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Abstract.

Global biogeochemical ocean models help to investigate the present and potential future state of the ocean biogeochemistry,

its productivity and cascading effects on higher trophic levels such as fish. They are often subjectively tuned against data sets of

inorganic tracers and surface chlorophyll and only very rarely against organic components such as particulate organic carbon

or zooplankton. The resulting uncertainty in biogeochemical model parameters (and parameterisations) associated with these5

components can explain some of the large spread of global model solutions with regard to the cycling of organic matter and

its impacts on biogeochemical tracer distributions, such as oxygen minimum zones (OMZs). A second source of uncertainty

arises from differences in the model spin-up length, as, so far, there seems to be no agreement on the required simulation time

that should elapse before a global model is assessed against observations.

We investigated these two sources of uncertainty by optimising a global biogeochemical ocean model against the root-mean-10

squared error (RMSE) of six different combinations of data sets and different spin-up times. Besides nutrients and oxygen,

the observational data sets also included phyto- and zooplankton, as well as dissolved and particulate organic phosphorus. We

further analysed the optimised model performance with regard to global biogeochemical fluxes, oxygen inventory and OMZ

volume.

The optimisations resulted in optimal model solutions that yield similar values of the RMSE of tracers mainly located in15

surface layers, showing a range of between 14% of the average RMSE after 10 years and 24% after 3000 years of simulation.

Global biogeochemical fluxes, global oxygen bias and OMZ volume showed a much stronger divergence among the models and

over time than RMSE, indicating that even models that are similar with regard to local surface tracer concentrations can perform

very differently when assessed against the global diagnostics for oxygen. Considering organic tracers in the optimisation had

a strong impact on the particle flux exponent (“Martin b”) and may reduce much of the uncertainty in this parameter and the20

resulting deep particle flux. Independent of the optimisation setup, the OMZ volume showed a particularly sensitive response

with strong trends over time even after 3000 years of simulation time (despite the constant physical forcing), a high sensitivity

to simulation time, as well as the highest sensitivity to model parameters arising from the tuning strategy setup (variation of

almost 80% of the ensemble mean).
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In conclusion, calibration against observations of organic tracers can help to improve global biogeochemical models even25

after short spin-up times; here, especially observations of deep particle flux could provide a powerful constraint. However,

a large uncertainty remains with regard to global OMZ volume and its evolution over time, which can show a very dynamic

behaviour during the model spin-up, that renders temporal extrapolation to a final ’equilibrium’ state difficult, if non impossible.

Given that the real ocean shows variations on many timescales, the assumption of observations representing a steady-state ocean

may require some reconsideration.30

1 Introduction

Global biogeochemical ocean models serve as useful tools to generate spatially and temporally consistent global fields of

dissolved and particulate ocean tracers, such as nutrients, oxygen, or organic constituents, from sparse observations. More

important, when embedded in Earth system models, they can be used to investigate the present state of the ocean and its

biogeochemistry, including its productivity (e.g. Kwiatkowski et al., 2017), up to higher trophic levels (e.g. Chust et al., 2014;35

Stock et al., 2014) and fish (Galbraith et al., 2017; Mullon et al., 2017; Stock et al., 2017) as well as its sensitivity to a changing

climate. Besides direct effects of productivity on fish production, complex feedback processes, in particular when leading to

ocean deoxygenation and expanding oxygen minimum zones (OMZs), are likely to impact on stock and recruitment of fish. For

example, the amount of organic matter produced at the surface, exported to and recycled within the mesopelagic zone (about

200-1000 m) can have significant effects on OMZs. Complex interactions between different biogeochemical components can40

lead to large uncertainties with regard to the location and extent of OMZs simulated by global models (Cabre et al., 2015;

Kriest and Oschlies, 2015), which may hamper our ability to reproduce and project the habitat of commercially relevant,

oxygen-sensitive fish species (Stramma et al., 2012).

Relevance and prospects of marine biogeochemical model applications seem obvious, but challenges remain in finding un-

ambiguous solutions of the global distribution and flux of mass, and in quantifying uncertainties of respective model estimates45

(Schartau et al., 2017). The choice of values assigned to the biogeochemical model parameters is known to have considerable

effects on model performance (Kriest et al., 2010, 2012). Albeit undisputed, problems of parameter identification remain un-

derrated, and sensitivity analyses of the entire parameter space are the exception rather than the rule, even at local or regional

scales (Arhonditsis and Brett, 2004; Leles et al., 2016). Far less than half of the studies used observations of all state variables

that are resolved by the respective models for their model validation. If narrowed down to global biogeochemical model ap-50

plications, validation becomes more difficult, due to the sparsity and type of data available at a global scale: while the global

coverage of concentration measurements of nutrients or oxygen is relatively good, observations of plankton and organic matter

are less abundant. Such disproportion in data availability can be precarious, since the model fit to dissolved inorganic tracers

may become improved at the cost of the model’s representation of organic properties; an invidious situation that may induce a

“calibration bias” (Arhonditsis and Brett, 2004).55

During model calibration, this bias can have significant effects in optimal parameter estimates, and may affect model per-

formance with regard to simulated biogeochemical fluxes such as primary and secondary production. For instance, amongst
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different model configurations that yield equally good fits to global nutrients and oxygen concentrations (with differences

between root mean square errors �RMSE  6%), Kriest et al. (2017) revealed significant differences in primary production

(17%) and grazing (84%). Also, different tuning approaches might explain some of the spread in global primary production60

found in global model inter-comparisons (Bopp et al., 2013; Kwiatkowski et al., 2014). When primary (and sometimes sec-

ondary or export) production simulated by biogeochemical (BGC) models is used to estimate present and future stocks and

production of higher trophic levels (HTL) or fish (Galbraith et al., 2017; Mullon et al., 2017; Stock et al., 2017), it is likely that

BGC model uncertainties will propagate into HTL estimates.

Another important aspect of model uncertainty relates to the models’ spin-up time. Because of the slow ocean overturning65

circulation, it requires millennia of numerical integration to reach an equilibrated biogeochemical state on a global scale

(Wunsch and Heimbach, 2008). However, given the high computational demand of global models, we find a wide variety of

model spin-up times, from decades (e.g. Dietze and Loeptien, 2013; Kwiatkowski et al., 2014; Henson et al., 2015; Le Quere

et al., 2016) up to centuries and even millennia (e.g. 200-12.000 years; Seferian et al., 2013); sometimes model parameters

are adjusted during spin-up (Lindsay et al., 2014). Given the wide range of model spin-up times, we may find some unwanted70

impact on model ranking in inter-comparison studies (Seferian et al., 2013). While a short-term simulation and calibration

effort may provide valuable insight to plankton dynamics and may help constraining predominant seasonal variations at the

sea surface (Doney et al., 2009; Le Quere et al., 2016), inferences with respect to long-term, large-scale changes in the deep

ocean remain unwarranted: For example, a model setup, that yields good model performance after a few decades or centuries

of simulation can give rise to unfavourable model results with regard to large scale tracer distributions and inventories on75

millennial timescales (Seferian et al., 2013; Kriest and Oschlies, 2015).

We here investigate driving factors that contribute to potential biases in parameter tuning and analyse their effect on global

model performance with regard to several combinations of metrics, parameters to be calibrated, and simulation time scales.

Initially, we optimised four parameters that determine the turnover of organic matter in the euphotic zone of a global biogeo-

chemical ocean model and two parameters related to oxygen consumption and particle export (with two different ranges of80

potential parameter values). The choice of the six parameters was partly motivated by the results from earlier optimisations

(Kriest et al., 2017, 2020); we also aimed at every parameter affecting directly at least one of the simulated compartments.

This basic optimisation procedure is constrained by surface observations of all of our model’s biogeochemical tracers, namely

phosphate, nitrate, oxygen, and dissolved organic matter (DOM), as well as observational counterparts for particulate organic

components (phytoplankton, zooplankton and detritus). By doing so, we obviate any tendency of the optimisation procedure85

to reduce misfits in inorganic tracer concentrations to the disadvantage of (otherwise unconstrained) organic components, such

as DOM or plankton biomass. In three further experiments we then successively omitted observations of organic constituents

and reduced the numbers of parameters to be optimised. Because especially changes in plankton parameters affect model per-

formance mainly at the surface, which adjusts on timescales of years (see also Le Quere et al., 2016), these five optimisations

were carried out after a spin-up of only 10 years. A final optimisation then applies a spin-up of 3000 years.90

To account for the unresolved effects on deep tracer concentrations over long time scales, we also investigate how the optimal

model solutions of the short-term optimisations perform globally after 3000 years, when the effects of model parameters are
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propagated to the deep ocean via the large-scale ocean overturning circulation. This examines whether the model solutions

that perform “best” at the ocean surface on decadal time scales are also appropriate in the context of longer time and larger

spatial scales. In our analysis of optimised model result we not only evaluate the tracer residuals, but also examine the effect95

of calibration on global biogeochemical tracer fluxes, oxygen inventory and OMZ volume, as potentially important interfaces

to higher trophic levels.

2 Model structure and optimisations

2.1 Ocean biogeochemical model

All model simulations and optimisations apply the Transport Matrix Method (TMM; Khatiwala, 2007, 2018), which represents100

the joint effects of advection and mixing in the form of monthly mean transport matrices (TMs) derived from a circulation of

the Estimating the Circulation and Climate of the Ocean (ECCO) project. ECCO provides circulation fields that yield a best

fit to hydrographic and remote sensing observations over the 10-year period 1992 through 2001 with a horizontal resolution

of 1�⇥ 1� and 23 levels in the vertical (Stammer et al., 2004). Monthly mean wind speed, temperature and salinity of the

same model are used to compute air-sea gas exchange of oxygen and temperature-dependent growth of phytoplankton and105

cyanobacteria.

The biogeochemical model describes the cycling of phosphorus, nitrogen and oxygen in a stoichiometrically consistent man-

ner (MOPS -“Model of Oceanic Pelagic Stoichiometry”; Kriest and Oschlies, 2015). The model contains seven components,

of which five are calculated in phosphorus units, namely phytoplankton, zooplankton, detritus, dissolved organic phosphorus

and phosphate. Additionally, nitrate and oxygen are simulated, with biogeochemical interactions among the different elements110

coupled via fixed stoichiometric ratios. In contrast to the fixed phosphorus inventory, total nitrogen can be altered in response

to variations in denitrification and nitrogen fixation. Likewise, the oxygen inventory may change according to variations in

model parameters, in combination with air-sea gas exchange and circulation. Details of the model can be found in Kriest and

Oschlies (2015), and the initial calibration of the model is described in Kriest et al. (2020), optimisation ECCO⇤, which serves

as starting point for the optimisations presented here.115

2.2 Data sets for optimisation

To assess model skill for all seven simulated tracers we have compiled a data set of corresponding observations as detailed

in Appendix A1. Similar to the optimisations by Kriest et al. (2017) and Kriest et al. (2020), simulated nutrients and oxygen

are assessed against the objectively analysed data of Garcia et al. (2006a) and Garcia et al. (2006b). For phytoplankton we

use surface chlorophyll data derived from remote sensing (Malin, 2013), converted to phytoplankton phosphorus by applying120

the algorithm by Sathyendranath et al. (2009) while assuming a fixed molar carbon-to-phosphorus ratio of 122 mol C:mol P.

The simulated zooplankton biomass is evaluated against annual averages, derived from monthly mesozooplankton biomass

data provided by Moriarty and O’Brien (2013). According to a preceding analysis at the few locations where both micro- and
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mesozooplankton data are available, annual averages of mesozooplankton biomass are similar to those of microzooplankton

biomass (see Appendix A1). Therefore we assume the simulated bulk zooplankton biomass can be compared against meso-125

zooplankton biomass observations that are multiplied by a factor of two. Because there is no direct observational equivalent to

simulated detritus, we assume that simulated phytoplankton, half of the model’s zooplankton (i.e., the less motile microzoo-

plankton component) and detritus contribute to particulate organic matter (POM), and compare this quantity to the data set by

Martiny et al. (2014). In contrast to the other data types we here consider the entire vertical domain. Finally, observations of

DOP were compiled from various sources, covering locations in the Atlantic, Pacific and Indian Ocean (see Appendix A1).130

2.3 Misfit function

Model misfit (i.e, the cost function applied during optimisation) is calculated by the root-mean-square error (RMSE) between

simulated and observed annual tracers, mapped onto the respective three-dimensional model geometry (see also Kriest et al.,

2017; Kriest, 2017; Kriest et al., 2020). Deviations between model and observations are weighted by the volume of each

individual grid box, Vi, expressed as the fraction of total ocean volume where observations exist for tracer j, V T
j . The sum135

of weighted deviations is then normalised by the global mean concentration of the observational data of tracer j (oj), and the

resulting dimensionless numbers are added to provide the scalar misfit over all seven tracers:

JRMSE =
7X

j=1

JRMSE(j) =
7X

j=1

1
oj

vuut
NjX

i=1

(mi,j � oi,j)2
Vi

V T
j

(1)

j = 1,2, ...,7 indicates the tracer type (phosphate, nitrate, oxygen, phytoplankton, zooplankton, dissolved and particulate

organic phosphorus) and i = 1, ...,Nj denotes the model grid boxes where observations exist. oi,j are the observations (in units140

of mmol P m�3 for all tracers except nitrate and oxygen), and mi,j the model equivalents. For a model that deviates from the

observations by less than the global mean value of each observed variable, the cost function value is smaller than 7.

2.4 Experimental setup

Using MOPS coupled to ECCO TMs, Kriest et al. (2020) optimised six biogeochemical model parameters against global

nutrients and oxygen, following a model spin-up of 3000 years (ECCO⇤ in Kriest et al., 2020). To explore the effects of data145

sets and spin-up length we modified the setup by Kriest et al. (2020) and performed five optimisations that have the following

common characteristics:

– Starting from observed inorganic tracer distributions and globally constant organic tracer concentrations (as in Kriest

et al., 2020), model spin-up time was only 10 years before the evaluation of Eqn. 1.

– Because of the short spin-up time, and our focus on the adjustment of parameters related to surface processes, calculations150

of the models’ fits to nutrient and oxygen concentrations were restricted to the upper 100 m.
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These five optimisations differed with respect to i) their combinations of organic tracers considered in the misfit function,

and ii) the number, type, and variational ranges of parameters to be optimised, Table 1. The five short-term optimisations are

complemented by a sixth one, in which we spun up the model over 3000 years before evaluating an extended misfit function

that includes nutrients and oxygen throughout the entire vertical domain, in addition to surface plankton and particulate organic155

matter (Table 1). The six optimisations are identified by the length of the spin-up time (“S” for short and “L” for long), the

number of parameters to be optimised (four or six), and – starting from optimisations against all tracer types (“All”) the

successive removal of specific tracer types (“-DOP”, “-Org”) or spatial domains (“SO”, see below) from the misfit function:

S6⇤-All: Wide boundaries for the particle flux exponent In our initial optimisation we allow the detritus sinking speed, ex-

pressed through the particle flux exponent b (see also Kriest and Oschlies, 2008, 2015), to vary between 0.5 to 1.8. The160

other five parameters subject to optimisation are the light affinity of phytoplankton (expressed as a half-saturation irra-

diance Ic), the maximum zooplankton growth rate (µZOO), two parameters that regulate production and decay of DOP

(�DOP and �DOP, respectively), and the oxygen demand for every mole phosphorus remineralised, R�O2:P.

S6-All: Narrow boundaries for the particle flux exponent This setup is similar to S6⇤-All, but with values of the particle

flux exponent b being restricted to a lower bound of 1. With such restriction we follow findings of earlier optimisations165

where estimates of optimal b ranged between 1 (Kwon and Primeau, 2006) up to 1.46 (Kriest et al., 2020).

S6-DOP: Excluding DOP data Based on S6-All we here exclude DOP data from Equation 1, which allows us to investigate

the relevance of DOP data for constraining the estimates of the six parameters of interest.

S4-SO: Excluding Southern Ocean phytoplankton data For experiment S4-SO we reduce the number of parameters for

optimisation, simply by adopting the best estimates of the DOP parameters obtained from S6-All. Furthermore, we170

exclude DOP and chlorophyll data south of 40�S, which embraces large HNLC (high nutrients low chlorophyll) regions

where phytoplankton growth is limited by iron. With this approach we want to analyse whether the neglect of iron

limitation in MOPS yields a bias in parameter estimates of the light affinity and/or zooplankton grazing. Such biased

estimates may result from parameter adjustments that compensate for the unresolved iron limitation in HNLC regions.

S4-Org: Excluding all organic data Optimisation S4-Org tests the impact of organic tracer data and how they can affect175

optimal parameter estimates and model performance in general. The setup of S4-Org is similar to S4-SO, but it excludes

observations of organic tracers everywhere, which leaves only surface data (0-100 m) of nutrients and oxygen to enter

Equation 1.

L4-SO: Including deep nutrients and oxygen We finally investigate the impact of deep nutrient and oxygen concentrations

on the optimal model solution by extending the model spin-up time to 3000 years and then consider global nutrients180

and oxygen in the evaluation of the misfit function. Otherwise the setup is the same as for S4-SO, i.e. with DOP and

phytoplankton data excluded south of 40�S.
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The six models setups with the respective optimised parameter sets were analysed at two time slices, namely after 10

and 3000 years of spin-up. With these cross-validation model runs we investigate the impact of spin-up time on the model

performance on various time scales. In particular, we extend all model runs of the optimal S-scenarios to 3000 years; likewise,185

we also analyse model performance of L4-SO after 10 years of simulation. For a consistent comparison of model performance

after optimisation we always include all tracers in the different metrics, regardless of the contribution to the misfit during

optimisation.

Table 1. Experimental setup of different model runs and optimisations: range of parameters and data sets included in equation 1. Parameter

values in italics are fixed, i.e. not subject to optimisation.

S6⇤-All S6-All S6-DOP S4-SO S4-Org L4-SO Unit

Spin-up time

10 3000 years

Parameters

Ic 4-48 W m�2 d�1

µZOO 1-3 d�1

R�O2:P 150-200 mol O2:mol P

b 0.5-1.8 1-1.8

�DOP 0-0.5 0

�DOP 0.036-36 0.1848 y�1

Observations

PO4 0-100m full depth (mmol P) m�3

NO3 0-100m full depth (mmol N) m�3

O2 0-100m full depth (mmol O2) m�3

DOP 0-100m - (mmol P) m�3

surface Phy global 40�S-80�N - 40�S-80�N mmol P m�3

Zoo 0-100m - 0-100m (mmol P) m�3

POP full - full depth (mmol P) m�3

Optimisations were carried out using an evolutionary Estimation of Distribution Algorithm, namely the Covariance Matrix

Adaption Evolution Strategy (CMA-ES; Hansen and Ostermeier, 2001; Hansen, 2006). A detailed description of how this190

algorithm is embedded in the coupled biogeochemistry-TMM framework is given in Kriest et al. (2017). Briefly, during each

iteration (“generation”) the algorithm defines a population of 10 individuals (10 biogeochemical parameter vectors of length

n for n parameters to be optimised), sampled from a multivariate normal-distribution in Rn. For every individual parameter

vector the model is run for a ten years period (in the S-scenarios) or 3000 years (L4-SO). Results of the corresponding model

solution are evaluated via the misfit function (Equation 1). The statistical properties of the current population, as well as of195

previous generations, are used to update a mean vector and a (scaled) covariance matrix, whose elements reveal how sensitive
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the misfit function is to specific variations of parameter values. An ensemble of new parameter values is sampled according to

the updated mean estimates and covariance matrix in Rn respectively. With the repeated updates, the parameter sampling space

is gradually adapted towards a region of lower misfit function values until no further reduction of the lowest misfit function

value can be achieved. Ideally, the mean of the final ensemble of parameter estimates represent the global minimum of the200

parameter-misfit function manifold.

3 Results and discussion

We first evaluate the performance of the optimisation procedure and compare the optimised model solutions against the best

solution obtained with ECCO⇤ in Kriest et al. (2020), for which global data of nutrients and oxygen were introduced and a

model spin-up of 3000 years was considered. We then evaluate the contribution of the different data types to the model misfit205

function (Eqn. 1), as well as to the model performance measured by independent diagnostics: i) Pearson correlation coefficient,

ii) unweighted RMSE against all observations, iii) biogeochemical fluxes, such as primary production or particle flux, iv) global

oxygen inventory and v) OMZ volume. Results of these skill metrics are also contrasted with those obtained in earlier global

model studies. We finally compare the spread of model solutions that arise from the distinct optimisation setups (Table 1) with

those obtained on different simulation timescales.210

3.1 Optimal parameter estimates and optimisation performance

The different optimisation setups generate parameter estimates that are all distinct from those originally derived for the ref-

erence ECCO⇤ configuration (see Table 2). Optimal estimates of the half-saturation irradiance, Ic, are at least twice as high

as that of ECCO⇤. These higher estimates reduce the light affinity of the phytoplankton in our ensemble of optimal model

solutions. Apart from the S4-Org setup, optimal values of the maximum grazing rate µZOO exceed the ECCO⇤ estimate. A215

reduced light affinity together with an enhanced grazing pressure can be expected to reduce maxima in phytoplankton biomass.

Only the S4-Org setup, for which all organic data are excluded from the misfit function, comprises a value for the maximum

grazing rate that is much lower than that of ECCO⇤. Notably, it is this particular setup that also yields the highest possible value

of the exponent of the particle flux profile (b=1.8), which enhances shallow remineralisation of particulate organic matter and

reduces the particle flux to the ocean interior. For all other setups, estimates of b remain lower (0.8 to ⇡ 1) than the ECCO⇤220

reference value (b=1.46). Optimal estimates of R�O2:P, which regulates oxygen demand of remineralisation, are always larger

than that of ECCO⇤, with values for S6-DOP and S4-Org at its upper limit of 200 mol O2:mol P. In general, best model fits

to observations are achieved when the fraction of DOP production (�DOP), which regulates the production of DOP through

zooplankton sloppy feeding and phytoplankton exudation, has values that are one third that of ECCO⇤ or lower. We note that

another source of DOP is a linear mortality rate of phyto- and zooplankton of 0.01 d�1 (see Kriest and Oschlies, 2015). Values225

of the DOP decay rate (�DOP) are almost indifferent from ECCO⇤, except for a higher rate estimate in the S6⇤-All setup.

The efficiency of the optimisation procedure can be deduced from the number of generations required for convergence (L

in Table 2). The number of generations for identifying an optimal solution is not affected by the imposed range of possible
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Table 2. Results of different model optimisations: number of generations L until optimisation convergence, final optimal metrics JRMSE

(Equation 1) and optimal parameters (in italics: parameter values fixed in the respective optimisation). Values in squared parentheses show

the range of parameter values for which the misfit function is within 0.1% of its minimum value. Note that the misfit JRMSE presented here

includes every tracer and region, even if disregarded during optimisation. For comparison we also provide the parameter estimates and the

misfit of the configuration ECCO⇤ described in Kriest et al. (2020), which resulted from an optimisation against global nutrients and oxygen

after a spin-up of 3000 years.

S6⇤-All S6-All S6-DOP S4-SO S4-Org L4-SO ECCO⇤

L 140 138 349 87 115 39 -

JRMSE 6.030 6.052 6.082 6.046 6.874 6.125 7.072

Optimal parameters:

Ic 34.44 33.98 31.57 28.84 38.38 22.11 9.65

[ 31.4- 37.4] [ 31.5- 35.0] [ 28.3- 34.7] [ 26.0- 39.9] [ 32.4- 39.9] [ 17.2- 25.2]

µZOO 2.801 2.594 2.895 2.807 1.021 2.369 1.893

[ 2.63- 2.87] [ 2.45- 2.72] [ 2.63- 3.00] [ 2.44- 3.00] [ 1.00- 1.33] [ 2.10- 2.79]

R�O2:P 187.8 188.3 200.0 200.0 189.5 169.3 151.1

[ 185.9- 193.6] [ 181.3- 190.4] [ 194.0- 200.0] [ 184.9- 200.0] [ 180.0- 190.6] [ 161.8- 175.9]

b 0.803 1.000 1.000 1.000 1.800 1.024 1.461

[ 0.77- 0.83] [ 1.00- 1.02] [ 1.00- 1.04] [ 1.00- 1.03] [ 1.78- 1.80] [ 1.00- 1.09]

�DOP 0.028 0.000 0.049 0.000 0.000 0.000 0.150

[ 0.02- 0.07] [ 0.00- 0.00] [ 0.00- 0.07]

�DOP 0.238 0.184 0.168 0.184 0.184 0.184 0.170

[ 0.20- 0.34] [ 0.15- 0.22] [ 0.12- 0.24]

parameter values for b, as apparent when comparing setup S6-All (L=138) and the setup S6⇤-All (L=140). Clearly, DOP data

are helpful to constrain the full set of six model parameters to be optimised. This is indicated by the large number of iterations230

(L = 349) needed for the optimisation S6-DOP. Yet, even in the absence of DOP data and despite a likely larger number of

iterations, our results reveal that rate estimates of DOP production and decay can be obtained, similar to estimates achieved

with DOP data included. When fixing values of the two DOP parameters to their best estimates of S6-All, the number of

parameters to be optimised is reduced to four (S4-SO and S4-Org) and convergence is accomplished faster (L=87 and 115,

respectively). The fastest convergence is achieved by extending the model spin-up time and by the additional consideration of235

the deep nutrients in L4-SO. However, this comes at the cost of a 300-fold increase in simulation time.

Regardless of the optimisation setup, values of the minima of the normalised misfit function JRMSE are mostly similar

among the different model setups optimised against organic tracers, when the misfit is evaluated a posteriori for all tracers and

regions (Table 2 and Figure 1). Compared to solution of ECCO⇤, which shows a misfit of 7.072, JRMSE decreases between

14% (S6-DOP, JRMSE = 6.082) to 15% (S⇤6-All, JRMSE = 6.03) in optimisations that include organic tracers (Table 2 and240
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Figure 1). Excluding organic tracers in the optimisation (S4-Org) results in a misfit that is only a few percent smaller than that

of ECCO⇤, an optimised solution that disregarded organic tracers as well. Thus, a 14% to 15% reduction of the misfit appears

as a robust result, when introducing organic tracers as additional constraints.

To summarise, considering the trade-off between simulation time (S- vs. L-setups), number of iterations required (L in Ta-

ble 2), and improvement of the misfit (Eqn. 1) for all tracers and regions, apparently a good prior estimate of the production245

and decay parameters for DOP as in S4-SO helps to achieve a reasonable model fit to observations, while keeping the computa-

tional costs relatively low. In contrast, the omission of organic observations from the misfit function, as in S4-Org, deteriorates

the model fit to observations in the upper 100 m and on shorter time scales.

3.2 Optimal model performance for various surface metrics on different time scales

Improved fits to surface nutrients are achieved from the optimisations, exhibiting a substantial reduction in JRMSE down to250

about one half that of ECCO⇤ (Figure 1 and Table S1). The improvement in representing particulate organic tracer concen-

trations is less pronounced (less than 10%), in contrast to a reduction of JRMSE by about 25% for the consideration of DOP

measurements. Much of the adjustment is due to a reduction in bias, which decreases to less than 5% that of ECCO⇤ for plank-

ton and DOP, and becomes less than 20% for nutrients (Figure 1 and Table S1). However, the inorganic tracers’ contribution

to the total misfit function (Eqn. 1) is small, whereas the organic tracers – in particular: POP and zooplankton – still have a255

considerable residual misfit.

The large remaining misfit can be explained by a lack of spatial correlation between observed and modelled patterns, as evi-

dent from Taylor diagrams in Figure 2. Even after optimisation the correlation coefficients of the different organic components

remain low, between 0.3 and 0.4 for phytoplankton and less than 0.2 for zooplankton. Likewise, RMSE’ (centered RMSE, i.e.

RMSE with bias subtracted; in Figure 2 visible as the distance of a symbol from “1” on the abscissa) is quite large. Thus, an260

optimisation, with observations of organic tracers included, does not reduce the pattern error (r and RMSE’), which explains

the similar performance of S4-Org compared to the other model setups. This lack of improvement in simulated patterns can

likely be attributed to a too coarse spatial resolution (1�⇥ 1�), and the episodic nature of data sets of organic tracers, which

cannot be resolved by annual mean tracer distributions resulting from a climatological circulation. In addition, the large resid-

ual pattern error might also reflect errors in the circulation, that the optimisation of biogeochemical model parameters can, of265

course, not correct.

Simulated organic tracers exhibit a spatial variability that is much lower compared to observations in all setups where

organic tracers are considered (Figure 2). The solution of S4-Org yields a greater spatial variability of (phyto)plankton and

POP, which actually agrees better with the observed variability. The larger variability of organic components in S4-Org likely

arises because of its large optimal value for b, which triggers shallow remineralisation, and thus a larger nutrient supply to270

the surface. Combined with a low grazing rate this allows phytoplankton to reach higher phytoplankton biomass (Figure S1),

thereby generating larger variance.

All metrics (JRMSE, RMSE’, correlation, variance and bias) expose similar responses to parameter changes after a simulation

time of 3000 years (Figures 1 and 2, right panels). Therefore, a spin-up length of 10 years seems to be sufficient to examine
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Figure 1. Components of JRMSE (Equation 1; top) and bias (bottom) of the optimised model runs, and from ECCO⇤ by Kriest et al. (2020).

Regardless of optimisation setup (S- vs. L-setups), JRMSE includes only the fit in the upper 100 m, except for that of POP, which always

covers the entire vertical domain, and phytoplankton, which is based on phytoplankton in the first model layer (0-10 m; see Table 1). Left:

after 10 years, right: after 3000 years. The different fractions of the bars denote the contribution of each tracer j to the misfit. Note that

metrics have been evaluated for every tracer and region, even if these where not considered in the optimisation (DOP in S6-DOP, S4-SO,

S4-Org and L4-SO; organic tracers in S4-Org; phytoplankton south of 40�S in S4-SO and L4-SO).

model skill with respect to surface metrics such as JRMSE, RMSE, correlation and bias. However this stability can be due to275

the low sensitivity of the metrics because of the coarse circulation, that may dampen the differences at various time scales.

Figure 3 indicates the best model setups with respect to the different metrics. In general, solutions from optimisations against

organics perform well for many metrics regarding organic tracers. On the other hand, S4-Org, that targets only at dissolved

inorganic tracers performs best for the bias, JRMSE, r and RMSE’ of nutrients. Surprisingly, L4-SO outperforms the other

model setups with regard to the correlation between observed and simulated plankton and POP (Figure 3), despite the fact280

that optimisation also has to consider deep nutrients and oxygen. A good correlation between observed and simulated POP

and zooplankton is also obtained with ECCO⇤, which was not optimised against any organic tracers Kriest et al. (2020), but

only against global inorganic tracers. This points towards a potential tight coupling between POP (and its sinking flux) and

global nutrient and oxygen distribution, in agreement with earlier studies (Kwon and Primeau, 2006; Kriest et al., 2012). Yet, in
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Figure 2. Taylor diagrams for annual mean oxygen (circles), phosphate (squares), nitrate (diamonds), phytoplankton (stars), zooplankton

(triangles), DOP (pluses) and POP (inverted triangles) after 10 years (left panel) and after 3000 years (right panel). Regardless of optimisation

setup (S- vs. L-setups), JRMSE includes only the fit in the upper 100 m, except for that of POP, which always covers the entire vertical domain,

and phytoplankton, which is based on phytoplankton in the first model layer (0-10 m; see Table 1). Colours indicate model solution from the

optimisations listed in Table 1. Small black symbols additionally show results of ECCO⇤. Note that metrics have been evaluated for every

tracer and latitude, even if these where not considered in the optimisation.

many cases metrics that are closely related to spatial surface patterns, such as RMSE’, JRMSE and r, are quite insensitive to the285

optimisation strategy (see hatched patterns in Figure 3); as noted above, this may be explained with the common climatological,

coarsely resolved circulation, which tends to neglect the patterns arising from episodic observations. The small difference in

model outcomes with respect to the correlation coefficient r of nutrients and oxygen can be explained by the fact that r was

already high prior to optimisation, leaving little room for further improvement of the overall spatial patterns (see also Figure 2).

Thus, all model setups remain, more or less, at the same low-level model fit with regard to pattern-matching metrics, whereas290

global (integral) metrics such as the bias or the normalised standard deviation are more sensitive to the optimisation strategy.

The metrics for surface nutrients obtained in our experiments agree well with those of other global model studies (see

Table S2), in particular with regard to the high correlation coefficient (between 0.93-0.96), small bias and a normalised variance

around 1.

Global model studies also sometimes report model performance with respect to chlorophyll, but not always in the same295

way. Some studies report a correlation of log-transformed chlorophyll between 0.6 and 0.7 (Dunne et al., 2013; Moore et al.,

2013; Aumont et al., 2015), which is higher than we could achieve with our optimisations (r of log-transformed phytoplankton

between 0.36 to 0.48 after 10 years of simulation, and between 0.27 and 0.51 after 3000 years). Correlation of untransformed

chlorophyll varies much more, from high values of ⇡ 0.85 (Le Quere et al., 2016, 10 year average after a model spin-up of

10 years) to lower values around 0.3 to 0.4 (Yool et al., 2013; Seferian et al., 2013). When analysing the performance of six300

different BGC models in a common circulation, Kwiatkowski et al. (2014) found variable fits to observations, resulting in a
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Figure 3. Summary of optimal model setups after 10 years of simulation for different metrics (y-axis) and tracers (x-axis). The former

include the deviation of normalised model standard deviation from 1 (absolute values), RMSE’ and Pearson correlation coefficient r (see

also Figure 2), normalised RMSE (Eqn. 1) and global bias (absolute values; see also Figure 1). The colour code indicates the best model

solution for the respective tracer and metrics. Hatched fields indicate that, within that specific metric, the respective tracer range is less than

10% of the average of all six model setups.

range of r between almost zero to 0.5 (see also Table S2). With r ranging between 0.3 and 0.4 our model results are at the

lower end of this range. The quite low spatial variability observed in our study agrees with the low variability reported for half

of the models tested by Kwiatkowski et al. (2014).

For organic tracers other than chlorophyll an evaluation of model skill has been carried out less often. Stock et al. (2014),305

Aumont et al. (2015) and Stock et al. (2020) report a fit of simulated to observed mesozooplankton with r between 0.37�⇡ 0.5,

which is higher than the fit of our model ensemble (generally around 0.1). The models applied in these studies all distinguish

between meso- and microzooplankton. This indicates that a more complex parameterisation of zooplankton, and thus a larger

number of free parameters, may improve the model fit to corresponding data.

After fitting a global model against observed DOC, DON and DOP, Letscher et al. (2015) achieved correlations of log-310

transformed data of semi-labile DOP in the upper 500 m between 0.3 and 0.44, which is higher than in our study (0.18 to 0.22

and 0.15 to 0.20 for spin-up times of 10 and 3000 years, respectively). Depending on model setup, the bias in their model

solutions ranged between -25% up to 136% of the observed value (Letscher et al., 2015, their Table 4). With regard to r, the

performance of our optimised model solutions appears seemingly poor, but at the same time the bias could be reduced down

to -3% and 3% for S6⇤-All after 10 and 3000 years, respectively. For comparison, the bias in the ECCO⇤ solution is still 96%315

(195%) after 10 (3000) years.

In summary, our model representations of surface nutrients and DOP benefit most from optimisation, yet much of the im-

provement especially for DOP is due to an extensive reduction of the bias. The pattern error, as expressed through RMSE’ or

r, improves slightly for the inorganic tracers, but hardly for the organic tracers. For the latter, likely the sparsity and episodic
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nature of observations, and their dependence on local hydrodynamics and episodic events seem to impede an improvement320

towards observed patterns, in particular if climatological forcing is applied. A misfit function that involves point-wise, local

data-model residuals, such as the JRMSE, will attribute to tracers some high error caused by the dynamical representation of

physics that does not resolve local real-time and (sub)mesoscale dynamics (representation error). Because of the large con-

tribution of the pattern errors to the overall JRMSE, most parameter estimates are presumably biased. We speculate that the

introduction of observational error information appears to be essential for overcoming the problem of paucity of the organic325

data, which is apparently less critical for the large number of global, objectively analysed, inorganic data of nutrient concen-

trations. Such observational error information may combine uncertainties in measurements (or in observational data products)

with the representation error that accounts for spatio-temporal variability unresolved by the model. This would require switch-

ing from RMSE to a likelihood-based metric. Rather than summing up point-wise local residuals, combining data to describe

their statistical properties on regional scale, is one way of obviating pattern errors to affect parameter estimation. The problem330

of pattern errors affecting parameter estimates can be reduced if means of, possibly log-transformed, data of specified ocean

regions are combined with spatial variance information, e.g. as in Chien et al. (2022), who considered biomes derived by Fay

and McKinley (2014) as regional entities.

3.3 Global biogeochemical fluxes

After a spin-up of 10 years all experiments except S4-Org exhibit lower global primary production than the observational335

estimates (Figure 4). The underestimation of primary production in high latitudes could be caused by the low light affinity of

phytoplankton (Table 2), which affects phytoplankton growth especially in high latitudes. This is less expressed in the tropics

and subtropics where light limitation plays a smaller role. Interestingly, the setup with the lowest light affinity, S4-Org, reveals

the highest global (Figure 4) and zonally averaged (Figure S2) primary production, indicating the reasons for the variations in

this flux have to be sought elsewhere. Most likely, shallow remineralisation induced by b = 1.8 in S4-Org increases subsurface340

nutrient concentrations and hence nutrient supply to the euphotic zone, thereby increasing production especially in the tropics

(Figure S2). Extending the model runs to 3000 years further enhances global primary production in the solution of S4-Org.

Here, the northward transport of unutilised nutrients from the Southern Ocean, caused by shallow remineralisation and light

limitation, especially in S4-Org, might play a role (see Figures S3 and S2, that show zonally averaged inorganic tracers and

biogeochemical fluxes); a feature that has already been noticed by, for example, Keller et al. (2016). Global primary production345

of our model ensemble is somewhat at the lower end of the large range of 28 and 82 Pg C y�1 obtained with other global models

(see also Table S3), but within the range of more recent estimates between 22 to 57 Pg C y�1 of CMIP6 models (Seferian et al.,

2020).

The high maximum grazing rates (Table 2) cannot compensate impacts of the low primary production on global grazing

fluxes in model setups S6⇤-All to S4-SO and L4-SO, resulting in a global grazing flux that is only about half of the observed350

estimate. We note that the grazing estimates by Steinberg and Landry (2017) are based on an assumed global primary produc-

tion of 50 Pg C y�1 (i.e., much larger than simulated by most of our model experiments); however, even when correcting our

results of global grazing by the respective underestimates in production, the models would remain biased low. Also, our sim-
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Figure 4. Global annual biogeochemical fluxes (Pg C y�1) of primary production (A), zooplankton grazing (B), export production (C) and

particle flux at 2000 m (D) of different model setups. Coloured bars show flux after 10 years (as in the optimisations) and hatched bars the

flux when the model is simulated with the same parameters over 3000 years. Straight lines denote observational flux estimates by Carr et al.

(2006, PP), Steinberg and Landry (2017, grazing by micro- and mesozooplankton), Lutz et al. (2007, EP), Dunne et al. (2007, EP and F2000),

Honjo et al. (2008, EP and F2000), Henson et al. (2012, EP and F2000) and Guidi et al. (2015, F2000). For grazing, individual horizontal

bars show grazing scaled by the models’ primary production (short bars for t = 10y, long bars for t = 3000y). Thin dashed lines show results

of other global model studies listed in Table S3. Light and dark shaded areas in panels (A) and (C) indicate the range of fluxes simulated by

CMIP6 and CMIP6 models, respectively (Seferian et al., 2020, their Table 4). Star indicates results of ECCO⇤ by Kriest et al. (2020).

ulated global grazing turns out to be lower than the grazing simulated by Aumont et al. (2015) (see Figure 4 and Table S3) or

Stock et al. (2014). Both models by Aumont et al. (2015) and Stock et al. (2014) distinguish between two or three zooplankton355

classes, whereas in our study all zooplankton types are aggregated into a single class, representing large, motile organisms such

as copepods, as well as microzooplankton such as ciliates and flagellates. Explicitly resolving the latter group with its higher

grazing rates and turnover could result in a larger global grazing of zooplankton; for example, in the study by Aumont et al.

(2015) microzooplankton contributes to more than 90% of total grazing on phytoplankton, and 78% in the study by Stock et al.

(2014). Together with the underestimated zooplankton biomass noted above, this indicates that a more detailed representation360

of zooplankton might provide a more realistic potential link to models of higher trophic levels (as, e.g., in Stock et al., 2017).

In contrast to primary production and grazing, global export production is similar in all model simulations (Figure 4), despite

the considerable differences in optimal b (Table 2). The similarity in export production arises mainly from compensating effects

of lower primary production but faster sinking, for the model runs with b / 1. For S4-Org (with b=1.8), the enhanced primary

production is clearly compensated by the slower sinking of particles. Our results are thus consistent with the notion that for all365

reasonable parameter settings, it is the ocean circulation that controls new production and export production (Oschlies , 2001;

Najjar et al., 2007; Kriest et al., 2020)

Global particle flux at 2000 m simulated by our different model setups depends strongly on the optimal value of b, with the

largest flux obtained by b = 0.8 (S6⇤-All), and the lowest with b = 1.8 (S4-Org). The flux of the four model configurations

with b⇡ 1 agrees with values suggested by Honjo et al. (2008, 0.43 PgC y�1) and Henson et al. (2012, 0.66 PgC y�1), but is370
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larger than the estimates by Dunne et al. (2007, 0.2 PgC y�1) and Guidi et al. (2015, 0.33 PgC y�1). The low value of b = 0.8

in setup S6⇤-All causes a deep particle flux that exceeds the high global estimate by Henson et al. (2012), whereas S4-Org,

with b = 1.8, simulates a global flux that is too low at 2000 m depth. Except for the extreme values of S4-Org and S6⇤-All, the

range of simulated global particle flux coincides with that of other model studies, ranging between 0.16 and 0.81 Pg C y�1

(see also Table S3).375

Given the many assumptions that go into observed global estimates of deep particle flux, we additionally examined simulated

particle flux against three different data sets of sediment trap observations (see section A2). While the correlation coefficient

of ECCO⇤ to observations ranged between 0.22 to 0.28 for the three different data sets (no figure), optimisation improves the

correlation between simulated and observed particle flux to values between 0.3 and 0.41 after 10 years (Figure 5 and Figures S4,

S5 and S6), which declines to 0.24 to 0.39 after 3000 years. These correlations are only slightly better than those found by380

Schwinger et al. (2016), who tested four different sinking parameterisations in a subjectively tuned global model, and found r

between 0.11 and 0.32 (the highest value was achieved with a spatially varying particle flux length scale). Depending on b, in

agreement with the comparison for global flux at 2000 m (Figure 4), particle flux averaged over the individual sites and depths

can be biased very high (S6⇤-All with b = 0.8) or low (S4-Org, b = 1.8), and is otherwise between 66 and 212 mmol C m�2 y�1

(Figures S4, S5 and S6). After 3000 years both bias and variance show a smaller range of the model ensemble (see Figures 4385

and 5).

Figure 5. Taylor diagrams for simulated particle flux after a spin-up of 10 years (left panel) and 3000 years (right panel) compared to data

set by Honjo et al. (2008, inverted triangles), Lutz et al. (2007, triangles) and Mouw et al. (2016, circles). Colours indicate model type.

Thus, for model setups with b⇡ 1 or less, the turnover at the sea surface seems to be reduced and the transport to the ocean

interior might be too high, at least when applying a particle flux exponent of b = 0.8. Given that differences in deep particle

flux between the model setups are larger in year 10 than in year 3000, this diagnostic could serve as a quite robust estimator,

that may constrain model solutions even after short spin-up periods. However, the spread of observed particle flux to the ocean390

interior is large, and the uncertainties in these observations remain high (e.g. Kähler and Bauerfeind, 2001; Scholten et al.,

2001; Buesseler et al., 2008; Siegel et al., 2008); we thus so far lack a strong observational constraint on this global flux.
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3.4 Oxygen inventory and OMZ volume

On long timescales, nutrient and oxygen concentrations in the deep ocean are mainly determined by the value assigned to

the particle flux exponent b and the large scale circulation (e.g. Kwon and Primeau, 2006; Kriest et al., 2012). Such model395

behaviour is also evident from the normalised standard deviation of global nutrient distribution that varies between ⇡0.8 to 1.2

for phosphate and nitrate, with S4-Org (b = 1.8) showing a strong underestimate of spatial variance (Figure 6). Despite these

variations, all model setups show similarly high correlations to observations and low RMSE’. Considering oxygen, the models

differ mostly with respect to the correlation coefficient and RMSE’; again, S4-Org shows the largest deviation to observations,

whereas the other model setups are more or less similar. Even though S4-Org is the only optimisation setup that exclusively400

targets at inorganic tracers (but only for the surface), its solution shows the worst match to observations at a global scale and

after 3000 years of model spin-up. The best model performance with regard to global nutrients is obtained with either S6-All,

S6-DOP or S4-SO (i.e., model setups with b = 1), but L4-SO clearly outperforms all other setups with regard to the global

oxygen distribution and variance.

Figure 6. Taylor diagrams for annual mean phosphate (left), nitrate (middle) and oxygen (right) after 3000 years, and analysed over the

global domain. Colours indicate model type. Note that metrics have been evaluated for every tracer and latitude, even if these where not

considered in the optimisation.

In addition to tracer distributions, the global nitrate and oxygen inventory may also be affected by changes in model param-405

eters (Kriest and Oschlies, 2015). Indeed, the six optimal model setups presented here show significant differences in globally

averaged oxygen concentrations: after 3000 years, the oxygen bias varies between -13.6 and 24.1 mmol O2m�3 (Figure 7),

i.e. between about -8% to 14% of the global observational mean. We emphasize that this variation arises solely from changes

in biogeochemical model parameters, and are not a result of circulation changes. Again, results of L4-SO out-compete the

results of all other model setups with regard to this metric. The solution of L4-SO includes a good representation of nitrate410

(Figure S7), and the good match of the oxygen does not come at the cost of nitrate as complementary oxidant. Setup S4-Org,

which targets only at surface inorganic tracers, performs worst with respect to nitrate (Figure S7). Thus, to achieve a good fit

for model estimates of the global oxygen and/or nitrate inventory after millennial simulation times it seems necessary to either
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consider the global data and long spin-up times for calibration (as in L4-SO), or – in case of short spin-up times – also include

organic tracer data (as in S6⇤-All, S6-ALL, S6-DOP or S4-SO).415

The bias range found in our study is similar to that of many models analysed by Bopp et al. (2013), though in their study

one model exhibited a very large positive bias of more than 53 mmol m�3, and two models were biased very low, down to

�42 mmol m�3, leading to an overall model spread of 96 mmol m�3. We note that in our study changes in oxygen inventory

are only induced by biogeochemical parameter changes, whereas Bopp et al. (2013) report values for models of different

complexity, circulation, forcing and spin-up time, which explains the larger variation of oxygen in that study.420

Figure 7. Oxygen bias (left) and bias of OMZ volume, with OMZs defined O2 < 50 mmol m�3 (right). Global bias and OMZ volume

calculated from the difference between simulated model results after a spin-up of 3000 years and the observed values from Garcia et al.

(2006b). A star indicates the performance of ECCO⇤ by Kriest et al. (2020). Horizontal dashed lines indicate values listed for the different

models in Table 2 of Bopp et al. (2013). Numbers on top of the panels provide the observational estimate from Garcia et al. (2006b, i.e., the

reference data set used in this study) and, in parentheses, observed values listed in Table 2 of Bopp et al. (2013).

Differences in global oxygen bias between the model setups (Figure 7) do not mirror those for primary production, ex-

port production, grazing or particle flux (Figure 4). This finding reinforces the complex and nonlinear nature of processes

that determine the ocean’s oxygen concentration, even under climatological forcing. Indeed, over the time scale from 10 to

3000 years the trajectories over time of global oxygen bias differ substantially among the different model setups (Figure 8),

and can be roughly sorted into three groups. The first group, consisting of S4-SO, S6-DOP and S6⇤-All, shows averaged425

oxygen concentrations that decrease with time. These three models are characterised by either a high oxygen demand of rem-
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ineralisation (R�O2:P = 200 mol O2:mol P) together with a particle flux exponent of b = 1 or a moderately high R�O2:P of

187.8 mol O 2:mol P and b = 0.8 (S6⇤-All). In the second group (L4-SO and S6-All, both with b⇡ 1 and a moderate R�O2:P)

the oxygen bias first decreases until about year 2000 and then increases afterwards, until approaching almost zero drift in

year 3000. In the remaining third group, which only consists of S4-Org, oxygen is increasing over the entire trajectory, likely430

owing to the very shallow remineralisation depth induced by b = 1.8, in conjunction with a moderate value for R�O2:P of

189.5 mol O2 : mol P. Focusing on individual model trajectories, the oxygen bias varies over time between 4.4 mmol O2 m�3

(L4-SO) to 24.1 mmol O2 m�3 (S4-Org), or between 3 to 14% of the observed value; the variation decreases to less than 5%

if we restrict our analysis to the shortest spin-up time applied in CMIP6 of 150 years (see large vertical bars at the abscissa

in Figure 8). After 3000 years the model solutions have diverged by 37.7 mmol O2m�3 or 22% of the observed global av-435

erage oxygen concentration. We note that at this time some setups still show considerable trends. To summarise, in our study

maximum variations caused by spin-up length (24.1 mmol O2m�3) and model setup (37.7 mmol O2m�3 at year 3000) are

considerable, and could potentially explain 25% and 40% of the spread observed by Bopp et al. (2013).

Figure 8. Oxygen bias (left panel) and OMZ volume bias (defined by O2 < 50 mmol O2m �3; right panel) over the entire model trajectory

of 3000 years (in log scale). Bias calculated with reference to Garcia et al. (2006b). Circles indicate values listed in Table 2 of Bopp et al.

(2013). Vertical red and blue bars at the abscissa denote the model spin-up times of different CMIP5 and CMIP6 models listed in Seferian

et al. (2020). Numbers give the observed value from Garcia et al. (2006b, i.e., the reference data set used in this study).

The global OMZ volume bias is more sensitive to parameter changes and spin-up length than global oxygen bias. After 3000

years and for a criterion of 50 mmol O2m �3 the OMZ volume bias varies between -31% and 54% of the observed volume of440

56.7⇥106 km3 (Figure 7). Especially the output of S6-All shows a very good agreement with observed OMZ volume, followed

by the solution of S6⇤-All and, surprisingly, of S4-Org (Figure 7) that still shows a declining trend (Figure 8).

Like global average oxygen the metric pattern of the model setups does not resemble any of the other metrics such as

RMSE or global biogeochemical fluxes (compare Figure 7 with Figures 1 and 4). Simulated OMZ volume shows a very
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dynamic and non-linear trajectory, that depends strongly on the model configuration: for an OMZ defined by a criterion of445

O2 < 50 mmol O2m �3 the simulated OMZ volume bias of individual model setups varies over time between 11% and 61%

of the observed OMZ volume (Figure 8). All models show an initial decrease within the first few decades which is followed

by an increase. The strength of the decline and the timing of the turning point seem to depend on b. Setup S4-Org with a high

b shows the most dynamic trajectory with a strong initial decline, a late turning point and a second turning point. This second

turning point is less pronounced in most other setups; it is absent in the solution of S4-SO that shows an almost continuous450

increase in OMZ volume bias.

After 3000 years the OMZ bias seems to depend mostly on the oxygen demand of remineralisation R�O2:P. Models with

the largest values of the parameter (S4-SO, S6-DOP) show a strong overestimate of OMZ volume, whereas L4-SO, with

R�O2:P = 169.3 mol O2:mol P shows the most negative bias (Figures 7 and 8). The spread among the optimised models at

this time is almost as large (84%) as the observed volume of 56.7⇥106 km3, but is still much smaller than the spread of455

212.5⇥106 km3 reported by Bopp et al. (2013).

Yet, even after 3000 years some models have not reached equilibrium with respect to the OMZ volume bias (Figure 8).

Especially a large value of b as in S4-Org induces a highly dynamic trajectory, which prevents a quantification of its final

equilibrium state with regard to OMZ volume. The highly non-linear trajectories of the OMZ volume bias and the possible

presence of several turning points indicate that many processes play a considerable role for their evolution and these act on460

timescales of decades to at least centuries. Thus, any model skill assessment that relies on a continuous propagation of a trend

simulated within the first few hundred years, such as applied by Seferian et al. (2013) for average oxygen, or implicitly assumed

by Dietze and Loeptien (2013) might misrepresent the ultimate, equilibrium state of the model.

3.5 Contributions of tuning strategy and spin-up length to model uncertainty

As shown above, the optimised models exhibit a considerable variability among parametric setups and over time, especially465

with regard to simulated OMZ volume, global primary production, grazing and deep particle flux. Figure 9 illustrates the

sources of this variability (parametric setup arising from optimisation vs. simulation time) for different diagnostics. For a given

diagnostic the left and right boundary of a rectangle show the minimum and maximum range among the six different parametric

model setups at two different time slices (after 10 and 3000 years of simulation). The upper and lower boundary depict the

maximum and minimum range over time among the six individual model setups. To obtain a common scale, the range of each470

diagnostic has been normalised by the respective average before evaluating the minimum and maximum. Figure 9 depicts the

values on a logarithmic scale. The numerical values are also shown in Table S4.

The spread between parametric model setups (see also � Parameters of Table S4) of primary production (green outlines in

Figure 9) and grazing (blue outlines) is two- to three times larger than that of JRMSE (orange rectangle). Export production

(dark green rectangle) shows only a small variation, of about the same size as JRMSE, but its variability shows a declining trend475

over time (see Table S4). Particle flux (dark brown rectangle) exhibits the largest variation among the different parametric model

setups. Because of the large differences in optimal b, and because this parameter controls the propagation of organic matter from

the surface to the ocean interior (see above), deep particle flux after 10 years already varies by more than 140% of the average
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Figure 9. Graphic summarising the different sources of variability (model setup and spin-up time) for biogeochemical fluxes, oxygen inven-

tory and OMZ volume. The x-axis depicts the minimum and maximum variational range (which changes over time) due to differences in

model setup (parameters), and the y-axis the minimum and maximum range due to spin-up time (which is different for the individual model

setups). All values have been normalised by the average over the respective axis (model set up or time), and are shown on a logarithmic scale.

Rectangle colours or outlines denote the different diagnostics as labeled, with the orange rectangle indicating the range of RMSE (equa-

tion 1). The region below the 1:1 diagonal indicates a higher variation because of the parametric setup, the region above a higher variation

due to simulation time. Left panel: ranges across all six model setups, right panel: with S4-Org excluded. See Table S4 for numbers and

details.

value (right border of dark brown rectangle and Table S4), which is more than 10 times the variation of JRMSE. After 3000

years its variation is four times that of JRMSE. Because all models started from the same initial oxygen distribution, which does480

not change much within the first decade of simulation, the variation among the different model setups with regard to oxygen

(grey hatched rectangle) and OMZ volume (grey rectangle) is quite small after 10 years (< 1% and 12%, respectively; see left

borders of the corresponding rectangles and Table S4), but the variation of OMZ volume increases strongly with simulation

time and reaches about 80% of the model average after 3000 years (right border of grey rectangle and Table S4), comparable

to that of primary production and grazing.485

The sensitivity to spin-up length (lower and upper borders of the rectangles in Figure 9) is very different for the individual

model configurations, and can be very small (between 0.4 and 7.4%; see also � Time of Table S4). Primary production, grazing

and export can reach a maximum variation over time of about 20% for individual model setups. The largest temporal variation

is achieved by deep particle flux (up to 60%) and global OMZ volume (48%), rendering these two diagnostics the most time-

sensitive of all diagnostics analysed so far; however, this sensitivity depends strongly on model setup with regard to the particle490

flux parameter b.
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As discussed above, the very large value of b = 1.8 in setup S4-Org b = 1.8 induces slow sinking and shallow remineralisa-

tion, with considerable side effects on biogeochemical fluxes at the surface. Omitting this setup from the analysis (right panel

in Figure 9) results in maximum variations due to model parametric setup that are approximately only one half (after 10 years)

to one third (after 3000 years) of the full ensemble for most biogeochemical fluxes. Also, in the reduced ensemble the temporal495

variation of deep particle flux is reduced from 60% to less than 15%, i.e. to one fourth. In contrast, the maximum variation in

OMZ volume over time remains the same, because the reduced ensemble still includes setup S4-SO, which shows the largest

amplitude of the model trajectory (Figure 8).

To summarise, both model setup and spin-up time can play an important role for the simulation of primary production,

grazing, deep particle flux, but especially for OMZ volume. Much of this variability disappears when omitting setup S4-Org,500

with its very high value for b from the analysis; yet, the large sensitivity of OMZ volume to parameters and spin-up length

remains, indicating that a variety of mechanisms and processes (such as the oxygen demand of remineralisation and large scale

circulation) affect the evolution of this diagnostic.

An even larger variability exists for global models that also differ in circulation and/or model complexity (� GCMs of

Table S4). Because global model spin-up times vary strongly (see also Figure 8), and because there is no general agreement505

on minimum spin-up times of global models (except for recent recommendations to spin-up unforced models for at least 500

to 2000 years; Eyring et al., 2016; Orr et al., 2017), it is difficult to disentangle the various sources of variability in these

simulations. Our results suggest that mainly differences in biogeochemical model setup contribute to this, but a considerable

fraction can also be attributed to the spin-up length, especially for global OMZ volume, which is most sensitive to model

parameters and spin-up length.510

4 Conclusions

We applied different optimisation strategies to calibrate a global biogeochemical ocean model against observed inorganic and

organic tracers. Optimal parameter sets diverge strongly with regard to the particle flux exponent b, which is quite influential

for the vertical and large-scale distribution of nutrients and oxygen (e.g. Kwon and Primeau, 2006; Kriest et al., 2012). The

wide range of b is mainly caused by an optimisation that disregarded observations of organic tracers, which resulted in a high515

optimal b of 1.8. Optimisations that considered organic components arrived at b⇡ 1 or less. Values of b around one agree with

results by Kwon and Primeau (2006), but are lower than those of earlier optimisations against inorganic tracers (Kriest et al.,

2017, 2020). Likely, the low optimal values of b found in the present study are caused by its (indirect) effect on phytoplankton:

a low value of b reduces nutrient recycling and hence primary production within the euphotic zone, which eventually leads to

a less positive phytoplankton bias.520

Despite the large range of some optimal model parameters, the resulting model solutions yield similar values of the nor-

malised, volume-weighted root-mean-squared error (RMSE), showing a range  14% of the average RMSE after 10 years of

simulation, and a range of 24% when extending the simulations with optimal parameters to 3000 years. Models calibrated
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with organic tracer data show some improved performance with regard to RMSE, mainly through a reduction in bias, and the

difference in RMSE decreases to less than 3%.525

Since the RMSE combines bias and pattern error information, major improvements in model performance may not be well

reflected by this metric during optimisation. For example, errors in circulation can cause a large pattern error, especially for

sparse and episodic observations of organic tracers. These errors cannot be further reduced by any adjustment of biogeochem-

ical parameter values. A possible alternative to the RMSE would involve an assessment of the tracers’ observed and simulated

statistical properties within specified ocean regions, instead of calculating local point-wise residuals (e.g., Chien et al., 2022).530

We note that, in addition to the choice of data sets, a different choice in the mathematical form of the misfit function could

considerably impact optimal parameter estimates and simulated biogeochemical turnover (Evans, 2003).

Diagnostics such as global primary production and grazing, global and local particle flux, oxygen bias and OMZ volume,

show a large divergence among the models and over time, that is not reflected by differences in RMSE:

– Global primary production and grazing exhibit a similar patterns of model performance after 10 and 3000 years spin-up,535

but the difference between the model setups increases over the long spin-up, eventually becoming almost twice as high

as the observational uncertainty of 40 Gt C y�1. Yet, the range of primary production obtained in our study is well below

the range documented for other global models, which can be attributed to differences in circulation and biogeochemical

model complexity.

– Global export production is very similar among the optimal model setups, likely because all model runs presented540

here applied the same circulation, and because of the antagonistic effects of particle sinking and nutrient supply from

subsurface waters. The variation of 14 to 17% found in our study is less than one fourth of the spread among other GCMs

(which differ in many aspects, such as circulation), and much lower than the spread of observational estimates.

– Owing to the wide range of optimal estimates for parameter b, the variation among the different model configurations

with regard to deep particle flux is larger than 100% of the average, and about as large as the spread across other GCMs545

and that of observed estimates. The temporal variation of deep particle flux remains low throughout integration time,

indicating that this diagnostic might serve as an “early” criterion for model performance.

– Global average oxygen changes by up to 12% over time for the individual models, and the difference among the model

setups is strongly amplified after 3000 years of simulation, when it reaches almost 22% of the ensemble mean. A large

fraction of this variation can be attributed to values of particle flux parameter b. For models with b  1, temporal550

variations of oxygen narrow down and differences of global average oxygen between model setups reduce to 8%.

– Global OMZ volume, when defined by O2 < 50 mmol m�3, varies by 48% of the ensemble mean after 3000 years.

This variation is about one fifth of the spread across other global models that also vary with regard to physics, model

complexity and spin-up time. We stress that simulated global OMZ volume is characterised by a highly non-linear

trajectory over time with several turning points. This variation indicates that temporal extrapolations from some initial555
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trend do not provide robust estimates of the global OMZ volume, as suggested by Seferian et al. (2013) and applied by

Dietze and Loeptien (2013).

The dependence of simulated global biogeochemical fluxes on tuning strategy and the resulting model parameters can have

consequences for models of higher trophic levels such as fish, that often rely on primary production and/or export of organic

matter to the mesopelagic and deep ocean. The interactions between biogeochemistry and fish may be further complicated560

through feedback effects of fish on biogeochemical features such as oxygen distributions (e.g., Bianchi et al., 2021), which can

only be investigated through two-way coupled models (e.g., Aumont et al., 2018). A careful examination of model uncertainties

with regard to simulated biogeochemical fluxes and OMZs, which might affect large, commercially relevant fish (Stramma

et al., 2012), could support precautionary approaches to estimate present and future fish stocks (see also Schnute and Richards,

2001).565

Overall, the best performance with regard to oxygen and OMZ volume was obtained by tuning strategies that either apply

long (millennial) time scales of simulation, or that include observations of organic tracers in the misfit function. Given the

computational expense of long-term simulations, and the likely dependence of global oxygen distribution on particle flux to

the deep ocean, we speculate that well-confined observational estimates of particulate organic matter flux to the ocean interior

may help to constrain global models, even when these are spun up only for a few decades or centuries.570

Code and data availability. The basic TMM and MOPS code used for the ocean biogeochemical simulations are available to download from

https://doi.org/10.5281/zenodo.1246300 (Khatiwala, 2018). Modifications to the MOPS code for the specific experiments described in this

paper, along with model output, data sources and scripts to assemble the data sets used for optimisation are available under https://hdl.handle.

net/20.500.12085/b174de1c-0bed-47f5-9718-7a8d44d1d2d1. The optimisation algorithm CMA-ES applied in this study is available from

the Supplement of Kriest et al. (2017)575

Appendix A: Data sets and metrics

A1 Equivalents to model tracers

Nutrients and oxygen Kriest et al. (2020) calibrated MOPS against observed nutrients and oxygen from interpolated clima-

tologies (Garcia et al., 2006a, b). We here use the same data set, but restrict it to the upper 100 m, which reduces the

number of data points for each tracer by about one third (see Table A1). The restriction also approximately halves the580

(unweighted) global mean nutrient concentration, whereas average oxygen is slightly increased.

Phytoplankton For model calibration of phytoplankton we used chlorophyll data derived from remote sensing (MODIS-Aqua;

Malin, 2013, downloaded on 08 April 2020). The surface data are available as a monthly climatology on a 9km grid. After

averaging to annual mean chlorophyll, the data were averaged onto the ECCO grid. Chlorophyll was converted to carbon

using the algorithm derived by Sathyendranath et al. (2009), and then to phosphorus using a C:P ratio of 122 mol C: mol P.585
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The resulting data set contains 36.800 data points, which are all located in the surface layer (0-10m), with minimum and

maximum values of 0 and 0.27 mmol P m�3, respectively, and an unweighted mean of 0.016 mmol P m�3 (see Table A1).

Zooplankton For model calibration of zooplankton we used the MAREDAT data set of mesozooplankton (Moriarty and

O’Brien, 2013). This sparse data set contains 42.245 data points of monthly mean mesozooplankton (in mg C m�3) on

a 1⇥ 1 degree grid. After averaging over a year, and mapping onto the ECCO grid, we obtained a total of 35.202 data590

points. Conversion to phosphorus was carried out by assuming a C:P ratio of 122 mol C: mol P. The model does not

distinguish between micro- and mesozooplankton, but aggregates both types into one single component. Unfortunately,

observations of microzooplankton are much more sparse (only 2029 monthly data in the data set by Buitenhuis et al.,

2013) than those of mesozooplankton, and often taken at other locations and during other times. Based on an analysis

at stations where both small and large zooplankton observations are available, we estimated an approximate ratio of595

micro-to-mesozooplankton of one. For comparison with the model we therefore multiplied the data obtained from meso-

zooplankton observations by two, resulting in minimum and maximum concentrations of 0 and 0.272 mmol P m�3 and

an unweighted average of 0.006 mmol P m�3 (see Table A1). Restricting the gridded data to the upper 100 m reduces

the sample size by about one third, with little effect on the global average.

Particulate organic matter (detritus) There is no direct observational equivalent to simulated detritus; the nearest type of600

observations are probably those of particulate organic phosphorus (POP), nitrogen (PON) or carbon (POC). Due to the

methods applied, these observations, however, also contain phytoplankton and possibly a fraction of smaller zooplankton.

For model evaluation we downloaded the data set by Martiny et al. (2014, data set CNP_data_DRYAD_edit_2.csv,

downloaded on 16 April 2020), which contains more than 40.000 entries of particulate organic matter (POM) in units of

phosphorus (POP), nitrogen (PON) and carbon (POC). After omitting entries where depth was not given, we obtained605

6940 data entries for POP, and 46.705 data entries for PON. Because of the much higher data frequency for PON, we

used this variable as further diagnostic, and converted it to POP using a stoichiometric ratio of 16 mol N:mol P, that is

also applied internally by the model. For regridding onto model grid, we averaged all data that fall within a 1⇥ 1 degree

area, with depth intervals as in ECCO, without any consideration of sampling date, thereby obtaining 6.513 data points,

with minimum and maximum concentrations of 0 and 1.69 mmol P m�3, respectively, and an unweighted average of610

0.052 mmol P m�3 (see Table A1).

DOP Most observations of dissolved organic phosphorus (DOP) have been compiled by Angela Landolfi. They include data

from cruises 36N, AMT10,AMT12, AMT14, AMT15, AMT16 and AMT17 (Torres-Valdes et al., 2009), the BIOSOPE

cruise (Moutin et al., 2008), as well as unpublished data from the North Atlantic (cruise D279, April-May 2004, Landolfi

et al., 2008) and the Indian Ocean (cruise CD139, March-April 2002; Landolfi unpubl.). In the compilation we only615

included data with a positive (good) quality flag. We further included data read from Figure 02 of Yoshimura et al.

(2007). Data were gridded onto a 1⇥ 1 degree grid, with the depth axis as defined in ECCO. After regridding we

obtained 1445 data points, with minimum and maximum values of 0 and 3.92 mmol P m�3, and an unweighted average
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Table A1. Observational data: number of observations over the full model domain and for the upper 100 m only, minimum and maximum

concentration and average concentration over full and domain and upper 100 m. See section A for further details.

Type Number Min Max Average Source

Full 0-100 m Full 0-100 m

PO4 682.604 218.610 0.02 3.9 1.6 0.76 Garcia et al. (2006a)

NO3 682.604 218.610 0 49.2 21.6 8.71 Garcia et al. (2006a)

O2 682.604 218.610 2.00 406.5 206.7 256.2 Garcia et al. (2006b)

Phytoplankton 36.800 36.800 0 0.27 0.016 0.016 Malin (2013)

(Meso)Zooplankton 35.202 25.613 0 0.27 0.006 0.006 Moriarty and O’Brien (2013)

POP 6.513 4.354 0 1.69 0.052 0.068 Martiny et al. (2014)

DOP 1.445 814 0 3.92 0.145 0.181 Torres-Valdes et al. (2009)

Moutin et al. (2008)

Yoshimura et al. (2007)

Landolfi (unpubl)

of 0.145 mmol P m�3. Restricting the domain to the upper 100 m reduces the sample size to 814 data points and increases

the global average concentration by about one quarter (see Table A1).620

A2 Data sets for particle flux

The data set by Honjo et al. (2008, Table 3) consists of 152 data points of particle flux, derived from at least annual deployments

of sediment traps between 382 and 8431 m depth. The data set by Lutz et al. (2007, Table 1) includes 245 data points of particle

flux, derived from sediment traps between 140 and 5847 m depth, most of which were deployed at least one year, or a long

enough time to reproduce the seasonal cycle. Thirdly, Mouw et al. (2016) provide an extensive data set of sediment traps,625

including also many data from short-term deployments. Restricting this to data over a deployment period of at least 360 days

we obtained 369 data points between depths of 200 to 5847 m depth. (Note that, because of model topography, the final number

of data points for model comparison is less.)
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