
CPD
8, 1687–1720, 2012

Holocene climate
variability in central

Europe

J. Fohlmeister et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Clim. Past Discuss., 8, 1687–1720, 2012
www.clim-past-discuss.net/8/1687/2012/
doi:10.5194/cpd-8-1687-2012
© Author(s) 2012. CC Attribution 3.0 License.

Climate
of the Past

Discussions

This discussion paper is/has been under review for the journal Climate of the Past (CP).
Please refer to the corresponding final paper in CP if available.

Bunker Cave stalagmites: an archive for
central European Holocene climate
variability
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Abstract

Holocene climate was characterised by variability on multi-centennial to multi-decadal
time scales. In central Europe, these fluctuations were most pronounced during win-
ter. Here we present a new record of past winter climate variability for the last 10.8 ka
based on four speleothems from Bunker Cave, Western Germany. Due to its central5

European location, the cave site is particularly well suited to record changes in pre-
cipitation and temperature in response to changes in the North Atlantic realm. We
present high resolution records of δ18O, δ13C values and Mg/Ca ratios. We attribute
changes in the Mg/Ca ratio to variations in the meteoric precipitation. The stable C
isotope composition of the speleothems most likely reflects changes in vegetation and10

precipitation and variations in the δ18O signal are interpreted as variations in mete-
oric precipitation and temperature. We found cold and dry periods between 9 and 7 ka,
6.5 and 5.5 ka, 4 and 3 ka as well as between 0.7 to 0.2 ka. The proxy signals in our
stalagmites compare well with other isotope records and, thus, seem representative
for central European Holocene climate variability. The prominent 8.2 ka event and the15

Little Ice Age cold events are both recorded in the Bunker cave record. However, these
events show a contrasting relationship between climate and δ18O, which is explained
by different causes underlying the two climate anomalies. Whereas the Little Ice Age is
attributed to a pronounced negative phase of the North Atlantic Oscillation, the 8.2 ka
event was triggered by cooler conditions in the North Atlantic due to a slowdown of the20

Thermohaline Circulation.

1 Introduction

The Holocene represents an epoch of relatively stable, warm climate conditions, in par-
ticular in comparison to the large, rapid changes that occurred during the Last Glacial.
The largest climate anomaly during the Holocene was the short 8.2 ka cold event (Alley25

et al., 1997), which has been identified in several climate records (e.g. von Grafenstein
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et al., 1998; North Greenland Ice Core Project members, 2004; Boch et al., 2009).
However, for Europe, several periods during the Holocene with warm/wet and cold/dry
climate, respectively, have been reported (see, for instance, the summaries in Wanner
et al., 2008, 2011).

Various archives for terrestrial past climate variability have been evaluated in order5

to disentangle the complex patterns of Holocene climate change. For instance, numer-
ous studies on tree rings (e.g. Friedrich et al., 1999; Spurk et al., 2002; Büntgen et al.,
2010), lake sediments (e.g. Guiot et al., 1993; Magny, 2004; Davis et al., 2003, and ref-
erences therein) and glaciers (e.g. Holzhauser et al., 2005; Joerin et al., 2006; Ivy-Ochs
et al., 2009) contributed important information on past Holocene climate variability in10

Europe. Most of these archives are known to mainly record spring to summer condi-
tions. In contrast, speleothems, and stalagmites in particular, provide the opportunity
to reconstruct climate conditions during autumn and winter in central Europe (Wacker-
barth et al., 2010). The main reason for this is that enhanced evapo-transpiration during
spring and summer months leads to reduced infiltration into the karst aquifer. Thus, the15

major proportion of the drip water feeding the speleothems in most Central European
caves originates from winter precipitation. In order to gain comprehensive insight into
past climate variability it is important to differentiate between different seasons. For
example, Davis et al. (2003) showed in a compilation of European pollen data that
temperature variations during the Holocene largely differ between the warm and cold20

seasons, with larger fluctuations occurring during winter.
Within the last decade, several Holocene climate reconstructions for central Eu-

rope based on speleothems have been published (e.g. McDermott et al., 1999; Frisia
et al., 2003; Niggemann et al., 2003; Mangini et al., 2005; Vollweiler et al., 2006; Boch
et al., 2009). However, none of the currently available speleothem records for Central25

Europe covers the entire Holocene. Here we present a Central European compos-
ite stalagmite record from Bunker Cave, Western Germany, covering the last 10.8 ka.
We show high-resolution stable C and O isotope data as well as Mg/Ca ratios. This
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multi-proxy reconstruction enables a robust reconstruction of past winter climate vari-
ability in Central Europe.

2 Cave site and methods

2.1 Cave site description

Bunker cave is located at 51◦22′03′′ N, 7◦39′53′′ E in Western Germany (Sauerland,5

Fig. 1) and belongs to a large cave system, which consists of several closely situated
caves. Bunker Cave was discovered in 1926 during road works, and during the Second
World War the entrance area of the cave was artificially enlarged. The entrance to
the cave is situated 184 m a.s.l. on a south-facing hill slope. The cave is developed in
Middle to Upper Devonian, low-Mg limestone hosting thin dolomite veins. The thickness10

of the host rock above the cave ranges from 15 to 30 m, which is covered by up to
70 cm of soil (inceptisol/alfisol developed from loess loam). Vegetation above the cave
consists entirely of C3 plants, i.e. mainly ash and beech as well as scrub vegetation.
The mean annual air temperature in the cave is about 10.8 ◦C, and the mean annual
amount of precipitation in the area is around 950 mmyr−1. Further details can be found15

elsewhere (e.g. Immenhauser et al., 2010; Kluge et al., 2010; Riechelmann, et al.,
2011; Münsterer et al., 2012).

Four speleothems, which grew within a maximum distance of 12 m from each other,
were removed from the cave for this study (Bu1, Bu2, Bu4 and Bu6). Stalagmite Bu1
has a length of about 65 cm. Bu2 and Bu4 are approximately 20 cm long, whereas20

Bu6 is a flowstone with a length of about 6 cm (Fig. 1). All stalagmites have a diame-
ter of about 5 to 10 cm and were sampled under actively dripping sites. The drip sites
of the investigated stalagmites have been monitored within the framework of a com-
prehensive, long-term cave monitoring program Riechelmann, et al. (2011). The δ18O
values of the drip water show that the recharge water is well mixed within the aquifer25

1691

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/8/1687/2012/cpd-8-1687-2012-print.pdf
http://www.clim-past-discuss.net/8/1687/2012/cpd-8-1687-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
8, 1687–1720, 2012

Holocene climate
variability in central

Europe

J. Fohlmeister et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

and corresponds to the infiltration weighted annual mean δ18O value of precipitation
(Wackerbarth et al., 2010; Riechelmann, et al., 2011).

2.2 Methods

2.2.1 Th/U dating

Samples for Th/U-dating were cut from the growth axis of the stalagmites using5

a diamond-coated band saw. The thickness (in growth direction) of individual samples
is typically 4 mm. All samples were analysed by thermal ionisation mass spectrometry
(TIMS) at the Heidelberg Academy of Sciences. Methods used for sample prepara-
tion and mass spectrometric analysis are explained in detail in Frank et al. (2000) and
Holzkämper et al. (2005). The calibration of the U and Th spikes is described in Hoff-10

mann et al. (2007). Due to the relatively low U content of the samples Th/U-dating
of Holocene speleothems from Bunker Cave using the TIMS method is challenging.
Therefore, a Th solution with precisely determined concentration and isotopic compo-
sition was added to some sub-samples in order to increase the analysis time for Th and
to improve counting statistics. The measured isotope ratios were corrected accordingly15

and the uncertainties in concentration and isotope composition of the added Th solu-
tion were propagated to the final age errors. Ages were calculated using the half lives
of Cheng et al. (2000). Correction for detrital contamination assumes a 232Th/238U
concentration ratio of 3.8±1.9 and 230Th, 234U and 238U in secular equilibrium. Age
uncertainties are quoted at the 2-σ level and do not include half-life uncertainties. The20

reference year for all ages given in the study is AD 1950.

2.2.2 Radiocarbon dating

Samples for radiocarbon dating were drilled in a CO2-free atmosphere in the Heidel-
berg radiocarbon laboratory using a hand-held dental drill with a burr diameter of 1 mm.
Sub-samples from the very top of the stalagmites were milled from the stalagmite25
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surface. The uppermost layers (∼100 µm) of the stalagmite, which may be contam-
inated due to exchange with atmospheric carbon, were not used for analysis. The
CaCO3 powder was acidified (HCl) in vacuo, and the resulting CO2 was combusted
with H2 to C on a Fe catalyst at 575 ◦C. The samples were measured at the MICADAS
at ETH Zurich (Synal et al., 2007).5

2.2.3 Stable isotopes

The stalagmites were micromilled continuously along the growth axis at increments of
0.3 mm for Bu1 and Bu6, 0.2 mm for Bu4 and 0.15 mm for Bu2. Stable C and O isotopes
were measured at the triple collector gas source isotope ratio mass spectrometer of
the University of Innsbruck. The mass spectrometer is linked to an on-line, automated10

carbonate preparation system (for details, see Spötl and Mattey, 2006). Isotope ratios
are reported against the VPDB scale and the 1σ precision is 0.06 and 0.08 ‰ for δ13C
and δ18O, respectively.

2.2.4 Mg and Ca analyses

The stalagmites were cut along the growth axis into 2 cm-long pieces, which were15

mounted in epoxy resin discs and polished. Mg/Ca ratios were measured parallel to
the growth axis. The continuous profile is located within 2 mm of the stable isotope
track. Mg/Ca ratios of the speleothems were measured by Laser Ablation ICP-MS (LA-
ICPMS) at the Mineralogical Institute, Frankfurt, Germany, using a New Wave UP213
ultraviolet laser system, coupled to a Themo-Finnigan Element II sector field ICP-MS20

(Gerdes and Zeh, 2006). Element data were continuously acquired using a 60 µm circu-
lar ablation spot and a scan speed of 10 µms−1. The method produces approximately
40 data points per mm corresponding to a spatial resolution of 25 µm. Background
counts, measured with the laser in off mode, were subtracted from the raw data. All
data are normalized to the Ca content of the calcite and standardized against NIST25
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612 glass (Pearce et al., 1996), which was measured before and after each sample.
A continuous sample scan had a maximum length of 2 cm.

2.2.5 Microscopy

Thin sections were made from all four stalagmites by sawing a thin slice near the growth
axis, next to the element track, which were broken into approximately 4 cm long pieces5

in order to obtain a continuous series of thin sections. These pieces were stuck on small
glass plates and polished to 30 µm thickness. These thin sections were examined using
standard transmitted-light microscopy as well as using a hot cathode-CL-microscope
(type Lumic HC1-LM; Neuser et al., 1995).

3 Results10

3.1 Th/U-dating and microscopic analysis

Ten sub-samples from stalagmite Bu1, four sub-samples from Bu2, eleven sub-
samples from Bu4 and three sub-samples from Bu6 were dated (Table 1). Dating of
the samples was challenging due to the relatively low U content (∼0.1 ppm). The 2σ-
age uncertainty is between 100 and 300 a for most samples (Table 1). Some samples15

contain elevated amounts of detritial Th (between 2 and 3 ngg−1, Table 1) leading to
significant age corrections. Stalagmite Bu6 covers the period between 10.7 and 8.8 ka
BP, and the Holocene part of Bu2 (i.e. ∼ the upper 7 cm) grew between 10.7 and 7.7 ka
BP. Bu4 covers the last approximately 8.1 ka (Fig. 2). Thin sections revealed that Bu4
is dominated by columnar crystals, which indicates relatively slow and constant growth20

rates. Two small detritus layers were observed at about 15 and 17 cm distance from
top (dft), which are identified as coralloid layers (Fig. 3b). These layers probably reflect
periods of limited growth, which, however, seem to have been short since Th/U dating
does not resolve a growth stop. Petrographic investigation of Bu1 shows at approxi-
mately 17 cm dft a detritus-rich layer revealing a hiatus. The duration of this interruption25
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of stalagmite growth cannot be determined precisely due to unreliable Th/U dates in
the interval between 14.6 and 30 cm dft. Hence, age data for Bu1 are only presented
between the top and 14 cm dft as well as from 31 to 49 cm dft including the periods
between “pre-modern” (Sect. 3.2) and 1.6 ka BP as well as 4.7 and 6.7 ka BP (Fig. 2).
During the latter period Bu1 consists mainly of fast growing dendritic crystals, in agree-5

ment with the growth rate derived from the age measurements. In the section below
∼49 cm dft, it was again impossible to measure reliable dates. The bottom section of
Bu1 (∼10 cm) grew during the Eemian. Thin section analysis of the top of Bu2 and Bu6
indicate brown layers, which are interpreted as detrital layers highlighting hiati. Hence,
data for the upper 7 (Bu2) and 2 mm (Bu6) were discarded. The other parts of Bu2 and10

Bu6 as well as the younger part of Bu1 are solely formed of columnar crystals (Fig. 3b),
which reveal relatively slow and constant growth rates.

3.2 Radiocarbon

Three radiocarbon analyses were performed at the top sections of stalagmite Bu4 and
Bu1. This enabled to test whether the stalagmites stopped growing before or after15

the atmospheric radiocarbon anomaly in the middle of the 20th century (e.g. Levin and
Kromer, 2004; Hua and Barbetti, 2004). Due to the low U content (Table 1) the Th/U age
data are not precise enough to verify/falsify recent speleothem growth. Bu1 does not
show a clear bomb-peak, whereas Bu4 reveals a typical increase and decrease in its
uppermost 2 mm as expected for the radiocarbon bomb-pulse captured in stalagmites20

(see e.g. Genty and Massault, 1999; Mattey et al., 2008; Fohlmeister et al., 2011,
Table 2). This suggests that Bu4 was actively growing until its removal, whereas Bu1
definitely stopped growing before 1950 AD.

3.3 Chronology

The growth phases of all four stalagmites cover the last 10.8 ka. During several inter-25

vals, two stalagmites grew contemporaneously (i.e. from 0 to 1.6 ka; from 4.7 to 6.7 ka;
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from 7.7 to 8.1 ka and between 8.8 and 10.7 ka, Fig. 2). Thus, it is possible to test
whether the proxy signals recorded in individual stalagmites are reproducible. If this
is the case, a dominant influence of local, drip-site specific effects can be ruled out,
and the proxy signals likely reflect past climate variability. The temporally overlapping
sections allow to assemble a composite record. We a priori assume that the O isotope5

records of the four stalagmites represent one common signal. The records are com-
bined with iscam (intra-site correlation age modelling; Fohlmeister, 2012). This method
correlates dated proxy signals from several stalagmites, determines the most probable
age-depth model and calculates the age uncertainty for the combined record. Iscam
enables to quantitatively verify whether signals from two individual stalagmites have10

a common signal within the age errors. Furthermore, the algorithm is able to prove
whether the resulting correlation is statistically significant. This provides the advantage
of enlarging the signal-to-noise ratio and minimising the age uncertainties within the
overlapping periods. In addition, iscam allows to prove if the signals of two archives
correlate above significance limits, which indicate that the observed variations have15

a common cause.
For age-depth modelling, both the Th/U ages and the radiocarbon measurements

are used. An additional constraint is given by calcite supersaturated drip water from
the active drip site. Therefore, we prescribed the top age of Bu4 to be 1997 AD±10 yr
for the age-depth modelling (Bu4 was removed in 2007 AD). For the top of Bu1, the20
14C bomb peak is not visible. Thus, the stalagmite definitely stopped growing before
1950 AD. In addition, the strong increase in δ13C observed for Bu4 is not present in
Bu1 (Sect. 3.4, Fig. 3) suggesting that Bu1 stopped growing before the δ13C increase.
We assume an age of 100±40 a BP for the top section of Bu1.

Iscam uses the available age information (means and errors) and the variation in25

the δ18O signal of the four stalagmites in order to obtain the best age-depth model.
For a detailed description of the method the reader is referred to the original publica-
tion (Fohlmeister, 2012). Usually, the age uncertainties in the overlapping periods are
smaller than in the periods without overlaps (Fig. 2). Hence, jumps in the uncertainty

1696

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/8/1687/2012/cpd-8-1687-2012-print.pdf
http://www.clim-past-discuss.net/8/1687/2012/cpd-8-1687-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD
8, 1687–1720, 2012

Holocene climate
variability in central

Europe

J. Fohlmeister et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

range may occur at transitions between overlapping and non-overlapping parts. The
shaded areas of the overlapping periods between Bu4 and Bu2 as well as between
Bu2 and Bu6 represent 68 % confidence intervals. The correlation coefficient of the
according δ18O time series does not exceed the 95 % threshold. The threshold to the
95 % interval for the correlation coefficient between Bu2 and Bu6 is only missed by5

0.01. The reason for missing the 95 % interval range between Bu2 and Bu4 is related to
the relatively short overlapping interval between both stalagmites (Fohlmeister, 2012).

3.4 C and O isotope and Mg/Ca time-series

Given that the spatial resolution of the Mg/Ca elemental ratios exceeds that of the car-
bon and oxygen isotope record, the elemental proxy has been brought to the resolution10

of the δ13C and δ18O records. For this purpose, all Mg/Ca ratios within the depth range
of one stable isotope sample have been averaged. The Mg/Ca data (Fig. 3a) show
a decreasing trend within the last 10.8 ka. During the early Holocene, Mg/Ca ratios are
approximately twice as high as in the recent period, 0.0033 and 0.0015, respectively.
Both the absolute Mg/Ca values and the pattern are similar in overlapping parts of Bu2,15

Bu4 and Bu6 suggesting that all three stalagmites experienced comparable hydrologi-
cal conditions in agreement with findings from present day cave monitoring. The Mg/Ca
ratio of Bu6 is slightly lower than that of Bu2. Stalagmite Bu1 shows significantly lower
values than Bu4. Similarly, the Mg/Ca patterns of Bu1 and Bu4 are – apart from the
generally decreasing trend – different (Fig. 3a).20

The total range of the δ13C values of the four Bunker Cave stalagmites is between
−12 and −5 ‰ (Fig. 3c). In the early Holocene, Bu2 and Bu6 show δ13C values be-
tween −9 and −10 ‰. As for Mg/Ca, the values of Bu6 are lower than those of Bu2.
The δ13C values of Bu2 increase between 8.5 and 7.5 ka, which is in agreement with
the Bu4 record. The δ13C values of the four Bunker stalagmites show maximum values25

about −7 ‰ between 8 and 6 ka. After 6 ka, the δ13C values of Bu4 decrease. In the re-
cent past, Bu4 shows a steep increase by about 4 ‰ in δ13C. Bu1 generally shows the
same pattern as Bu4, especially in the young section of the two stalagmites. However,
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the δ13C values of Bu1 are lower compared to those of Bu4. Furthermore, the rapid
increase measured in the recent part of Bu4 is not visible in Bu1 (Fig. 3c) confirming
that Bu1 stopped growing before this anomaly occurred.

The δ18O values were used to determine the age model for the composite record.
Therefore, the δ18O records in overlapping parts of different stalagmites are in agree-5

ment (Fig. 3d). The high correlation coefficients (0.9 for the young parts of Bu1 and
Bu4, 0.79 for the old parts of Bu1 and Bu4, 0.72 for Bu2 and Bu4 and 0.76 for Bu2 and
Bu6) strongly suggest that the δ18O values reflect climate conditions above Bunker
Cave rather than site specific effects. This is also supported by the similar absolute
δ18O values of all four stalagmites. δ18O variability during the last 10.8 ka is in the10

range of 2 ‰, with the highest values observed at 0.5 ka (−5 ‰) and the lowest values
(−7 ‰) recorded around 10 ka (Fig. 3d).

4 Discussion

4.1 Mg/Ca ratios

Previous work suggested that the speleothem calcite Mg/Ca ratio is a qualitative proxy15

for the amount of precipitation above the cave or infiltration into the karst aquifer (see
Fairchild and Treble, 2009, and citations therein). However, a sound understanding
of the geochemical processes and flow characteristics, which are most likely unique
for each cave system, is mandatory for the interpretation of this proxy. Regarding the
Mg/Ca records from Bunker Cave, first, an explanation approach for the long-term de-20

creasing trend in the Mg/Ca ratio of the stalagmites Bu2 and Bu4 during the Early to
Middle Holocene (Fig. 3a) is required. For this purpose, possible variations of the drip
water sources, feeding the stalagmite, must be considered.

Modern rain water at the cave location has a maximum Mg/Ca ratio of 0.2±0.1
(Riechelmann, et al., 2011). Water in the upper soil zone above Bunker Cave has a very25

low Ca concentration and a Mg/Ca ratio of 0.13±0.01. This is related to weathering
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of the non-carbonate loam fraction of the soil, such as Mg-bearing chlorite, montmo-
rillonite and illite. Weathering of this siliceous soil material is also documented in sea-
sonal changes in drip water Mg isotope composition (Riechelmann, S. et al., 2012).
During percolation through the low Mg Devonian limestone, the water dissolves the
host rock with, in average, lower Mg/Ca ratios than the soil water (Mg/Ca: 0.004–0.008,5

n = 5). The resulting drip water feeding the stalagmite represents, thus, a mixture of the
Mg/Ca ratios of meteoric precipitation, soil zone clay content and host rock carbonate
resulting in a Mg/Ca ratio of the drip water of 0.02–0.06 (Riechelmann, et al., 2011).
Towards the end of the Last Glacial period, loess was deposited above Bunker Cave.
This loess may have had a higher proportion of weathered late diagenetic dolomite10

than today, which is sporadically found in the host rock (Hammerschmidt et al., 1995).
Weathering and leaching during the transition and the Early Holocene removed some
of the Mg bearing loess cover and may have resulted in relatively high Mg/Ca ratios
in the stalagmites during the Early Holocene. Progressive weathering and decalcifica-
tion may have led to elution of the initially high Mg components of the aeolian deposits15

causing Mg/Ca ratios in the stalagmite to decrease. This may coincide with enhanced
weathering in the Atlantic stage as postulated by Richter et al. (2004).

Whereas the long-term trend in Mg/Ca is caused by successive decalcification of the
loess cover, short-term variations in Mg/Ca ratios are attributed to the amount of pre-
cipitation or infiltration. The extensive long-term monitoring at Bunker Cave (Riechel-20

mann, et al., 2011) reveals that a major process affecting the Mg/Ca ratio in stalagmites
is Prior Calcite Precipitation (PCP), e.g. calcite which precipitates before the solution
reaches the stalagmite. Lower infiltration into the karst aquifer leads to a higher propor-
tion of air compared to water in the host rock favouring degassing of CO2 and, thus,
PCP. Lower rainfall amounts also lead to lower drip rates and, thus, foster PCP at the25

cave ceiling. In both cases, the Mg/Ca ratio in the stalagmites should increase as has
been demonstrated in various studies (Tooth and Fairchild, 2003; Cruz Jr et al., 2007).
The effect of PCP on the Mg/Ca ratio during dry periods is further amplified by an ad-
ditional process: Longer residence times of the percolating water in the host rock are
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result in higher Mg/Ca ratios due to the different dissolution characteristics of calcite
and dolomite (Fairchild and Treble, 2009).

We interpret the short-term variations in the Mg/Ca ratios of the Bunker cave sta-
lagmites during the Holocene (Fig. 3a) as precipitation variability above the cave. The
detrended Mg/Ca ratio (Fig. 4a) is, therefore, interpreted as a proxy for precipitation5

amount. Higher Mg/Ca ratios in the detrended record are interpreted as dryer peri-
ods and vice versa. Based on this interpretation, periods around 0.5, 4.5–3.7, 5.6 and
7.7–7.3 ka BP were characterised by relatively dry conditions. This is supported by
the findings of the microscopy analyses. At 5.6 ka a thin coralloid layer was found in
Bu4 (Fig. 3b). This kind of calcite fabric is formed from aerosols and can therefore10

only grow during extrem dry conditions, when there is less drip water available (Hill
and Forti, 1997). The period between 7–8 ka in Bu4 is dominated by columnar fabrics
indicating dryer conditions (Frisia and Borsato, 2010) and contains a further coralloid
layer.

The Mg/Ca ratio of Bu1 and its variability is generally lower than that of Bu4 when15

comparing coeval time intervals (Fig. 3a). This indicates that Bu1 either experienced
a faster drip rate resulting in less PCP or a shorter residence time in the karst aquifer
resulting in a lower Mg concentration due to less intensive dolomite dissolution. This
interpretation agrees with the observations reported in (Riechelmann, et al., 2011) for
monthly collected drip water samples from the drip sites above the two speleothems.20

The recent drip rate of Bu1 is by about two orders of magnitude faster than the drip
rate of Bu4. Furthermore, Mg isotopes showed that the Mg contribution to drip waters
is variable showing different Mg proportions derived from the soil and karst, which may
explain the Mg/Ca offset between stalagmite Bu1 and Bu4 (Riechelmann, S. et al.,
2012).25

4.2 δ13C values

Monitoring of Bunker Cave drip water (Riechelmann, et al., 2011) showed only small
variability in the δ13C values of annual drip water collected at different drip sites in the
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cave. Similarly, only small differences in annual cave air pCO2 and δ13C were detected.
Therefore, we can neither attribute the long-term trend nor the short-term variations in
speleothem δ13C values (Fig. 3c) to changes in the seasonality of calcite precipitation
or cave ventilation as has been demonstrated for other caves (e.g. Spötl et al., 2005;
Frisia et al., 2011; Tremaine et al., 2011). The large increase in the δ13C values of Bu45

in the last 250 a (Fig. 3c) is anomalous and may be related to the artificial opening of
the cave in the late 19th to early 20th century. The δ13C values of the top section of
Bu4 agree well with the δ13C values of recent calcite precipitates from this drip site
(Riechelmann, D. F. C. et al., 2012).

The δ13C values of Bu1 are lower than those of Bu4 during joint growth periods.10

The mean offset between both records is ca. 1.3 ‰. This offset may partly reflect dif-
ferences in the δ13C value of the drip water. Modern drip water δ13C values differ by
approximately 0.13 ‰ (Riechelmann, D. F. C. et al., 2012). In addition, variable kinetic
isotope fractionation due to different drip rates may have affected the two speleothems,
which would further increase the difference in δ13C values (Scholz et al., 2009; Drey-15

brodt and Scholz, 2011). Today, the drip rate of Bu1 is about two orders of magnitude
faster than that of Bu4, which is consistent with the interpretation of the calcite δ13C
values of Bu1 and Bu4.

A similar assessment for the observed differences in stalagmite δ13C values is also
possible using the measured 14C values (Table 2). Since monitoring data suggest that20

the drip water of both drip sites originates from the same soil water reservoir, the initial
soil water δ13C and 14C values should be comparable for both drip sites. Thus, the
observed variability in the drip water should be related to the process of carbonate
dissolution, such as the degree of open versus closed conditions, respectively, as well
as potential differences in PCP and kinetic isotope fractionation. Bu1 has a dead carbon25

fraction (dcf) of approximately 7 %, whereas Bu4 has a dcf of about 12 % (Table 2).
According to similar calculations as described in Griffiths et al. (2012) and assuming
mean soil air δ13C values of about −23 ‰, host rock δ13C values of +3.5 ‰ (Wurth,
2002) and a mean temperature of 10 ◦C, the δ13C values of the Ca-saturated water
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feeding Bu1 should be about 0.5 to 0.6 ‰ lower than that feeding Bu4. The remaining
0.7 to 0.8 ‰ are attributed to PCP and kinetic isotope fractionation effects. This is
consistent with the observed lower modern drip rates feeding Bu4 and the offset in the
Mg/Ca ratio of the two stalagmites.

The increase in the δ13C values of about 3 ‰ during the early Holocene and the sub-5

sequent decrease (Fig. 3c) may have been caused by several effects. Higher δ13C val-
ues may originate by increased kinetic isotope fractionation on the stalagmite (Scholz
et al., 2009; Mühlinghaus et al., 2009) or even on the stalactite (Frisia et al., 2011)
as well as by a larger contribution of host rock-derived C and/or by lower root respira-
tion and soil microbial activity resulting in more positive soil gas δ13C values (Cerling,10

1984). Although it is difficult to identify which of these processes dominated the long-
term trend in the δ13C values of the stalagmite record, we hypothesise that more posi-
tive soil air δ13C values modulated by vegetation density was the major influence. This
assumption is based on the relatively slow adjustment of vegetation compared to the
faster reaction time of carbonate dissolution or stable isotope fractionation to climati-15

cally induced changes. Hence, changes in root respiration and microbial activity due
to changes in vegetation density seem to be responsible for increasing soil air δ13C
values probably due to lower soil respiration rates between 9 and 7 ka BP. This implies
that the vegetation cover above the cave became thinner during this interval, which
may be related to the relatively dry conditions between 7.7 to 7.3 ka BP inferred from20

the Mg/Ca ratio (Fig. 4a). After 6 ka, the stalagmite δ13C signal decreases implying the
development of a denser vegetation cover above the cave with concomitant higher soil
bioproductivity.

Superimposed on this first-order trend in δ13C, a higher frequency pattern is vis-
ible. This pattern resembles the second-order signal in Mg/Ca and is attributed to25

cave internal processes such as kinetic isotope fractionation. The degree of kinetic
C isotope fractionation is mainly influenced by variations in drip rate (Dreybrodt, 2008;
Mühlinghaus et al., 2009; Scholz et al., 2009; Deininger et al., 2012), which in turn
reflects changes in karst hydrology and precipitation above the cave. Therefore, high
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δ13C values are assigned to periods of low drip rates and vice versa. The overall simi-
larity of the detrended and smoothed time series of Mg/Ca and δ13C for Bu4 (Fig. 4a, b)
implies that slow drip rates correspond to periods of less precipitation.

4.3 δ18O values

Applying conventional evapo-transpiration equations, Wackerbarth et al. (2010) esti-5

mated that about 40–50 % of the annual precipitation is lost due to evapo-transpiration
processes. Thus, the contribution of summer precipitation to recharge of the karst
aquifer is very low in the cave region. Furthermore, Münsterer et al. (2012) demon-
strated, based on analysis of 36Cl, that the annual amount of evapo-transpiration is
even higher and may reach values between 68 to 88 %. Thus, winter precipitation is10

the major proportion of the cave drip water and dominates its δ18O value.
The relationship between surface air temperature variability and the stable oxygen

isotope signal of precipitation are well understood (e.g. Lachniet, 2009). In general,
lower temperatures should correspond to lower speleothem δ18O values and vice
versa. However, the δ18O response of individual cave systems might differ. For ex-15

ample, for central Europe Wackerbarth et al. (2010) suggested that this positive rela-
tionship may not be valid when accounting for the positive relationship between the
amount of winter precipitation and winter temperature. During warmer winters, the
larger amount of precipitation contributing to the recharge water, which has generally
lower δ18O values than summer precipitation, leads to lower drip water δ18O values.20

In total, higher winter temperatures (and higher mean annual temperatures) may, thus,
result in lower δ18O values for stalagmite calcite. In addition, in case of kinetic isotope
fractionation, higher drip rates (probably due to increased precipitation) would also re-
sult in lower δ18O values (Mühlinghaus et al., 2009; Scholz et al., 2009; Dreybrodt and
Scholz, 2011; Deininger et al., 2012). Therefore, we interpret the observed variations in25

speleothem δ18O as changes in both surface winter temperature and amount of winter
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precipitation. More positive δ18O values reflect cold and dry winters, whereas more
negative δ18O values represent warmer and more humid winters.

The smoothed δ18O record of Bu4 (21 point moving average) for the last 8 ka
(Fig. 4c) shows large similarities with the detrended and smoothed Mg/Ca record
(Fig. 4a). During relatively dry conditions (high Mg/Ca ratio), the δ18O values show5

more positive values than during relatively humid conditions (low Mg/Ca ratio). This
pattern is particularly pronounced between 7.8 and 7.3 ka, 6 and 5.5 ka, 2.8 and 2.2 ka
and during the LIA. In contrast, this relationship of high Mg/Ca and high δ18O does not
hold for the period from 4.5 to 3.5 ka. As described above, changes in carbonate dis-
solution processes and PCP may be responsible for the observed variability in Mg/Ca.10

Variable PCP may also affect the δ18O signal. However, for the Bunker Cave stalag-
mites, PCP seems not to be of major importance for the δ18O values. This is confirmed
by the differences in the Mg/Ca ratios of Bu1 and Bu4 (Fig. 3a). Bu1 only shows small
variations in Mg/Ca indicating negligible PCP, but the δ18O values are very similar to
those of Bu4, which shows relatively large variations in Mg/Ca suggesting a strong in-15

fluence of PCP. Furthermore, peaks in Mg/Ca are in most cases not coeval with peaks
in δ18O, which provides additional evidence that PCP did not strongly influence the
speleothem δ18O values in Bunker Cave.

Data and modelling studies (Baldini et al., 2008; Langebroek et al., 2011) showed
that δ18O values in precipitation over central Western Europe are influenced by a North20

Atlantic Oscillation (NAO) like pattern. As argued in Langebroek et al. (2011), the cor-
relation pattern between the δ18O value of precipitation and atmospheric circulation
over Europe is a result of the combined effect of temperature and precipitation. Heat
and moisture are mainly transported to the European continent from the North Atlantic
by the westerlies. Therefore, climatic-related signals from the North Atlantic (e.g. the25

hematite-stained grains (HSG) record; Bond et al., 2001) and the Bunker Cave δ18O
record are expected to show similar variations (Fig. 5). Cold periods as indicated by
increased percentages of HSG indeed coincide in most cases with colder phases in
Western Germany (high δ18O values in speleothem calcite).
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Ostracod δ18O values from Lake Ammersee (von Grafenstein et al., 1998, 1999)
reflect the δ18O value of precipitation (Fig. 5b) over the northern rim of the Alps and
are here used to constrain the δ18O value of soil water above Bunker Cave. The signal-
to-noise ratio of the Ammersee data is comparable to that of the composite Bunker
Cave δ18O record (Fig. 5c). Throughout the Holocene, the composite δ18O record of5

the four Bunker Cave stalagmites shows values ranging from −7 to −5 ‰ and broadly
follows the precipitation δ18O signal reconstructed from Lake Ammersee. However,
the Bunker cave δ18O data highlight longer periods of high or low δ18O values whose
amplitude is also larger than that of the Ammersee record, suggesting that processes
in soil and cave may modify the δ18O value of the rainfall preserved in the stalagmites.10

In particular, variations in the (degree of) kinetic isotope fractionation may have a strong
influence.

When comparing the Bunker Cave δ18O record with the δ18O records from Atta Cave
(Niggemann, 2000; Niggemann et al., 2003), Katerloch (Boch et al., 2009) and Span-
nagel Cave (Vollweiler et al., 2006), a similar structure is observed in all records. This15

indicates that the signal encoded in the Bunker Cave stalagmites represents supra-
regional climate. A comparison of the composite Bunker Cave record and the other
European stalagmite archives (Fig. 5) with the HSG record from the North Atlantic
(Bond et al., 2001) suggests that the signal from the central European continent may
even be representative for the North Atlantic region and large parts of Europe.20

4.3.1 Little Ice Age vs. 8.2 ka event

Two prominent features in the composite Bunker Cave δ18O record (Fig. 5c) are the
8.2 ka event and the Little Ice Age (LIA), which occurred between 0.7 to 0.2 ka BP. The
LIA is characterized by high Mg/Ca ratios as well as prominent maxima in δ13C and
δ18O in the Bunker record. The δ18O values are the highest of the entire record. Ac-25

cording to our interpretation, this shows that during the LIA, central Europe experienced
anomalously cold and dry winter conditions in agreement with the cold conditions
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observed in the North Atlantic (Bond et al., 2001) and a pronounced negative anomaly
of the NAO during this period (Trouet et al., 2009).

Another prominent Holocene cold event was the 8.2 ka event. This abrupt event
brought generally cold and dry conditions to the Northern Hemisphere, in particular
during winter (Alley et al., 1997; Alley and Ágústsdóttir, 2005). This event was trig-5

gered by large amounts of melt water originating from the North American continent
that freshened the North Atlantic and influenced the North Atlantic circulation by a cur-
tailment of North Atlantic Deep Water (NADW) formation (Alley et al., 1997; Barber
et al., 1999; Rohling and Pälike, 2005). In Central-Northern Europe, this event led to
more negative δ18O values in precipitation (von Grafenstein et al., 1999; LeGrande10

and Schmidt, 2008). This depletion in rainfall δ18O is also recorded in the Bunker Cave
δ18O record (Fig. 5). However, the amplitude of the 8.2 ka event in the stalagmite record
is lower than in the Ammersee precipitation record. Furthermore, Mg/Ca ratios of the
Bunker Cave record are relatively low during the 8.2 ka event (Fig. 4a) suggesting av-
erage or slightly more humid conditions. Thus, climate conditions were probably not15

exceptionally dry in central Europe during the 8.2 ka event.

5 Conclusions

A multi-proxy study of four Holocene speleothems from Bunker Cave is presented.
The Mg/Ca ratio, δ13C and δ18O data allow a consistent reconstruction of past winter
climate variability in central Europe. High Mg/Ca values in the detrended record depict20

dry periods within the Holocene. Accordingly, high δ13C values of the detrended record
are ascribed to low drip rates due to dry conditions above the cave. More positive
δ18O values during the last 10.8 ka reflect lower winter temperature and less winter
rainfall. An exception in this context is the 8.2 ka cold event, which shows a prominent
negative δ18O excursion. This is ascribed to a negative anomaly in the δ18O values25

of precipitation over central Europe triggered by changes in the North Atlantic Ocean
circulation due to increased freshwater input. The δ18O values from the Bunker Cave
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stalagmites agree well with other central European climate archives as well as with
records from the North Atlantic. Cold and dry periods are observed between 9 and
7 ka, 6.5 and 5.5 ka, 4 and 3 ka as well as between 0.7 to 0.2 ka.
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Holzhauser, H., Magny, M., and Zumbühl, H. J.: Glacier and lake-level variations in West-
Central Europe over the last 3500 yr, Holocene, 15, 789–801, 2005. 169025
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Pleistocene and Holocene glacier variations in the European Alps, Quaternary Sci. Rev., 28,
2137–2149, 2009. 16905
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Table 1. Uranium and thorium isotopic compositions and 230Th ages for Bunker Cave stalag-
mites Bu1, Bu2, Bu4 and Bu6 measured by TIMS. Errors are 2σ analytical errors. Corrected
230Th ages assume an initial 230Th/232Th concentration ratio of 3.8±1.9.

Sample ID 238U 232Th δ234U (230Th/238U) ageuncorrected agecorrected
[ppb] [ppt] [‰] act. ratio [ka BP] [ka BP]

Bu1

Bu1 – 2 cm 44.4±0.1 36±2 390±11 0.0078±0.0027 0.57±0.21 0.56±0.21
Bu1 – 3.3 cm∗ 48.08±0.1 274±29 354±10 0.0082±0.0023 0.72±0.18 0.60±0.20
Bu1 – 9 cm 58.5±0.1 57±1 332±8 0.0139±0.0017 1.11±0.14 1.09±0.14
Bu1 – 14 cm 39.8±0.1 74±1 336±8 0.0193±0.0019 1.57±0.16 1.53±0.16
Bu1 – 31 cm 61.5±0.1 1004±8 292±4 0.0547±0.0052 5.02±0.46 4.66±0.48
Bu1 – 35 cm 60.4±0.1 1403±8 283±5 0.0581±0.0014 5.50±0.13 4.98±0.30
Bu1 – 39.5 cm 68.6±0.1 661±4 252±9 0.0653±0.0026 6.00±0.25 5.78±0.28
Bu1 – 42 cm 84.6±0.1 1317±6 287±4 0.0737±0.0025 6.70±0.23 6.36±0.29
Bu1 – 46 cm 90.7±0.2 100±1 278±6 0.0735±0.0017 6.42±0.16 6.40±0.15
Bu1 – 49 cm 120.6±0.1 891±8 271±6 0.0759±0.0065 6.81±0.59 6.64±0.59

Bu2

Bu2 – 1 cm 57.1±0.1 2099±19 440 ±9 0.0989±0.0029 8.39±0.25 7.66±0.46
Bu2 – 4 cm 116.6±0.2 221±3 437±7 0.1174±0.0033 9.24±0.27 9.20±0.27
Bu2 – 5.5 cm 135.9±0.1 597±3 442±5 0.1288±0.0021 10.20±0.18 10.11±0.18
Bu2 – 7 cm 191.6±0.2 304±2 564±4 0.1469±0.0025 10.68±0.19 10.65±0.19

Bu4

Bu4 – 1.45 cm∗ 66±0.1 54±33 662±24 0.0135±0.0022 0.85±0.15 0.83±0.15
Bu4 – 3 cm 79.5±0.2 47±0 501±7 0.0157±0.0019 1.10±0.14 1.09±0.14
Bu4 – 5.5 cm 75.4±0.2 1881±9 514±7 0.0204±0.0011 1.89±0.08 1.42±0.26
Bu4 – 7 cm 72.0±0.1 590 ±4 548±7 0.0256±0.0020 1.91±0.14 1.76±0.16
Bu4 – 9 cm 68.6±0.1 227±2 582±8 0.0361±0.0018 2.52±0.13 2.46±0.13
Bu4 – 10.15 cm∗ 57.7±0.1 592±31 558±10 0.0480±0.0022 3.53±0.16 3.35±0.19
Bu4 – 12 cm 95.8±0.2 390±2 598±7 0.0569±0.0021 3.96±0.15 3.89±0.16
Bu4 – 13.6 cm∗ 102.9±0.2 1038±27 587±7 0.0724±0.0016 5.20±0.11 5.02±0.15
Bu4 – 15.1 cm∗ 69.1±0.1 2019±27 664±7 0.0888±0.0034 6.39±0.24 5.89±0.36
Bu4 – 17.1 cm∗ 69±0.1 1200±41 600±10 0.1027±0.0051 7.45±0.37 7.14±0.41
Bu4 – 19.25 cm∗ 84.1±0.2 368±30 537±9 0.1103±0.0029 8.11±0.22 8.03±0.23

Bu6

Bu6 – 0.8 cm 219.1±0.4 1437±8 277±4 0.0996±0.0017 8.93±0.16 8.78±0.18
Bu6 – 2.5 cm 199.4±0.4 333±2 271±5 0.1127±0.0018 10.08±0.18 10.04±0.18
Bu6 – 3.8 cm 237.0±0.5 2779±14 275±6 0.1190±0.0032 10.86±0.30 10.59±0.34

* Samples marked by an asterisk indicate addition of extra Th (see Sect. 2.2).
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Table 2. 14C activity of the top sections from stalagmites Bu1 and Bu4.

sample depth HD analysis 14C activity 1σ error
name [mm] number [pm C] [pm C]

Bu1 xix 0.1±0.1 29116 91.35 0.25
Bu1 xx 0.5±0.3 29117 91.81 0.24
Bu1 x 1.0±0.5 26607 91.14 0.25

Bu4 Top 0.05±0.05 28403 97.44 0.27
Bu4 1 mm 0.6±0.5 28404 100.15 0.26
Bu4 2 mm 1.6±0.5 28405 87.83 0.23
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Fig. 1. Map of Central Europe showing the location of Bunker Cave. Central Europe is strongly
influenced by the westerly wind system (indicated by the black solid arrow). The four studied
stalagmites from Bunker cave are shown on the right. For Bu2, only the Holocene part of the
sample is shown.
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Fig. 1. Map of Central Europe showing the location of Bunker Cave. Central Europe is strongly influenced by

the westerly wind system (indicated by the black solid arrow). The four studied stalagmites from Bunker cave

are shown on the right. For Bu2, only the Holocene part of the sample is shown.

Fig. 2. Th/U ages (solid squares) and associated 2σ-uncertainties as well as the age-depth models (solid line) for

the four stalagmites calculated using iscam (Fohlmeister, submitted).The shaded areas define the 2σ-uncertainty

range. The thin dotted lines denote periods that are contained in two stalagmites (i.e., overlapping sections).

19

Fig. 2. Th/U ages (solid squares) and associated 2σ-uncertainties as well as the age-depth
models (solid line) for the four stalagmites calculated using iscam (Fohlmeister, 2012).The
shaded areas define the 2σ-uncertainty range. The thin dotted lines denote periods that are
contained in two stalagmites (i.e. overlapping sections).
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Fig. 3. Time series of 100*Mg/Ca (a), petrographic logs (b), δ13C (c) and δ18O (d) for Bu1
(grey), Bu4 (red), Bu2 (blue) and Bu6 (magenta). The vertical light grey lines represent large-
scale European cold events (i.e. the 8.2 ka event, 8.2 ka, and the Little Ice Age, LIA). Colour
code for the different fabrics are: blue: columnar; grey: elongated columnar; aqua: short colum-
nar; yellow: open columnar; pink: dendritic; orange: coralloids and/or detrital layers.
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Fig. 4. Comparison of the detrended and smoothed (21 point moving average) Mg/Ca ratio (a) and δ13C record

(b) with the smoothed (21 point moving average) δ18O record (c) of Bu4. The vertical light grey boxes represent

the 8.2 ka event and the LIA. The yellow boxes represent periods of below average precipitation as indicated

by elevated Mg/Ca ratios.
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Fig. 4. Comparison of the detrended and smoothed (21 point moving average) Mg/Ca ratio
(a) and δ13C record (b) with the smoothed (21 point moving average) δ18O record (c) of Bu4.
The vertical light grey boxes represent the 8.2 ka event and the LIA. The yellow boxes represent
periods of below average precipitation as indicated by elevated Mg/Ca ratios.
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Fig. 5. (c) Composite δ18O record from Bunker Cave in comparison to (a) hematite-stained
grains from the North Atlantic (Bond et al., 2001), (b) Lake Ammersee (about 550 km south-
east of Bunker Cave) a proxy of δ18O of meteoric precipitation (von Grafenstein et al., 1998,
1999), (d) δ18O record from Katerloch (Boch et al., 2009), (e) δ18O record from stalagmite AH1
(Niggemann, 2000; Niggemann et al., 2003) from the Atta Cave (about 50 km south of Bunker
Cave) and (f) the δ18O record from the Austrian Alps (COMNISPA, Vollweiler et al., 2006). Thin
grey lines represent the original data, which were smoothed with an 11-point moving average
(coloured thick lines). The Ammersee data between 5.35 and 0.8 ka and the AH1 data between
8.5 and 6 ka BP are not smoothed due to their low temporal resolution. The AH1 data are shown
on a new age-scale calculated with StalAge (Scholz and Hoffmann, 2011).
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