter-annual variability in larval abundance was 

reported from lakes ecosystems (Hamley et al. 1983) as well as marine systems (Peterman 

et al. 1988, Miller & Shanks 2005). On the species level, the inter-annual variability in 

abundance was very low, as the lesser sandeel accounted for the majority of the variability in 

spring and gobiidae species made up the largest part of the variation in summer. A similar 

result was reported by Allen and Barker (1990), who showed that the inter-annual variability 

was highest in Gobiosoma species, the most dominant taxon in their study. After the 

exclusion of the lesser sandeel from the analysis, a remarkable similarity of the annual 

dominance curves between the years could be shown, contributing to the finding that the 

larval fish assemblage at Helgoland Roads is relatively stable between years after the 

extraction of just one single dominant species. The impact of the lesser sandeel was also 

detectable in the cluster analysis shown in Chapter 2. Clear spring and summer clusters 

were present, whereby the spring cluster showed a higher degree of heterogeneity. Within 

the spring cluster three subdivisions were observed, which were mainly caused by the 

presence or the absence of lesser sandeel. This pattern was not found in the summer 
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cluster. In summer, only two sub-groups were observed, and these showed no inter-annual 

pattern, but were attributed to a succession from an early summer to a late summer species 

assemblages which were similar in the three years of observation. Allen and Barker (1990) 

reported a similar pattern with higher variation in winter and spring species assemblages 

than those they observed in summer. They attributed their finding to differences in weather 

conditions between the years and the resulting increase in freshwater runoff in rainy years, 

as their study took place in an estuary. The more stable results in summer observed in this 

thesis could also be attributed to the generally higher diversity found in summer. 

Nevertheless, there was some temporal variation at the level of weeks, which could be 

explained by temperature. This was concurrent with phenological hypothesis (Parmesan & 

Yohe 2003, Greve et al. 2005), which predicts an earlier occurrence or biomass peak with 

higher temperatures. In comparison to the variability of several months in the onset of the 

phytoplankton spring bloom in the three years (Wiltshire, pers. comm.), the variability in larval 

occurrence can considered to be low. 

Exactly these phenological shifts are contributing to a large extend to the body of evidence 

for the existence and impact of climate change on aquatic communities (Beaugrand et al. 

2003, Beaugrand 2004, Edwards & Richardson 2004) as well as on terrestrial polar and 

tropical ecosystems (Hughes 2000, Walther et al. 2002). A good example of climate-induced 

change is the major regime shift in the North Sea which was detected by analysing the 

datasets of the continuous plankton recorder (Beaugrand (2004). In this study the author was 

able to show that total phytoplankton biomass, copepod biomass as well as diversity and 

recruitment in flatfish and gadoid fish species showed significant shifts in the early 1980s. 

Weijerman et al. (2005) also reported substantial regime shifts that occurred in the North Sea 

and in the Wadden Sea in 1979, 1988 and 1998. These regime shifts were elucidated by 

interpreting biological data series, but the causes of these changes lie in earlier shifts in a 

number of environmental factors. Salinity and weather conditions played an important role in 

the 1979 shift, while in the 1988 shift, temperature and weather conditions were the 

predominant factors. The high resolution (work daily) of the long-term Helgoland Roads 

dataset on temperature, nutrients, phytoplankton and zooplankton assemblages allowed the 

detection of significant shifts in the timing of the phytoplankton spring bloom that were in 

good correlation to rising winter temperatures (Wiltshire & Manly 2004). The use of extensive 

datasets of zooplankton and fish species assemblages enabled Alheit et al. (2005) to show 

synchronous regime shifts on zooplankton by alterations of dominance patterns as well as in 

fish by biomass fluctuations in the North Sea and in the neighbouring Baltic Sea. Other major 

regime shifts in marine and terrestrial systems are reviewed by Walther et al. (2002). The 

level of response to temperature changes varies between functional groups and trophic 

levels (Edwards & Richardson 2004) and temporal mismatches between producers and 
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consumers may be the consequence. Experimental evidence for negative effects of trophic 

mismatch is discussed in detail later in this chapter, field studies dealing with the impact of 

such mismatches on larval fish are discussed under point three of this discussion. 

 

3) Why conduct field process studies on larval fish? 

Larval fish surveys are regularly conducted in marine areas throughout the world. Only some 

of them include the more sophisticated study of larval nutritional condition even if these can 

contribute to our understanding of mechanisms acting regulatory on larval fishes in the field. 

Chapter 3 reports indications for food limited growth and the impact of a disparity between 

prey densities and ambient temperatures on larval fish nutritional condition. After the 

decrease in prey densities in April 2004 only poorly conditioned larvae of dab and sandeel 

occurred in the catches. Nevertheless, prey densities after the breakdown where even higher 

than those in the middle of March, when well-conditioned larvae of both species could be 

found in the population. This interpretation of food-limited growth bases on bioenergetic 

considerations and experimental work on sockeye salmon and other species (Brett 1979) 

which indicated that the relation between growth and temperature is dome shaped and that 

the optimum temperature for growth shifts to lower temperatures if ration is restricted. As the 

temperature was around 4°C in March compared to 7-10°C after the food breakdown, the 

findings given in Chapter 3 could well be explained by the shift of optimum growth towards 

lower temperature with decreasing ration and thus, this can be considered as an indication 

for ration-restricted growth at higher temperatures late in the season.  
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Additionally to the samples taken for the study described in Chapter 3, samples of larval dab 

and sandeel for the analysis of stable isotopes were taken. The analyses were out-sourced, 

and as the results arrived late, they could not be included in Chapter 3. Due to their 

additional explanatory value they are briefly presented in this discussion. The enrichment of 

the stable nitrogen isotope 15N can be used as a trophic tracer (Peterson & Fry 1987, Fry 

1988), as the stable isotope signatures of a consumer generally reflects the isotopic 

composition of their diets and enriches the heavier isotopes in a relatively dependable 

manner (DeNiro & Epstein 1981, Post 2002). The reduction of the 15N signature in late spring 

shown in Fig. 21 is clear evidence for a downwards shift in larval trophic level, which 

indicates that the larvae substituted the shortage in zooplankton by the phytoplankton bloom 

as an alternative.  

That this shift is not only caused by feeding habits of different larval size-classes is shown in 

Fig. 22 and Fig. 23. It is obvious that all size classes in the catches showed a downward shift 

in their trophic position. As shown in Chapter 3, the larger larvae suffered significantly at 

these times of reduced zooplankton availability indicated by the low RNA:DNA ratios. This 

was not found in small larvae, so it could be concluded that small larvae were sufficiently 
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Fig. 21 δ 15N signature of larval dab (Limanda limanda) and sandeel (Ammodytes 
marinus) caught in spring 2004 at the Helgoland Roads station 
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nourished by phytoplankton and possible remains of their yolk. That larval fish feed regularly 

on phytoplankton in the smallest size-classes was shown for cod (Kane 1984), dab, flounder 

and sole (Last 1978) as well as American sandeel (Monteleone & Peterson 1986), but all 

studies reported a rapid change to zooplanktivory with size. The lack of well conditioned 

larger larvae feeding on phytoplankton suggests alterations in larval nutritional demands 

which make zooplankton food imperative. Additionally, the quality of the phytoplankton as 

food for higher trophic levels deteriorates in an ongoing bloom. The Chl.a/N as well as the 

Chl.a/P ratio increased within the bloom, indicating a shortage of both nutrients for algal 

growth (Fig. 24). It was shown in Chapter 4 that mineral limitations affect the quality of the 

primary production itself as well as the nutritional value of consumers feeding on the algae. 

Consequently I conclude that this reduced food quality affects larval condition negatively. 

The same mechanism could be expected to act in late spring 2004. This means that the 

nutritional condition of larval fish in late spring 2004 was not only affected by a shortage in 

zooplankton prey, but also by a decrease in the quality of the alternative food source, the 

diatom bloom. 
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Fig. 22 δ15N signatures of larval dab (Limanda limanda) caught in spring 2004 at the 
Helgoland Roads station plotted against larval size. The dataset is divided in pre-
phytoplankton bloom (before zooplankton breakdown) and phytoplankton bloom 
(after zooplankton breakdown). 
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Another example for the inclusion of larval fish condition in field studies is the Georges Bank 

area. From that area, confirmation of the “Food-limited growth hypothesis” (Anderson 1988) 

was reported by Buckley and Lough (1987) and Buckley et al. (2004), who were able to show 

food-limited growth for larval cod and haddock in several years on Georges Bank. The 

observed growth rates in the field were well below those derived from laboratory experiments 

at the given water temperatures (Caldarone et al. 2003).  
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Fig. 23 δ15N signatures of larval sandeel (Ammodytes marinus) caught in spring 
2004 at the Helgoland Roads station plotted against larval size. The dataset is 
divided in pre-phytoplankton bloom (before zooplankton breakdown) and 
phytoplankton bloom (after zooplankton breakdown). 
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The demonstration of food-limited growth and a further understanding of the relationships 

among temperature, food availability and growth are critical steps in establishing the physical 

and biological factors that control fish production. Food-limited growth is implicit in many of 

the hypotheses advanced to explain recruitment variability (Anderson 1988). If food were not 

limiting in the sea, then the match/mismatch (Cushing 1974, 1990) and the growth/mortality 

hypotheses (Ware 1975), among others, could be rejected. The effect of growth on stage 

duration (Houde 1987) and the inverse relationship between larval growth and mortality rates 

observed for cod and haddock both in culture (Buckley et al. 1993) and in the North-West 

Atlantic (Campana et al. 1989) suggest that food limitation may affect survival as well as 

growth. Selection for fast growth during the larval stage was demonstrated for Atlantic cod on 

the Scotian Shelf from otolith microstructure analysis (Meekan & Fortier 1996). Larvae 

surviving the first 90 days of life were considerably larger at age than the population sampled 

earlier in the larval period. A strong correlation between otolith radius (juvenile size) at age 

90 days and cohort abundance (year-class size) demonstrated the importance of rapid 

growth for survival and eventual recruitment of cod on Georges Bank (Campana 1996). This 

implies that survival is dependent on food availability, i.e. well nourished larvae have a higher 

probability to survive the larval stage. In turn, this means that mortality is negatively 

correlated to condition. 
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Fig. 24 Development of diatom carbon and the ratios of chlorophyll a to organic 
phosphorus and nitrogen in spring 2004 at the Helgoland Roads station 
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Evidence for condition-selective mortality is given in Chapter 3 of this thesis from the study 

on the nutritional condition of larval dab and sandeel caught in the North Sea in spring 2004. 

We found an increase of the mean RNA:DNA ratio with size, which was caused by a 

significant loss of poorly conditioned larvae in the larger length-classes in larval sandeel 

rather than by a gain of better conditioned larvae. This pattern combined with the lower 

number of larger larvae in the catches implies that the increase of the mean condition is 

caused by a loss of poorly conditioned larvae due to starvation or predation rather than that 

poorly conditioned larvae enhanced their condition with size. Similar findings are published 

by Pepin et al (1999). The authors also demonstrated clear evidence for condition-selective 

mortality by showing a significant loss of poorly conditioned larvae at larger length classes for 

several species of marine fish larvae coinciding with mortality rates.  

Despite this evidence, the concept of condition-dependent mortality is still debated as there 

is also evidence that condition does not play a role. Elliott and Legget (1998) published an 

experimental study on the effects of larval nutritional condition and the survival of the larvae 

in the presence of a predator. The hypothesis that was tested was that better conditioned 

larvae should experience lower mortality rates and consequently the surviving population 

should show skewed distribution patterns towards larvae of better condition. In their study the 

hypothesis was rejected, as no differences between the condition frequency distribution of 

the experimental groups and the control were found. This study was heavily attacked by 

Suthers (2000), who stressed the misleading interpretation of the results and doubted the 

applicability of these findings to natural conditions in the planktonic realm as the 

experimental design of the study contained some serious flaws in the experimental design. 

Nevertheless, the experiment showed that well conditioned larvae are also exposed to heavy 

predation pressure, thus the level of response we are working at might be very hard to 

detect. This dispute about the value of experimental work leads directly to the last of the 4 

main questions guiding through this general discussion. 

 

4) How can experimental work on larval fish extend our understanding of  

A large body of laboratory experiments on larval fish has been carried out to (1) establish 

and validate the potential use of methods in larval fish ecology and recruitment studies 

(Clemmesen 1987, 1993, 1996); (2) to establish laboratory calibrations for e.g. condition 

measures to various biotic and abiotic conditions for a better understanding of field data 

derived growth rate calculations; (3) to directly test ecological hypothesis (reviewed by 

Ferron & Leggett 1994); and (4) to establish needs of commercially interesting fish in 

aquaculture settings (Rodriguez et al. 1998, Izquierdo et al. 2000, Fountoulaki et al. 2003). 

Examples for the development and validation of methods was given e.g. by Buckley (1984), 

who showed that the RNA:DNA ratio is a useful predictor for the nutritional condition of larval 
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fish, as well as Clemmesen (1993) who developed a fluorometric method for single larvae 

measurements. 

The above-mentioned findings on larval cod and haddock on Georges Bank (Buckley et al. 

2004, Lough et al. 2005) were made possible by the extensive knowledge derived from 

laboratory experiments. The calculations of protein growth rates of larvae caught in the field 

was only possible as the species-specific laboratory calibrations were available (Caldarone 

et al. 2003, Caldarone 2005) or by the use of a more general model derived from several 

temperate marine fish species if a specific model is not available for the species under study 

(Buckley et al. 1984). 

The “food-limited growth” hypothesis (Anderson 1988) was experimentally tested for several 

species of larval fish. This hypothesis is a major part of the hypotheses of Hjort (1914), 

Cushing (1974), Lasker (1981) and Ware (1975) on year-class regulating mechanisms. The 

dependence of larval fish condition on feeding levels has successfully been shown for a wide 

range of species like herring (Clemmesen 1994), red drum (Johnson et al. 2002) coregonid 

fishes (Steinhart & Eckmann 1992), rainbow trout (Weber et al. 2003), cod (Clemmesen & 

Doan 1996) and many others. All the ecologically oriented laboratory studies have one thing 

in common, when carrying out experiments with different food treatments, these treatments 

manipulated feeding levels (quantity) only whereas the effect of food quality was neglected 

so far. This is unfortunate, as especially the aquaculture literature shows that food quality 

effects can be very important (Coutteau & Sorgeloos 1997, Izquierdo et al. 2000, Navarro et 

al. 2001). 

Experiments with larval fish can be used in a more sophisticated way in order to 

experimentally test ecological hypothesis. Although such approaches have a high potential to 

increase our knowledge on higher trophic levels and predator-prey interactions in 

experimental aquatic ecology such studies are scarce. The above cited study designed to 

test the “condition-selective mortality” hypothesis (Elliott & Leggett 1998)is one of the few 

examples. Additionally, St. John et al. (2001) tested the influence of diatoms on growth and 

survival of larval fish. The authors tested a potential negative effect of different algal diets, as 

it was hypothesised that diatoms produce aldehydes as a chemical defence against their 

predators, and that these aldehydes negatively influencing copepods (Ianora et al. 1995, 

Ianora et al. 2004). The study showed a clear effect of essential fatty acids on the growth of 

larval Atlantic cod, but the hypothesis of negative effects on larval fish growth caused by 

diatom aldehydes could be rejected. Another example is presented in Chapter 4 of this 

thesis, where the RNA:DNA ratio of larval herring was successfully used to test a hypothesis 

derived from ecological stoichiometry. In ecological stoichiometry it is generally accepted that 

the ratio of carbon to nutrients varies in primary producers with the ambient nutrient 

availability but that primary consumers show a high degree of homeostasis, i.e. they keep 
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their carbon to nutrient ratio constant (Sterner & Elser 2002), even if this effort reduces 

growth and reproduction (Boersma 2000). Furthermore, the nutritional value of a food item 

rises with its similarity to the consumers C:nutrient demand. The fact that the similarity of the 

C:nutrient ratios in primary and secondary consumers is high made Brett (1993) pose that 

secondary consumers must rather be energy limited than limited by nutrients. This reasoning 

is well accepted and it is mainly for this reason that no studies exist so far to test effects of 

mineral limitation on higher trophic levels. However, Chapter 4 clearly shows that this 

hypothesis, that mineral limitation effects are dampened below detection by primary 

consumers and that they therefore play no role for secondary consumers should be rejected. 

The results of these experiments could also be discussed in a broader context, refining 

Cushing’s match/mismatch hypothesis (Cushing 1974, 1990) as addressed in the general 

introduction of this thesis. Fig. 1 shows a classical match situation between the production of 

predators and prey. A measure for food quality is added to the graph, which partitions the 

classical match into two sections: The first is characterized by sufficient food of a high 

quality, the second by sufficient food of a lower quality. Clear evidence for food quality 

differences under nutrient limitations are given in Chapter 4, as significant differences in the 

C:Nutrient ratios as well as in the fatty acid profiles of algae transferred into the copepods 

that fed on the algae. Similar findings on varying nutritional quality of primary production 

under nutrient limitation has been published elsewhere (Boersma 2000, Plath & Boersma 

2001, Boersma & Kreutzer 2002, Anderson et al. 2004, Becker & Boersma 2005). The 

reduced larval condition observed in poor food quality seston represented by the P-limited 

food chain of the experiment probably decreases the predictive power of the match/mismatch 

hypothesis and may have implications on our understanding of factors that control growth of 

larval fish, survival and subsequent recruitment. On a different scale, this could mean that 

fish stocks will be threatened even harder by global change processes as different species 

and trophic levels respond on different scales (Walther et al. 2002, Parmesan & Yohe 2003, 

Edwards & Richardson 2004), with organisms with short generation times and high dispersal 

abilities show the fastest response. Compared to phyto- and zooplankton organisms fishes 

are slow in their ability to react on large scale changes and hence, the magnitude of not 

matching suitable conditions may be more seriously than fro animals which are able to react 

promptly to e.g. changes in their food availability. Fish may therefore under the predicted 

rapid environmental changes being hurt more seriously than lower trophic levels 

(Intergovernmental Panel on Climate Change Third Assessment Report 2001). 

Chapter 4 is the first study to show the potential of mineral limitation on larval fish growth in 

the planktonic realm and broadens our view of larval fish nutrition. Furthermore, food quality 

differences were successfully detected even over three trophic levels and this should give no 

impulses into the research on larval fish conditions. 
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Conclusions & Future perspectives 

In this thesis hypotheses about stability of ichthyoplankton species assemblages and their 
occurrence were confirmed. The presented results have a high potential of improving the 
design of surveys or to detect community shifts in comparison to previous or future studies. 
Also some degree of intra- and inter-annual variability was shown, which makes longer time 
series desirable. Only long term datasets on as many measures as possible can improve our 
understanding of mechanisms structuring the ichthyoplankton communities.  
A high degree of variability in nutritional condition on the level of the individual as well as a 
relatively high but inter-specific variable degree of independence of larval nutritional condition 
from the available food densities was shown in this study. This has been discussed to be an 
adaptation of the species under investigation to the prevailing environmental situation. The 
variability might also be attributed to food quality differences.  
The inability to link larval condition to prey densities could also well be a problem of the 
different scales on which the comparisons are based on. On the one hand, the nutritional 
condition of larval fish are assessed on the level of the individual, on the other hand these 
data are compared with bulk parameters like total prey densities. In many cases such 
measures are sensitive enough to be used to explain variation in larval fish condition. In 
other cases the prey field the individual larvae might have faced will be strongly under- or 
overestimated. To take the maximum advantage of the measurement of proxies from 
individual larval fish, it is desirable to adjust other variables intended to be used together with 
larval fish in analysis to the level at which the larval data are derived from. Thus it seems to 
be necessary to derive feeding history also on the individual level. This could be achieved by 
the use of different biochemical measures at individual larvae. The use of e.g. fatty acids as 
trophic markers has shown to be useful in larval fish ecology, but the link between individual 
feeding history and the individual nutritional condition has not been done yet. The knowledge 
of individual feeding history is also very likely to be of a high potential in the light of the 
findings reported in Chapter 4. It was clearly shown that poor food quality can influence the 
nutritional condition of larval fish, even under ad libitum feeding conditions. On the level of 
bulk measures, this implies that a higher proportion of the observed variability in larval fish 
nutritional condition might be explained by the inclusion of food quality to multiple regression 
approaches. To be able to include food quality measures routinely into scientific surveys, 
more information is needed about e.g. the degree of dependence of larval fish’s condition on 
individual food components (essential fatty acids, minerals, phospholipids) and which 
measure would be the one with the highest explanatory power. 
I conclude that based on the results of this thesis, food quality measures should be included 
to a larger extend in ecologically orientated larval fish research, as it will contribute to a better 
understanding of processes governing larval fish growth and subsequent recruitment. 
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Chapter 6                
Summary 

 

 

This thesis integrates different approaches in larval fish ecology. These approaches are 

community analyses on a three year single station ichthyoplankton sampling with a high 

frequency, field evaluations of larval fish condition on a selection of species as well as 

laboratory experiments to investigate the impact of mineral-limited phytoplankton and the 

propagation of the limitation signal to higher trophic levels i.e. primary consumers and larval 

fish. 

The underlying hypothesis of Chapter 2 was that larval fish communities are stable in their 

occurrence between years, and that there are season-specific assemblages with a high 

degree of inter-annual repeatability. This hypothesis was tested by the use of a three year 

high frequency (min. 3 samples week-1), single location monitoring programme at the 

Helgoland Roads station in the German Bight, North Sea, Northeast Atlantic. The hypothesis 

proved to be true, as the diversity patterns between years where similar. In general, the 

dominance patterns did not differ between years. This was, however, only true when as long 

as lesser sandeel, the only species within this study which showed significant inter-annually 

differences in abundance and season-specific similarities, where excluded from the analysis. 

Inter-annual variability in dominance patterns was low and variation between years was 

significant only for one species, the lesser sandeel Ammodytes marinus. Most of the 

variation in larval fish abundance on a species level was found within weeks and only a 

smaller part of the variation was found between months. 

A clear succession from larvae emerging from demersal eggs in winter to larvae hatching 

from pelagic eggs in summer was shown. This pattern can be interpreted as an adaptation to 

low water temperatures and harsh weather conditions in the German Bight during winter. The 

presented results suggest that predictions on larval fish occurrence at specific times of the 

year can be considered as robust. Nevertheless, regular larval fish and egg surveys are 

needed to detect large-scale alterations in spawning time as it is e.g. documented for the 

stocks of cod in the Baltic Sea. 

 
The investigation presented in Chapter 3 aimed at elucidating fluctuation patterns in larval 

fish condition under natural conditions. Nutritional conditions of lesser sandeel (Ammodytes 

marinus) and dab (Limanda limanda) larvae caught in the field were investigated for the 

whole duration of their occurrence in the plankton in 2004. For this purpose RNA:DNA ratios 

served as an ideal tool to proof the hypothesis that short-lived fishes (sandeel) with only one 
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to two spawning events must have more conservative reproductive strategies and 

adaptations to environmental variability than long-lived species (dab) with several 

reproductive cycles. Larval fish nutritional condition showed a high degree of variation 

although density-dependent impacts of prey items were only observed when drastic changes 

in prey availability occurred late in the season. In this context, dab larvae showed the highest 

degree of vulnerability to changing food conditions. Both species showed a positive 

relationship between larval size and condition. Interestingly, the increase in mean condition 

with size was of a diametral nature: While well-conditioned larvae of all size-classes where 

found in the sandeel population, this was not the case for dab larvae. In case of this species, 

only larger size-classes produced well-conditioned larvae. This means that the increase in 

condition with larval size in sandeel was mainly due to a lack of poorly-conditioned larvae at 

larger size-classes. This was also true for dab, but in case of dab larvae the increase in 

mean condition was related to a real gain in condition with size. The loss of poorly-

conditioned larvae in both species can be interpreted as an indication for condition-selective 

mortality. 

The hypothesis that short-lived species are characterized by more conservative reproductive 

strategies than long-lived forms was additionally supported by the facts that sandeels 

produce large and energy-rich eggs as well as by their long transition time from internal to 

external feeding. Furthermore, their nutritional condition displayed a relatively high 

independence from environmental factors like temperature or prey densities thus enabling 

this short-lived fish species to produce extremely well-conditioned larvae.  

 

State-of-the-art assumptions of ecological stoichiometry are considered in Chapter 4. These 

are: (1) Good quality food sources are the ones that meet the nutrient demand of a their 

consumers while food quality decreases with an increasing distance to the nutrient demand 

of the consumer and (2) Herbivores are homeostatic and consequently low-quality food is 

buffered at the interface between primary production and primary consumption. 

We doubt the hypothesis that secondary consumers are not affected by nutrient limitation on 

the primary producer level due to a dampening of herbivores. Laboratory experiments were 

carried out to test the hypothesis that mineral limitation signals are mediated from herbivores 

to carnivores’ and that such limitation patterns are detectable even on higher trophic levels. 

In order to test this hypothesis, we used a tri-trophic food chain approach where algae grown 

under nutrient-limited and nutrient-sufficient conditions served as the basis of the food web. 

The food chain consisted of the cryptophyte Rhodomonas salina, nauplii of the calanoid 

copepod Acartia tonsa and larvae of the herring Clupea harengus. Astonishingly, the results 

of the limitation experiments showed that the long-believed hypothesis about the dampening 

effect of herbivores must be replaced by our new findings proofing that such limitation signals 
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are indeed passes on to consumers thus affecting higher trophic levels considerably. 

Significant differences in the copepods’ C:nutrient ratios, however, showed that the 

homeostasis of the copepods was not strict. This resulted in a reduced nutritional condition of 

herring larvae preying upon copepods grown on P- limited diets. This was particularly 

surprising since the fatty acid profiles pointed at a good quality of algae grown under P-

limited conditions. The results show that fish larvae can be altered by P-limitation on the 

primary producer and consumer level and that the growth rates of larval fish can be directly 

affected by abiotic forcing on the lowermost food-web levels, like e.g. in fully P-limited 

ecosystems or during decaying bloom situations. 
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Chapter 7                
Zusammenfassung 

 

 

Die vorliegende Arbeit vereint unterschiedliche wissenschaftliche Ansätze der 

Fischlarvenökologie. In dieser Arbeit werden Fragen zur Ökologie von Fischlarven auf drei 

unterschiedlichen Ebenen bearbeitet: Auf der Gemeinschaftsebene mit Hilfe einer 

dreijährigen, hochfrequenten Beprobung von Ichthyoplanktongemeinschaften, auf 

Populationsebene, bei der der Ernährungszustand von Larven zweier Fischarten aus 

Feldbeprobungen in Abhängigkeit von Umweltparametern untersucht wurde und auf 

Individualebene, bei der der Einfluss von nährstofflimitierten Algen und die Weitergabe des 

Limitationssignals an höhere trophische Ebenen untersucht und auf den Ernährungszustand 

von Fischlarven übertragen wurde. 

 

Kapitel 2 beschäftigt sich mit der Hypothese, dass Fischlarvengemeinschaften ein relativ 

hohes Maß an Stabilität in Bezug auf ihre Saisonalität haben. Diese Hypothese wurde mit 

Hilfe eines dreijährigen Datensatzes getestet. Dieser Datensatz basierte auf mindestens drei 

Beprobungsterminen pro Woche, die immer auf der gleichen Station, der Helgoländer 

Reede, genommen wurden. Diese Station befindet sich in der Deutschen Bucht der Nordsee. 

Die Hypothese wurde angenommen, da sich Muster in Diversität und Dominanz der 

Fischlarvengemeinschaft, nach dem Ausschluss des Kleinen Sandaals (Ammodytes 

marinus), stark ähnelten. Der Kleine Sandaal war die einzige Fischart, deren Abundanz 

zwischen den Jahren einen signifikanten Unterschied zeigte. Für die anderen Arten aus 

dieser Untersuchung konnten keine signifikanten Unterschiede in den Abundanzen zwischen 

den Jahren festgestellt werden. Die größte Variationsbreite lag hierbei zwischen den 

einzelnen Wochen. Eine Similaritätsanalyse der Proben zeigte eine klare Gruppierung nach 

Jahreszeiten und nicht nach unterschiedlichen Jahren; ein kleiner Teil der erklärten 

Variabilität lag auf der Ebene der Monate. Die Fischlarvengemeinschaft zeigte eine klare 

Sukkzession von Larven, die aus demersalen Eiern geschlüpft waren hin zu Larven, welche 

aus pelagischen Eiern stammten. Mit dem Anstieg der Temperatur konnte ein Übergang von 

demersal zu pelagisch beobachtet werden. Dieser wurde als Anpassung an die kalten 

Wintertemperaturen und die widrigen Wetterbedingungen in der Deutsch Bucht im Winter 

interpretiert. 

Die Ergebnisse dieser Untersuchung zeigten ein hohes Maß an Ähnlichkeit zwischen den 

Jahren. Trotz der hieraus resultierenden hohen Vorhersagbarkeit sollten jedoch regelmäßige 

Eier- und Larvenuntersuchungen durchgeführt werden um großskalige Veränderungen, wie 

z.B. die Verschiebung der Laichzeit beim Ostseedorsch, zu detektieren. 
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Die in Kapitel 3 beschriebene Untersuchung wurde durchgeführt, um das Maß an Variabilität 

des Ernährungszustandes von Fischlarven unter natürlichen Bedingungen zu untersuchen. 

Hierzu wurden exemplarisch die Larven des Kleinen Sandaals (Ammodytes marinus) sowie 

die der Kliesche (Limanda limanda) ausgewählt. Ihr Ernährungszustand wurde über den 

gesamten Zeitraum des Vorkommens der Larven im Ichthyoplankton mit Hilfe von RNA:DNA 

Verhältnissen untersucht. Dieser Untersuchung lag die Hypothese zugrunde, das kurzlebige 

Fischarten, die sich nur ein- bis zweimal fortpflanzen, konservativere 

Reproduktionsstrategien entwickelt haben sollten, als sie bei langlebigen Fischarten zu 

erwarten wären. Als Modellorganismus für kurzlebige Arten diente in dieser Untersuchung 

der Kleine Sandaal, als Vertreten einer langlebigen Art diente die Kliesche. Das RNA:DNA 

Verhältnis beider Fischarten zeigte eine hohes Maß an Variabilität; eine ausgeprägte 

Reaktion auf das Futterangebot zeigte sich erst spät in der Saison, als eine drastische 

Nahrungsverknappung zu beobachten war. Die Kliesche zeigte hierbei eine stärkere 

Reaktion auf die Nahrungsknappheit von Ressourcen als der Sandaal. Beide Arten zeigten 

eine positive Entwicklung ihres Ernährungszustandes mit zunehmender Körperlänge. 

Interessanterweise wurde der Anstieg des mittleren Ernährungszustandes bei beiden Arten 

auf gegenläufige Art und Weise erreicht: Beim Sandaal waren in allen Längenklassen sehr 

gut konditionierte Larven zu finden, der Anteil der schlecht Ernährten verringerte sich jedoch 

deutlich mit zunehmender Körperlänge, wohingegen bei der Kliesche zwar ebenfalls ein 

Wegfall von schlecht ernährten Larven in den größeren Längenklassen zu verzeichnen war, 

der Hauptanteil der Verbesserung der mittleren Kondition wurde aber durch das 

hinzukommen von gut konditionierten Larven bestritten. Der Verlust von schlecht ernährten 

Larven wurde als Hinweis auf ernährungsbedingte Sterblichkeiten gewertet. 

Die Hypothese, dass kurzlebige Arten konservativere Fortpflanzungsstrategien haben, wird 

im Falle des Kleinen Sandaals durch die Produktion von großen, energiereichen Eiern, eine 

lange Übergangsphase von interner Ernährung durch Dotter zu externer Nahrungsaufnahme 

und ihrer relativ hohen Unabhängigkeit von Umweltsignalen wie Futterdichten und 

Temperatur unterstützt. Im Gegensatz zur Produktion von schlecht konditionierten Larven, 

welche erst einen gute Kondition erreichen müssen, kann die Produktion von sehr gut 

konditionierten Larven zusätzlich als konservativ gewertet und zur Stützung der Hypothese 

herangezogen werden. 

 
In der in Kapitel 4 vorgestellten Studie werden langgehegte Annahmen der ökologischen 

Stöchiometrie bearbeitet. Zwei der heute gültigen Grundannahmen sind: (1) Gleichen sich 

die Nährstoffverhältnisse von Nahrung und Konsument, kann die Nahrung als qualitativ 

hochwertig angesehen werden; je weiter die Verhältnisse voneinander abweichen desto 
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schlechter ist somit die Nahrungsqualität, und (2) Herbivore Organismen sind homöostatisch 

und puffern schlechte Nahrungsqualität bereits an der Schnittestelle zwischen 

Primärproduktion und Primärkonsument ab. Das bedeutet in der Theorie, dass sich 

Nahrungsqualitätsunterschiede nicht auf höhere trophische Ebenen übertragen, da sie 

bereits auf der Ebene der Herbivoren abgepuffert werden. In dieser Studie stellen wir diese 

Theorie in Frage und stellen die Hypothese auf, dass Nahrungsqualitätsunterschiede auf 

Primärproduzentenebene sehr wohl über trophische Ebenen hinweg weitergegeben werden 

und somit direkte Auswirkungen auf karnivore Organismen haben. Um diese Hypothese zu 

testen wurden im Experiment kurze Nahrungsketten etabliert. Diese Bestanden aus der 

Cryptophyceae Rhodomonas salina, Nauplien des calanoiden Copepoden Acartia tonsa und 

Larven des Herings (Clupea harengus), wobei die Cryptophyceen unter verschiedenen 

Nährstofflimitationen gezüchtet würden. Die bisherige Theorie bzgl. des Abpufferns von 

Qualitätsunterschieden an der Schnittstelle zwischen Primärproduzenten und Herbivoren 

musste zugunsten der neuen Hypothese verworfen werden. Das Maß an Homöostase von 

Copepoden war nicht so hoch, dass die unterschiedlichen Kohlenstoff/Nährstoff-Verhältnisse 

der Algen komplett abgepuffert werden konnten. Als Folge davon zeigten die Copepoden 

signifikante Unterschiede in ihren Kohlenstoff/Nährstoff-Verhältnissen, die Heringslarven 

zeigten signifikante Unterschiede in ihrer Kondition. Diese Unterschiede weisen auf eine 

direkte Phosphor-Limitierung der Heringslarven hin, da die Fettsäurespektren der mit P-

limitierten Algen gefütterten Copepoden auf eine eigentlich gute Nahrungsqualität 

hindeuteten. Diese Ergebnisse lassen die Vermutung zu, dass eine Limitation des 

Wachstums von Fischlarven durch den Einfluss von abiotische Bedingungen auf Ebene der 

Primärproduzenten und Konsumenten wahrscheinlich ist und dass dies negative 

Folgeerscheinungen für Organismen höherer trophischer Ebenen, wie z.B. Fischlarven, 

beinhaltet. Dies trifft im Freiland v.a. auf generell phosphorlimitierte Systemen sowie auf den 

Endverlauf von Blütensituationen zu. 
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