Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-38-SC1, 2016 © Author(s) 2016. CC-BY 3.0 License. # **ESDD** Interactive comment # Interactive comment on "The Earth's climate system recurrent & multi-scale lagged responses: empirical law, evidence, consequent solar explanation of recent CO₂ increases & preliminary analysis" by J. Sánchez-Sesma ### P. Köhler peter.koehler@awi.de Received and published: 30 November 2016 This comment deals only with the atmospheric CO_2 data plotted in the discussion paper, an issue which - as far as I was able to follow - has not yet been brought up by the reviews published until today. In Figures 9 and 10 CO_2 is plotted based on stomata-based reconstructions for the last 12,000 years (the Holocene) with zoom on the more recent period (last 2000 years) and is then compared with some calculated CO_2 values, which seemed to show similar variability. Printer-friendly version The chosen CO_2 proxy (stomata-based) is known to be a poor recorder of the small scale variability of CO_2 we seen during these rather stable time periods. They compare especially weak against ice core CO_2 data, which are still believed to be a recorder of ancient atmospheric concentrations. Several papers have discussed these discrepancies and weaknesses of the stomata-based CO_2 proxy in detail, (e.g. Ahn et al., 2014; Indermühle et al., 1999; Köhler et al., 2015). Furthermore, it is well known and established, that the ice core CO₂ of the recent past (last 2000 years) from the Law Dome ice core, overlaps without any offset with the instrumental CO₂ measurements, which started in year 1958 in Manua Loa, Hawaii, giving firm evidence that ice cores indeed record atmospheric CO₂ without any significant offset (MacFarling-Meure et al., 2006; Rubino et al., 2013). The knowledge on CO_2 variability over the last 2000 years has been extended by some CO_2 data from the West Antarctic Ice Sheet Divide ice core (Ahn et al., 2012; Bauska et al., 2015). In addition to the Law Dome data we now know that CO_2 varied between 270 and 285 ppmv during the last 2000 year, starting to rise due to anthropogenic emissions around year 1750 CE from 278 ppmv to nowadays around 400 ppmv. The variability of CO_2 between 270 to 390 based on stomata and plotted in Figure 10 is not supported at all by the more reliable ice core CO_2 data. For the Holocene (last \sim 12,000 years) CO $_2$ variability is - again based on ice core data (Monnin et al., 2004; Elsig et al., 2009) - well established to be between 255 and 285 ppmv, consisting of a \sim 10 ppmv decrease between 11,000 and 8,000 years before present and a gradual rise thereafter. Non of that is found in the stomata-based CO $_2$ proxy record plotted in Figure 9. These misfits of plotted CO_2 values (based on stomata CO_2 proxies) from ice core CO_2 are severe shortcomings of the study. If ignored, it would suggest, that our knowledge of CO_2 based on ice cores is wrong, for which no futher support is given. For any further details on the difference of ice core based CO_2 and stomata-based CO_2 please ### **ESDD** Interactive comment Printer-friendly version refer to other papers discussing those in detail (Ahn et al., 2014; Indermühle et al., 1999; Köhler et al., 2015). ### References: Ahn, J., Brook, E. J., Mitchell, L., Rosen, J., McConnell, J. R., Taylor, K., Etheridge, D., and Rubino, M.: Atmospheric CO₂ over the last 1000 years: A high-resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core, Global Biogeochemical Cycles, 26, GB2027, doi:10.1029/2011GB004247, 2012. Ahn, J., Brook, E.J., Buizert, C., Response of atmospheric CO₂ to the abrupt cooling event 8200 years ago, Geophys. Res. Lett. 41 (2), 604-609, 2014. Bauska, T. K., Joos, F., Mix, A. C., Roth, R., Ahn, J., and Brook, E. J.: Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium, Nature Geoscience, 8, 383–387, doi: 10.1038/ngeo2422, 2015. Elsig, J.; Schmitt, J.; Leuenberger, D.; Schneider, R.; Eyer, M.; Leuenberger, M.; Joos, F.; Fischer, H., Stocker, T. F. Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core, Nature, 461, 507-510, 2009. Indermühle, A., Stauffer, B., Stocker, T.F., Raynaud, D., Barnola, J.-M., 1999. Early Holocene atmospheric CO₂ concentrations, Science, 286 (5446), 1815. Köhler, P.; Fischer, H.; Schmitt, J.; Brook, E. J., Marcott, S. A. Comment on "Synchronous records of pCO₂ and $\Delta^{14}C$ suggest rapid, ocean-derived pCO₂ fluctuations at the onset of the Younger Dryas by Steinthorsdottir et al", Quaternary Science Reviews, 107, 267-270, doi: 10.1016/j.quascirev.2014.09.024, 2015. MacFarling-Meure, C., Etheridge, D., Trudinger, C., Langenfelds, R., van Ommen, T., Smith, A., and Elkins, J.: Law Dome CO_2 , CH_4 and N_2O ice core records extended to 2000 years BP, Geophysical Research Letters, 33, L14810, doi: 10.1029/2006GL026 152, 2006. ### **ESDD** Interactive comment Printer-friendly version Monnin, E., Steig, E. J., Siegenthaler, U., Kawamura, K., Schwander, J., Stauffer, B., Stocker, T. F., Morse, D. L., Barnola, J.-M., Bellier, B., Raynaud, D., and Fischer, H.: Evidence for sustantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO₂ in the Taylor Dome, Dome C and DML ice cores, Earth and Planetary Science Letters, 224, 45–54, 2004. Rubino, M., Etheridge, D. M., Trudinger, C. M., Allison, C. E., Battle, M. O., Langenfelds, R. L., Steele, L. P., Curran, M., Bender, M., White, J. W. C., Jenk, T. M., Blunier, T., and Francey, R. J.: A revised 1000-year atmospheric δ^{13} C-CO $_2$ record from Law Dome and South Pole, Antarctica, Journal of Geophysical Research: Atmospheres, 118, 8482–8499, doi:10.1002/jgrd.50668, 2013. Interactive comment on Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-38, 2016. # **ESDD** Interactive comment Printer-friendly version