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Abstract. The Peruvian Upwelling System hosts an extremely high productive marine ecosystem. Observations show that the

Peruvian Upwelling System is the only Eastern Boundary Upwelling Systems (EBUS) with an out-of-phase relationship of

seasonal surface chlorophyll concentrations and upwelling intensity. This "seasonal paradox" triggers the questions: (1) what

is the uniqueness of the Peruvian Upwelling System compared with other EBUS that leads to the out of phase relationship;

(2) how does this uniqueness lead to low phytoplankton biomass in austral winter despite strong upwelling and ample nu-5

trients? Using observational climatologies for four EBUS we diagnose that the Peruvian Upwelling System is unique in that

intense upwelling coincides with deep mixed layers. We then apply a coupled regional ocean circulation-biogeochemical model

(CROCO-BioEBUS) to assess how the interplay between mixed layer and upwelling is regulating the seasonality of surface

chlorophyll in the Peruvian Upwelling System. The model recreates the "seasonal paradox" within 200 km off the Peruvian

coast. We confirm previous findings that deep mixed layers, which cause vertical dilution and stronger light limitation, mostly10

drive the diametrical seasonality of chlorophyll relative to upwelling. In contrast to previous studies, reduced phytoplankton

growth due to enhanced upwelling of cold waters and lateral advection are second-order drivers of low surface chlorophyll

concentrations. This impact of deep mixed layers and upwelling propagates up the ecosystem, from primary production to

export efficiency. Our findings emphasize the crucial role of the interplay of the mixed layer and upwelling and suggest that

surface chlorophyll may increase along with a weakened seasonal paradox in response to shoaling mixed layers under climate15

change.

1 Introduction

The Peruvian Upwelling System (PUS) hosts a disproportionally productive ecosystem and supports 10% of the world’s fishing

yield while covering only 0.1% of the ocean area (Chavez et al., 2008). As one of the Eastern Boundary Upwelling Systems20

(EBUS), upwelling-favorable winds bring up cool, nutrient-rich waters to the surface, supporting high primary production and

1

https://doi.org/10.5194/bg-2021-113
Preprint. Discussion started: 10 May 2021
c© Author(s) 2021. CC BY 4.0 License.



fish yield. At the same time, the high primary production, together with subsequent export and remineralization in part causes

a sub-surface oxygen deficient zone which is particularly shallow and intense in the PUS (Fuenzalida et al., 2009; Stramma

et al., 2010; Getzlaff et al., 2016). Particularly via its high productivity, the response of the PUS to climate change is of great

social and economic interest (Pauly et al., 1998; Bakun, 1990; Bakun et al., 2010), and a variety of studies have investigated25

how physical and biogeochemical processes influence the production of phytoplankton and its potential links to ecosystem

functioning in the PUS.

While the PUS has been frequently compared to other EBUS (the Benguela, California, and Canary Systems), it is set

apart by how the surface chlorophyll responds to the variation of upwelling on a seasonal scale. The high productivity of

EBUS primarily benefits from the upwelling of nutrient-rich waters, driven by the alongshore equatorward winds. Hence,30

it is commonly assumed that the magnitude of phytoplankton biomass in EBUS is directly correlated with the wind-driven

upwelling intensity (Bakun, 1973). However, in the PUS, upwelling intensity and surface chlorophyll are not correlated on

the seasonal scale (hereafter referred to as "seasonal paradox"; Chavez and Messié, 2009). Indeed, they are out of phase,

with the lowest surface chlorophyll concentration in austral winter when upwelling intensity is highest (Calienes et al., 1985).

Echevin et al. (2008) and Messié and Chavez (2015) argue that mixed layers are deep when upwelling and nutrient supply is35

highest. Deep mixed layers would cause dilution of phytoplankton, and growth to be limited by light, and subsequently iron

(as phytoplankton needs more iron under low light condition), leading to low chlorophyll under strong upwelling conditions.

Lower surface radiation in winter might amplify light limitation (Guillen and Calienes, 1981). Hence, while upwelling and

mixed layer depth both regulate phytoplankton, the interplay of the two has not been assessed. Further, it remains unclear why

the seasonal paradox occurs only in the PUS and not in the other EBUS.40

To this end, this study will address the following key questions: (1) what is the uniqueness of PUS compared to other

EBUS that leads to the seasonal paradox; (2) how does the unique mechanism limit phytoplankton from growing under strong

upwelling; and (3) how will this further affect ecosystem functioning.

2 Data and Methods

2.1 Regional ocean circulation-biogeochemical model: set up and simulation45

We use the three-dimensional regional ocean circulation model CROCO (Coastal and Regional Ocean COmmunity model;

Debreu et al., 2012) coupled with the biogeochemical model BioEBUS (Biogeochemical model for the Eastern Boundary

Upwelling Systems; Gutknecht et al., 2013) for this study.

We use the same technical set-up including the model grid as in José et al. (2017) with an updated version of the ocean

circulation model CROCO. CROCO is a free-surface and split-explicit regional ocean model system (ROMS; Shchepetkin and50

McWilliams, 2005). We employ a two-way nesting approach, with the larger coarser-resolution domain covering the Southeast

Pacific and the smaller higher-resolution domain focusing on the PUS. The larger domain has a 1/4◦ resolution, spanning from

69◦W to 120◦W and from 18◦N to 40◦S. The embedded "child" domain has a resolution of 1/12◦ and extends from 5◦N to

31◦S and from 69◦W to 102◦W (Fig. A1) which is used in this study. Both coarse and fine-resolution domains use 32 sigma
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levels in the vertical direction, with finer resolution towards the surface and shallower regions. The surface layer thickness is55

ranging from 0.5 m in the coastal region (water depth around 50 m) to around 3 m in the offshore region (water depth more

than 4000 m). Initial and boundary conditions are provided by the monthly climatological SODA reanalysis (Simple Ocean

Data Assimilation; Carton and Giese, 2008) from 1990−2010. The surface forcing is based on the monthly climatological

heat and freshwater fluxes from COADS (Comprehensive Ocean-Atmosphere Data Set; Worley et al., 2005), along with wind

data from QuikSCAT (Quick Scatterometer; Liu et al., 1998). The physical setup is the same as in José et al. (2017) and60

has been evaluated therein. The model simulates eddy kinetic energy, sea surface height and alongshore current well, with an

underestimation of the intensity of the Equator–Peru coastal current and Peru–Chile undercurrent.

The biogeochemical BioEBUS model used in this study was developed explicitly for applications to EBUS and oxygen

minimum zones. BioEBUS is a nitrogen-based model originating from the N2P2Z2D2 model by Koné et al. (2005). It simulates

two phytoplankton and two zooplankton groups: small and large phytoplankton, along with micro- and mesozooplankton.65

Further, there are two detritus pools categorized based on size. BioEBUS resolves the N species (nitrate, nitrite and ammonium)

and simulates processes under oxic, hypoxic and suboxic conditions (e.g. remineralization, nitrification, denitrification and

anammox). Initial and boundary conditions for nitrate and oxygen are from CARS (CSIRO (Commonwealth Scientific and

Industrial Research Organisation) Atlas of Regional Seas; Ridgway et al., 2002), and initial conditions for phytoplankton

are based on monthly climatological SeaWiFS (Sea-viewing Wide Field-of-view Sensor; O’Reilly et al., 1998) estimates.70

A detailed description of biogeochemical processes can be found in Gutknecht et al. (2013). The parameter setting is the

same as in José et al. (2017), with a few adjustments to biological parameters (Table. A1) to make the ecology, in particular

phytoplankton and zooplankton biomass and seasonality, better fit the observations.

CROCO-BioEBUS is run in coupled mode from the start. The time-stepping of the physical model is the same as the

coupling timestep, 1200 seconds. The time-stepping of the biogeochemical model is 400 seconds. The coupled model is run75

for a 25-year spin-up period. Biogeochemical and physical fields are spun-up after one year for the upper 10 m while it takes

longer for the deep waters (1000 m) to reach a statistical quasi-equilibrium (Fig. C1). In this study, we use monthly output of

the final five years for our analyses (years 26−30). As we look at the surface ecology, our results are not sensitive to the deep

spin-up. This study focuses on the 200 km band off the Peruvian coast (white line region in Fig. 1a-b) where shows the clear

seasonal variation along with the strong upwelling.80

2.2 Analyses approaches

To assess the seasonal variance of phytoplankton biomass concentration in each grid box (C) we analyze with the budget of

the phytoplankton biomass and how its tendency is driven by physical versus biological processes:

∂C

∂t
= PHY (C) +BIO(C) (1)

PHY represents the physical processes including advection and mixing. The BIO term stands for the biological processes,85

namely primary production PP , consumptive mortality, natural mortality, exudation and sinking. We analyse in detail the
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drivers of PP : PP is determined by phytoplankton concentration (C) and the growth rate (J)

PP = C · J(N,PAR,T ) (2)

where the growth rate J is related to light availability for photosynthesis (PAR: photosynthetically active radiation), temperature

(T) and nutrients (N: nitrate, nitrite and ammonium). The growth rate here is a multiplicative function of the light-, temperature-90

or nitrogen-related growth factors. To quantify the limitation experienced by phytoplankton within the mixed layer Lmld, it is

calculated from each growth factor (L(PAR), L(T) and L(N)) using phytoplankton concentration (C) within the mixed layer as a

weight (Eq. 3). Light-, temperature- or nitrogen-related growth factors that each phytoplankton cell experiences are computed

online.

Lmld =
∑mld

0 L(PAR) ·L(T) ·L(N) ·C∑mld
0 C

(3)95

For the analysis, we attribute the seasonal change of the average phytoplankton biomass concentration (Cmld) within the mixed

layer to the change of the integrated phytoplankton content within the mixed layer (Bmld), and the change of the volume of

the mixed layer (Vmld). With the chain rule and V 2 >> V∆V , we approximate a discrete change of the mixed layer tracer

concentration (∆Cmld) with

∆Cmld =
1
Vmld

∆Bmld −Bmld
∆Vmld

V 2
mld

=
Bmld

Vmld

∆Bmld

Bmld
− Bmld

Vmld

∆Vmld

Vmld
(4)100

To assess the relative contributions we then divide by Cmld =Bmld ·V −1
mld to obtain

∆Cmld

Cmld
=

∆Bmld

Bmld
− ∆Vmld

Vmld
(5)

which allows attributing a decrease of the mixed layer phytoplankton concentration Cmld to a decrease of the phytoplankton

biomass Bmld or an increase of the mixed layer volume Vmld and vice versa.

2.3 Model assessment105

The model is evaluated based on averages over the focus region with observational data in monthly resolution. The correlation

coefficient between the model simulation and observations, the root mean square error (RMSE) and the normalized standard

deviation (SD) of the observations relative to the model results are shown in a Taylor diagram as a summary of the evaluation

(Fig. 1c, Taylor et al. (1991); a comparison of the spatial pattern and the seasonal cycles of variables are provided in the

appendix, see Figs. B1-B4). Model results fit the observational data reasonably well. The model performs well in simulating110

sea surface temperature (SST) with R>0.95, 1<σ∗<1.2 and RMSD∗<0.4 (R: correlation coefficient, σ∗: normalized SD, and

RMSD∗: normalized RMSD). The model captures the observed seasonal cycle well with slightly stronger seasonal variations

compared to observational data. As for MLD (defined based on a 0.2 oC temperature difference criterion), though the seasonal

variation is somewhat overestimated, the model simulation is within the observed range of ARGO based MLD most of the time

(Fig. B3). As for biogeochemical variables, the model simulates surface nitrate well withR>0.95, 0.6<σ∗<1 andRMSD∗<0.4115
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(a) (b)

(c)
(d)

Figure 1. (a) Spatial distribution of the seasonality of surface chlorophyll in log scale log(chl (mg m−3)−1); (b) Map of annual mean

upwelling velocity w (m d−1) at the bottom of the mixed layer with contour lines indicating MLD (m). White lines highlight the focus

area; (c) Taylor diagram for seasonal SST (red), MLD (yellow), surface nitrate concentrations (blue) and chlorophyll (green). The black dot

indicates the model simulation as a reference. The radial distance from the origin is proportional to the standard deviation (normalized by

the standard deviation of the data). The green dashed lines indicate the RMSE. The correlations between model and observations are given

by the azimuthal position; (d) Seasonal cycles of surface chlorophyll concentration from model simulation (black solid line), satellite data

(dotted line; SeaWIFS (diamond) and MODIS (square)) and in situ data (digitized from Pennington et al. (2006, star) and Echevin et al.

(2008, cross)).

but overestimates the nitrate compared to WOA. Cruise data (Fig. B2c-d) shows that the overestimation could arise from WOA

failing to capture the high surface nitrate concentration in the coastal region with strong upwelling. A comparison of the

simulated and observed seasonal cycle of surface chlorophyll in the focus region (Fig. 1d) reveals that modelled chlorophyll

generally follows the seasonal trend of satellite and in situ data with the amplitude of the seasonal cycle falling in between

satellite and in situ data. Overall, the model shows reasonably good agreement with observational data on a seasonal scale,120

sufficiently supporting an investigation of the seasonal paradox with CROCO-BioEBUS.
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3 Results

3.1 Anticorrelation of chlorophyll and upwelling: The seasonal paradox only appears in the Peruvian system

Compared with other EBUS, the Peruvian system is unique in that it shows a clear anti-correlation between surface chlorophyll

concentration and upwelling intensity on a seasonal scale, with lowest chlorophyll concentrations when upwelling is most125

intense (Fig. 2a, R2 = 0.71; Chavez and Messié, 2009). While the surface chlorophyll in the Benguela system does not feature

a strong seasonality, surface chlorophyll follows upwelling intensity closely in the California (R2 = 0.92) and Canary (R2 =

0.88) systems, suggesting that upwelling of nutrient-rich waters fuels the chlorophyll increase in these two systems.

Indeed, comparatively low surface nitrate concentrations indicate that nitrate is used up and potentially limiting phytoplank-

ton growth throughout the year in the California system, and for about half the year in the Canary system (Fig. 2b). For the130

remainder of the year, in the Canary system enhanced surface nitrate concentrations are positively correlated with chlorophyll,

suggesting that phytoplankton is stimulated by enhanced nitrate availability. In contrast, the Benguela (R2 = 0.63) and the

Peruvian system (R2 = 0.90) feature replete surface nitrate over most of the year. With higher nitrate concentrations correlated

with lower chlorophyll, this suggests that nitrate is not limiting.

In the Peruvian system, a strong relationship exists between deepening mixed layers and decreasing chlorophyll (Fig. 2c,135

R2 = 0.91), supportive of the notion that dilution of phytoplankton over a deeper mixed layer and/or light limitation plays a

role, as suggested by Echevin et al. (2008). The California system shows a similar albeit damped response to mixed layers

variations (R2 = 0.62), suggesting that the same process may play a role here, too. The weaker increase of phytoplankton

concentrations with shallowing mixed layers compared to the Peruvian system is consistent with a greater role of nutrient

limitation. The Benguela system, if at all (insignificant), shows a very weak response to mixed layer depth variations, despite140

quite some range of mixed layer depths over the course of the year. The Canary system does not feature a substantial mixed

layer depth variability. Rather, in the Canary system, mixed layers are shallow throughout the year, possibly contributing with

favorable light conditions to comparatively high chlorophyll concentrations throughout the year. All in all, the Peruvian system

shows the strongest response to MLD variations.

Surface chlorophyll correlates positively with SST in the Peruvian (Fig. 2d, R2 = 0.73) and California systems (R2 = 0.65)145

and to a lesser extent in the Benguela upwelling (R2 = 0.41), suggesting that increasing temperatures are stimulating phyto-

plankton growth. The Benguela system also upholds the trend of increasing chlorophyll following the increasing temperature,

though the correlation is not significant. As for MLD, the Canary system does not reveal a strong seasonal SST variance albeit

features comparatively high SSTs throughout the year.

Strikingly, the Peruvian system is the only one of the four EBUS where high upwelling coincides with deep MLD (Fig. 2e,150

R2 = 0.79). The Canary system features a seasonality of upwelling but shallow mixed layers throughout the year, while the

Benguela system does not vary much in terms of upwelling while varying in terms of mixed layer depth. In the California

system, the relationship of upwelling and mixed layer depth is opposite to that of the Peruvian system, with the highest

upwelling into the shallowest mixed layers.
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Given the paradox that strong upwelling in the Peruvian system occurs at the time of the yearly chlorophyll minimum, it is155

intuitive that the concurrent deep mixed layers offset the positive impact of upwelled nutrients. In other words, more nutrients

only have a strong local positive effect if concentrations are low / would be low otherwise. If concentrations are elevated,

adding more nutrients will have a weak impact. We will look further into the interplay of the seasonality of mixed layers and

upwelling in the Peruvian system in the following.

3.2 Modelled phytoplankton biomass, dissolved inorganic nitrogen, upwelling and the MLD in the Peruvian system160

We use a regional ocean circulation model coupled to a marine biogeochemical model (CROCO-BioEBUS) to further analyse

the Peruvian system (see Methods). The model reproduces well the observed estimate of the seasonal out-of-phase relationship

of surface phytoplankton biomass with upwelling intensity and nitrate concentrations (Fig. 2, open circles). In the model,

surface chlorophyll and nitrogen concentrations together with upwelling intensity and MLD all display a 40-60% seasonal

variability. Surface phytoplankton biomass concentration is highest in late austral summer to early autumn (March to April)165

when upwelling is relatively weak (Fig. 3a,b). Less nitrogen is available within a shallow MLD compared with the rest of

the year. In austral winter (July to September), when upwelling brings up ample nitrogen into the deep mixed layer, surface

phytoplankton concentration is lowest.

3.3 Biomass dilution by the deepening mixed layer

Dilution of phytoplankton in deepening winter mixed layers is a key driver behind the seasonality of surface phytoplankton170

concentration. Within the research area, the MLD shows a seasonal variation with the shallowest mixed layer in austral summer

(around 10 m), and the deepest mixed layer in austral winter (around 45 m). Phytoplankton is vertically well mixed within the

mixed layer throughout the year (Fig. 3c). In austral winter, in the ‘deep-mixing’ regime, phytoplankton is evenly distributed

over a relatively deep mixed layer, diluting phytoplankton biomass. Accordingly, phytoplankton biomass concentrations in

the mixed layer, and along with it at the surface, decrease. Hence, seasonal mixed layer deepening and shoaling alone is an175

important factor in driving phytoplankton concentrations at the ocean surface as observed for instance based on satellite images.

While dilution causes a decrease of winter surface phytoplankton biomass, it explains only part of the observed biomass

decrease: the decline persists, even though attenuated, if we integrate phytoplankton over the mixed layer (Fig. 3b). The

phytoplankton concentration at the surface (and within the mixed layer) declines by around 70% while declines by around

30% for MLD-integrated biomass between late April and late July (shaded area in Fig. 3 & 4, hereafter referred to as the180

decline phase). The decline of surface phytoplankton concentrations can be attributed to the decline due to the increase of

the mixed layer volume ∆V (dilution effect, see Eq. 5) and a decrease of the biomass ∆B within the mixed layer (through

local biological and physical processes, see Eq. 5). During the decline phase, ∆V contributes slightly more than half to the

concentration change while ∆B contributes slightly less than half. That is, the dilution effect due to the deepening mixed layer

in the decline phase amplifies the decline of surface biomass concentrations by about a factor of two. Yet, dilution can not fully185

explain the low phytoplankton biomass in conditions of ample supply of nitrogen, MLD-integrated biomass still declines by

around 35%.
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Figure 2. Correlations of surface chlorophyll (SeaWIFS climatology, in mg m−3) with (a) upwelling (estimated based on winds from

QuikSCAT, in Sv, digitized from Chavez and Messié (2009), calculations see Messié et al. (2009)); (b) surface nitrate concentration (WOA,

in mmol N m−3); (c) MLD (ARGO, in m); (d) SST (MODIS, in oC) and (e) correlation of MLD and upwelling transport among four eastern

boundary upwelling systems (EBUS); for the Peruvian system we show also the model (CROCO-BioEBUS) results. Lines and R2 values

are given for correlations with R2 > 0.5.
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Figure 3. Seasonal cycles of (a) upwelling intensity (in Sv, solid line) and surface dissolved inorganic nitrogen (DIN) concentration (in

mmol N m−3, dotted line); (b) surface (in mmol N m−3, solid line) and mixed layer depth (MLD)-integrated phytoplankton biomass (in

mmol N m−2, dotted line); (c) phytoplankton depth-month distribution with the seasonal cycle of MLD (in m, solid line) within the focus

region. The shaded area indicates the decline phase of MLD integrated phytoplankton biomass.

3.4 Biological and physical processes change total biomass within the mixed layer

3.4.1 Disentangling physical and biological processes

Besides dilution due to the deepening mixed layer, the imbalance of a series of biological and physical processes during the190

decline phase also diminishes phytoplankton concentrations. To disentangle their contributions to the decline of phytoplankton

concentration without the complication of the dilution effect, we next analyze the change of phytoplankton biomass integrated

over the mixed layer (Fig. 4a) and its drivers, that is the mixed layer budget of phytoplankton biomass (Eq. 1, Supplementary

Fig. C2). We separate biological processes (e.g. primary production, grazing from zooplankton, natural mortality, exudation,

sinking) and physical processes (mixing, advection and entrainment) that affect the integrated biomass (Fig. 4b). Throughout195
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the year, the net biological flux is positive, acting as a source for MLD-integrate phytoplankton biomass, while the net physical

flux is negative, acting as a sink. The balance of these terms determines if the total biomass within the mixed layer decreases

or increases. Most biological and physical processes decrease from the start (t1) to the end (t2) of the decline phase (Fig. 4c-

d). While mortality is larger at t2 than t1, it is only due to a sudden increase by the end of the decline phase (Fig.C2). The

more rapid decrease of net biological source relative to net physical loss leads to biomass reduction during the decline phase200

(Fig. 4b).

The biological and physical processes that promote a decline of the MLD-integrated biomass are a reduction of primary

production and entrained phytoplankton, along with an enhanced phytoplankton offshore transport (Fig. 4e-f). Among the bi-

ological processes, the reduction of primary production as the only source process overpowers the weakening of biological

sink processes and significantly promotes the biomass decline. Within the physical processes, the net effect of lateral and ver-205

tical transport of phytoplankton biomass (advection) is picking up during the decline phase, leading to a net offshore export

of phytoplankton biomass. In addition, while phytoplankton is entrained into the mixed layer from below when mixed layers

deepen, the rate of entrainment decreases during the decline phase. The decreasing rate is due to decreasing phytoplankton

concentrations at the bottom of mixed layers as mixed layers deepen. All other biological and physical processes act to oppose

the decline of phytoplankton biomass, such as an attenuation of mixing out of the mixed layer over the decline phase. Details210

regarding the two major contributors, primary production and advection, are presented in the following sections.

3.4.2 Factors limiting primary production

Primary production changes due to variations of both the growth factor and the biomass (Eq. 2). The growth factor (calculated

as in Eq. 3, Fig. 5a) combines the effects of light, temperature and nitrogen on phytoplankton growth. It shows a clear decrease215

(around 30%) during the decline phase. Optimal phytoplankton growth conditions are reached in March despite the low dis-

solved inorganic nitrogen (DIN) conditions, with the warmest and brightest environment. The lowest growth rate occurs just

after the decline phase despite relatively high nitrogen concentrations due to limiting light and temperature conditions.

Strong light limitation experienced by phytoplankton in combination with low temperatures slows down the growth during

the decline phase. Light conditions for phytoplankton growth are best in March when the water is rather stratified and worsens220

over the decline phase to a minimum in August when the water column is mixed deepest. The light-related growth factor

declines by 17% during the decline phase and would decrease the growth factor by around 60% in the absence of other limiting

factors (estimated based on Eq. 3). The decreasing temperature is the second most important factor to slow the growth rate in

the decline phase. The temperature-related growth factor reaches its maximum by March, similarly to the light-related growth

factor, and its minimum by October. The temperature-related growth factor declines by 12% and would decrease the growth225

factor by around 40% in the absence of other limiting factors during the decline phase. In contrast, the seasonality of the growth

factor due to nitrogen shows the opposite seasonality compared to the total growth factor. Clearly, light and temperature regulate

primary production and override the effect of nitrogen supply during the decline phase. Therefore, while light is the dominant

mechanism that reduces productivity towards winter, we find that temperature plays a relevant secondary role.
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Figure 4. Seasonal cycles of (a) total phytoplankton biomass change ∆B in the mixed layer (in mmol N m−2 d−1); gray shading indicates

the decline phase as in Fig. 3, with t1 and t2 marking the beginning and end of the decline phase; (b) MLD-integrated phytoplankton net

biological and physical fluxes (in mmol N m−2 d−1, as shown in Eq. 1 plus the entrainment introduced by the integration); bar plots of (c)

biological and (d) physical fluxes at the start (t1, light green) and end (t2, dark green) of decline phase; bar plots of the integrated change over

the decline phase over mixed layer due to (e) biology and (f) physics within the focus region. Red and grey indicate promoting and opposing

ML-integrated phytoplankton biomass decline. pp stands for primary production; graz for consumptive mortality; mort for natural mortality;

exu for exudation; sink for sinking; mix for mixing; adv for advection and entr for entrainment.

Stronger light and temperature limitation during the decline phase are due to deeper mixing and stronger upwelling, respec-230

tively (Fig. 5b-c). While upwelling intensity is approximately correlated with deep mixed layers occurring when upwelling

is high, the peak of upwelling happens just after the deepest mixed layers. The variation of MLD-averaged light limitation is

correlated (R2 = 0.92) with the change of MLD. As phytoplankton is evenly distributed within the mixed layer, deeper MLD

means more phytoplankton is exposed to a relatively lower light condition on average in the decline phase, with a minimum in
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Figure 5. (a) Seasonal cycles of the normalized total (black) growth factor, light (yellow)-, temperature (red)- and nitrogen (blue)-related

growth factors, as experienced by phytoplankton over the mixed layer. The grey shading indicates the decline phase; (b) seasonal correlation

of MLD and mixed layer averaged light-related growth factor; (c) correlation of upwelling intensity and mixed layer averaged temperature-

related growth factor. Colors indicate the time of the year (months) with black edges marking the months of the decline phase. R2 value of

the correlation is shown in the right of the panels

August when mixed layers are deepest. The change of the temperature-related growth factor within the mixed layer is closely235

related (R2 = 0.83) with the seasonal variation of upwelling intensity, with the lowest values in September and October when

upwelling intensity is highest. In the decline phase, cold waters are upwelled into the mixed layer at a higher rate, further

damping phytoplankton growth in addition to the limiting light conditions. Reduced winter surface solar radiation and heat

loss to the atmosphere, also play a role in the seasonality of the light and temperature growth factors, respectively (Fig. C3),

yet of much less importance (not shown).240
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3.4.3 Enhanced upwelling and offshore transport of phytoplankton

An enhanced advective loss of mixed layer phytoplankton is a second-order process promoting the decrease of MLD-integrated

phytoplankton biomass during the decline phase. Like nutrients, phytoplankton biomass is affected by the seasonality of up-

welling and offshore export of waters. Phytoplankton growing at the bottom of the mixed layer is being upwelled and later

pushed offshore along with the phytoplankton that is growing in the mixed layer. During the decline phase, the upwelling245

and offshore transport of water increases and more of what is produced in coastal waters is exported offshore: 4% of primary

production is lost via advection by the end of the decline phase compared to 2% gained at the beginning. This greater loss of

biomass due to divergent advection is mainly caused by stronger upwelling in the decline phase (Fig. C4).

4 Discussion

4.1 Mixed layer depth drives surface phytoplankton biomass seasonality in the Peruvian upwelling system250

The regional ocean circulation-biogeochemical model that we use successfully reproduces the "seasonal paradox", with sea-

sonal out-of-phase surface chlorophyll concentration and upwelling intensity, as derived from observations. As shown in the

results, the low surface chlorophyll concentration in high upwelling conditions in austral winter is constrained by a combined

effect of MLD-driven processes and upwelling-driven processes. Under high upwelling conditions in austral winter, phyto-

plankton is diluted over a deeper mixed layer, leading to a decrease of the mixed layer, and likewise, surface phytoplankton255

concentrations by over 50%. Also, phytoplankton growth is slowed down as they experience deteriorating light and temperature

conditions. On top of that, strong upwelling pushes phytoplankton offshore.

Several previous studies have also focused on the possible reasons behind the seasonal paradox in the PUS. Echevin et al.

(2008) also suggested based on model results that relative low surface chlorophyll concentration in austral winter off the Pe-

ruvian coast is generated by the combined effect of dilution and deteriorating light limitation with deepening mixed layers.260

In addition, Messié and Chavez (2015) find that more severe iron limitation under low light condition could also be one of

the reasons behind low primary production under high upwelling conditions. According to results from culture experiments,

phytoplankton iron demand would increase under light limitation conditions (Sunda and Huntsman, 1997). Based on observa-

tions, Friederich et al. (2008) suggest that winds in the winter high-upwelling conditions favor curl driven upwelling, which

would draw more offshore iron-deficient waters to the surface. On the contrary, a model study (Albert et al., 2010) finds that265

stronger wind-curl driven upwelling actually is recruiting more nutrient-rich water from a shoaling coastal undercurrent, thus

contributing to enhancing surface chlorophyll concentrations. We cannot assess the role of iron in regulating the seasonality

of phytoplankton biomass because our biogeochemical model does not simulate iron (see Sect.B). Nevertheless, our study

confirms the importance of vertical redistribution of biomass and light limitation due to vertical mixing. Here, we emphasize

the importance of the deepening mixed layers in the decline phase.270
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4.2 Upwelling into deep mixed layers: A unique feature of the Peruvian upwelling system and its implications

As we just argued in the previous paragraphs using the differences of the seasonalities of MLD and upwelling in the Peruvian

system. The upwelling of nutrient rich waters happens when growth conditions are the worst, i.e. light availability is lowest

due to deep mixed layers. Also, the upwelled waters are comparatively cool and in deep mixed layers may warm up relatively

slowly. At the same time, the upwelling will charge the deep mixed layers with nutrients that allow for growth once the mixed275

layer shallows. That is, the upwelling into deep mixed layers in the Peruvian may precondition high summer phytoplankton

production.

In contrast, in the California system nutrients are upwelled into the shallowest mixed layers. While this nutrient supply

coincides with shoaling mixed layers and associated improved light conditions and reduced dilution, it does not result in as

high phytoplankton concentrations as for the Peruvian system. This supports that nutrient limitation is important, as the supply280

of nutrients to shallow mixed layers by upwelling appears insufficient to relieve nutrient limitation. We speculate that the

charging of deep mixed layers as in the Peruvian system is more efficient in supplying nutrients to the euphotic zone compared

to upwelling into shallow waters as in the Californian system, possibly warranting further studies. Also, if nutrients are being

upwelled into deep mixed layers and allow the onset of a bloom, zooplankton standing stock might be low and take a while

to catch up and eventually reduce phytoplankton biomass. On the contrary, if nutrients are being upwelled into shallow mixed285

layers, zooplankton standing stock is probably already high and zooplankton can act on the spot to limit phytoplankton biomass.

While the Canary and Benguela systems lack a seasonality in MLD and phytoplankton, respectively, we mark a few aspects

that may point towards a role of MLD also in these systems. Given that the Canary system does not feature a substantial seasonal

MLD variability, it is intuitive that it follows the seasonality of upwelling intensity more strongly compared to the other EBUS.

While mixed layer conditions do not modulate the seasonality of phytoplankton they may contribute to Canary high phyto-290

plankton concentrations insofar as mixed layers are shallow throughout the year, creating favorable light conditions. Finally,

the Benguela system features a rather constant upwelling through the year into varying mixed layers. The non-responsiveness

of phytoplankton to the varying MLD hypothetically could be due to compensating effects of deepening mixed layers that

dilute phytoplankton and deteriorate light conditions, but the same time are accompanied by enhanced supply of nutrients that

are mixed up from below. The higher surface nitrate concentrations in conditions of deep mixed layers in the Benguela system295

could be interpreted this way. Enhanced growth due to higher nutrient availability would then offset, yet not completely, the

worsening light conditions and dilution. Finally, the strong response of phytoplankton in the Peruvian upwelling system to

mixed layer depth would then be due to the unique situation of upwelling into deep mixed layers.

Again, other factors may also play a role in regulating phytoplankton in the EBUS next to nutrients, dilution and light

associated with upwelling and MLD (see also Results section; Messié and Chavez, 2015), including the advection of biomass300

and regulation by temperature that varies with upwelling (see Results). In addition, Lachkar and Gruber (2011) suggest that a

longer residence time because of a wide shelf and weak mesoscale activity may also promote phytoplankton growing. Also,

next to iron supply from the shelves and upwelling of source waters, Fung et al. (2000) found that atmospheric deposition of

iron varies between EBUS.
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4.3 From phytoplankton to ecosystem functioning305

The interplay of mixed layer depth and upwelling that leads to the seasonal paradox in the PUS is further propagating up

the food chain and modulates the trophodynamics. In austral summer, when the shallow mixed layer along with the add-

on effect from upwelling supports the highest phytoplankton biomass and primary production, it provides an ideal feeding

place for zooplankton. In contrast, in winter zooplankton is facing a food shortage, less efficient grazing due to dilution and

transports due to enhanced upwelling. Similar to the spatial match-mismatch observed for phytoplankton and top predator in310

Benguela system(Grémillet et al., 2008), mesozooplankton with its slower growth rate may also be affected by upwelling,

with phytoplankton thriving near the coast and zooplankton concentrated further offshore. In our model, mesozooplankton is

responsible for the major part of the export in the coastal upwelling region. During the productive season, the faecal material

of mesozooplankton accounts for close to 100% of the sinking matter which is in good agreement with what is found in Stukel

et al. (2013) for the California system.315

Both primary production and export are found to be determined by the mixed layer dynamics and foodweb structures

(Ducklow et al., 2001; Turner, 2015; Steinberg and Landry, 2017). The efficiency of the export, defined as the ratio of export to

primary production, is also related to trophodynamics. Export efficiency depends, as mentioned above, on the composition of

the exported material. In the PUS, it is positively correlated with net primary production (Fig. C5). Mesozooplankton produces

fast-sinking large detritus, which enhances the export efficiency during the productive season. In both the Peruvian and Cali-320

fornia systems, high primary productivity coincides with a shallow MLD. What is different in the California system compared

to the Peruvian system is that in the former the time of shallow mixed layers and high primary productivity is also the time

of strongest upwelling. Strong upwelling and offshore transport may lead to the above mentioned spatial mismatch between

phytoplankton and mesozooplankton, because mesozooplankton grows more slowly. This may then result in comparatively

low large detritus despite high primary production. Therefore, high primary production may not necessarily tie in with high325

mesozooplankton biomass and subsequent high export. Indeed, Kelly et al. (2018) observed that export efficiency is negatively

correlated with net primary productivity in the California system. However, they suggested that this negative correlation arises

from a seasonal decoupling of export and particle production through long-lived, slowly sinking particles that would introduce

a temporal lag of mesozooplankton production and export to depth. In addition, Henson et al. (2019) find a negative correlation

between export efficiency and primary productivity on a global scale. They imply in their study that it is not just the phyto-330

plankton community but also the foodweb structure important to export efficiency. We suggest that the role of the interplay of

the mixed layer and upwelling in EBUS and ecosystem functioning is closely linked and warrants further examination.

4.4 Potential change under global warming

Our findings suggest that for an assessment of the response of the EBUS to climate change, it is important to consider the po-

tential change of the interplay between the mixed layers and upwelling dynamics. Phytoplankton will inevitably be influenced335

by climate change, responding to the changes in the biotic and abiotic environment. Impacts in a changing climate will arise

from changes of stratification and upwelling that further lead to shifting growth conditions due to changes of light, temperature
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and nutrient (Behrenfeld, 2014). Previous observations indicate that waters near the coast have cooled since the 1950s, possi-

bly due to an increase in upwelling (Gutiérrez et al., 2011). A recent regional modelling study (Echevin et al., 2020) projects

an intensive surface warming along with a weakening of wind-driven upwelling. While studies typically focus on changes in340

upwelling, our results suggest that MLD changes maybe even more relevant. Assuming that winds will never cease entirely and

hence there will always be some upwelling that recharges the mixed layer with nutrients, shoaling of the mixed layer caused

by intensive surface warming may dominate the response of phytoplankton and ecosystem functioning. A shoaling MLD may

release the phytoplankton from the strong dilution and light limitation in austral winter, along with better light and temperature

condition in austral summer, leading to the expectation of an attenuation of the seasonal paradox in future. While modulation345

of growth conditions due to changing temperatures and nutrient supply from changing upwelling also may play a role, Echevin

et al. (2020) simulations suggest that surface chlorophyll overall will increase in the PUS due to global warming.

5 Conclusions

In summary, CROCO-BioEBUS performs well compared to observational data and successfully reproduces the "seasonal

paradox" with an out-of-phase relationship of surface chlorophyll and upwelling intensity in the Peruvian coastal waters. The350

seasonal cycle of surface chlorophyll concentration in our simulations is driven mostly by MLD-related processes (dilution and

light limitation), with secondary contributions from upwelling-related processes (temperature limitation and advection). Unlike

other EBUS, the PUS features a unique positive correlation of the mixed layer and upwelling, with the strongest upwelling

into the deepest mixed layers, whose combined impacts lead to the seasonal fluctuation of surface chlorophyll concentration.

We find that the seasonal variability of phytoplankton further propagates up the food chain and affects the trophodynamics,355

and ultimately export efficiency. Therefore, a more thorough understanding of the interactions behind the mixed layer and

upwelling dynamics along with the food web processes will help to better project how coastal upwelling ecosystems, and in

particular the Peruvian system, may vary under climate change.

Code availability. CROCO and BioEBUs models are available at http://www.croco-ocean.org

Data availability. The model data used in this paper are available via the corresponding author360

Appendix A: Methods

A1 Two-way nesting approach

Figure A1 visualizes the coarser-resolution parent and nested finer-resolution child domain that contains the focus region. The

variables in section B are shown for the child domain.
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parent child

Figure A1. Bathymetry of the "parent" (1/4◦ resolution) and "child" (1/12◦ resolution) domains. White lines near the coast highlight the

focus region.

A2 Adjustment of biogeochemical model parameters365

The parameter setting is the same as in José et al. (2017), with only a few biological parameters adjusted to make the ecol-

ogy (phyto- and zooplankton biomasses, productivity) better fit observational data. The changed parameters along with value

ranges from literature are listed in Table A1 and will be further explained below.

Here, we assign a higher mortality rate for large phytoplankton to simulate the potential impact of virus infection during bloom

conditions (Suttle, 2005). Simulated phytoplankton biomass and its seasonality has been calibrated and evaluated against370

chlorophyll concentration data from MODIS monthly climatology data (https://oceancolor.gsfc.nasa.gov/). Nitrate has been

evaluated based on WOA and cruise data while simulated MLD has been validated against the ARGO mixed layer database

(Holte et al. (2017), http://mixedlayer.ucsd.edu/).
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Table A1. Adjusted biological Parameters and range of published parameter values

Parameters Symbols Units Value Range

Max growth rate of PL aPL d−1 0.6 0.6a-3.0b

Mortality rate of PL µPL d−1 0.15 0.027c-0.2d

Preference of ZS for PS eZSPS - 0.65 see referencese

Preference of ZS for PL eZSPL - 0.35 see referencese

Preference of ZL for PS eZLPS - 0.1 see referencesf,g

Preference of ZL for PL eZLPL - 0.4 see referencesf,g

Preference of ZL for ZS eZLZS - 0.5 see referencesf,g

Excretion rate of ZS γZS d−1 0.1 0.03h-0.1i

Excretion rate of ZL γZL d−1 0.1 0.05h-0.1i

Mortality rate of ZL µZL mmol N m−3 d−1 0.135 0.05a-0.25j

a Gutknecht et al. (2013)
b Andersen et al. (1987)
c Koné et al. (2005)
d Taylor et al. (1991)
e Bohata (2016)
f Kleppel (1993)
g Schukat et al. (2014)
h Aumont (2005)
i Fennel et al. (2006)
j Lima and Doney (2004)

Appendix B: Model evaluation375

B1 Surface chlorophyll concentration

The large-scale spatial pattern of annual average surface chlorophyll of the monthly climatology of MODIS data and CROCO-

BioEBUS are similar (Fig. B1), with higher chlorophyll concentrations in coastal regions and lower concentrations offshore

(note that chlorophyll is shown in log-scale). The satellite data features a higher cross-shore chlorophyll concentration gradient

compared to the model simulation. The model’s overestimation of the low offshore chlorophyll and hence weaker cross-shore380

gradient potentially is due to the lack of iron limitation in the model. Apart from that, the model is also not able to correctly

capture the alongshore pattern (Fig. B1), i.e. it misses two observed high surface chlorophyll concentration patches between

8◦S to 10◦S and 12◦S to 14◦S (Bruland et al., 2005). Within a 200 km band near the coast, both satellite data and the model

simulation show a similar seasonality with maximum chlorophyll concentrations exceeding 4 mg /m3 from March to April and

minimum concentrations around 2 mg /m3 in August. In general, simulated surface chlorophyll concentrations agree reasonably385

well with satellite data.
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Figure B1. Annual mean surface chlorophyll concentration (in log(chl (mg m−3)−1)) distribution of (a) MODIS and (b) CROCO-BioEBUS.

White lines highlight the focus region.

B2 Surface nitrate concentration

The simulated surface nitrate distribution shows the same seasonality as observations from the World Ocean Atlas (WOA;

Garcia et al., 2019) (Fig. B2). The simulated surface nitrate concentration in the coastal region is biased high compared to the390

WOA data. This may be partly due to the WOA data failing to capture high-nitrate concentrations due to coastal upwelling.

This notion is supported by nitrate concentration data from a cruise in austral summer that show nitrate concentrations in the

coastal region are high compared to the model data.

B3 Mixed layer depth

We validate the simulated MLD against the gridded ARGO mixed layer dataset (Holte et al. (2017), http://mixedlayer.ucsd.edu/)395

both in terms of spatial pattern and seasonal variability within the research area (Fig. B3). The annually averaged spatial dis-

tribution of MLD within the research area presents the same features as ARGO: shallower MLD in the coastal region (around

20 m) and deeper MLD in the offshore region (around 80 m). The simulated seasonal variability of MLD within the research

region generally follows the seasonal trend of the Argo data. The water column within the research region is most stratified

in February to March and most deeply mixed in August. Although simulated MLD in austral winter is somewhat deep, the400

simulated MLD are largely within the range of the ARGO data.

B4 Sea surface temperature

The simulated SST has been validated against monthly climatological MODIS data in terms of both spatial pattern and seasonal

variability within the research area (Fig. B4). The annually averaged spatial distribution of SST is well simulated by the model.

The model successfully captures the cold coastal upwelled water as well as slightly warmer water masses further offshore.405

The simulated SST seasonality within the research region generally follows the seasonal trend of the observations, with a

cool bias of less than 1oC. The surface waters within the research region are warmest in February to March matching the
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Figure B2. Spatial distribution of surface nitrate concentration based on (a) WOA and (b) CROCO-BioEBUS; (c) January and (d) February

as simulated by CROCO-BioEBUS. Dots indicate measurements from the cruises M92 (January) and M93 (February); (e) seasonal cycle

of surface nitrate concentration from WOA (cross), CROCO-BioEBUS (line) and cruises (pentagram, hexagram) within the focus region.

White lines highlight the focus region. The black box indicates the maps of panel c-d.

modelled/observed shallowest mixed layers and coldest from August to October. In general, the simulated SST matches the

observations well both in terms of spatial pattern and seasonal variation.
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Figure B3. Annual average spatial distribution of mixed layer depth (MLD) from (a) ARGO and (b) CROCO-BioEBUS; (c) Seasonal

variation of average mixed layer depth from ARGO (crosses, with lines indicating the standard deviation) and model simulation (line) within

focus region. White lines highlight the focus region.

Appendix C: Additional Figures410

The whole time series of temperature and nitrate concentration at 10 m and 1000 m are shown in Fig. C1a-b. Surface fields are

spun up after one year while deepwater takes longer to reach a steady state. In the meanwhile, mixed layer and surface layer

chlorophyll are also spun up after one year (Fig. C1c-d).

Detailed seasonal cycles of phytoplankton budgets integrated over MLD is shown in Fig.C2, including primary production

(pp), consumptive mortality (graz), natural mortality (mort), exudation (exu), sinking (sink), mixing (mix), advection (adv)415

and entrainment (entr). Further, seasonalities of net biological (bio) and physical (phy) fluxes along with MLD-integrated

phytoplankton biomass change (∆B) is also shown in the figure.

Apart from above mentioned mixed layer depth and upwelling intensity, short-wave surface radiation and surface net heat

flux are of second-order importance to light- and temperature-related variance during the decline phase respectively (Fig.C3).

Phytoplankton net advection flux over the mixed layer closely follows the upwelling intensity during the decline phase420

(Fig.C4, R2 = 0.81). When the mixed layer depth is relatively shallow, the correlation between upwelling intensity and phyto-

plankton convergence of advection over the mixed layer is insignificant.
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Figure B4. Annual average spatial distribution of sea surface temperature (SST, in oC) from (a) MODIS and (b) CROCO-BioEBUS; (c)

Seasonal variation of average sea surface temperature (SST) from MODIS (cross) and model simulation (line) within focus region. White

lines highlight the focus region.

We define export as the organic material sinking below the euphotic layer and export efficiency as the ratio of primary

production over export (Murray et al., 1996). The efficiency of export depends on the composition of particle organic matter

with different sinking speed and its remineralization rate. Within the model, export efficiency is positively correlated with net425

primary production (Fig.C5) which is opposite to what is found in the California system.
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Figure C1. Time series of temperature T (at 10 m & 1000 m depth), nitrate N (at 10 m & 1000 m depth), mixed layer depth MLD and

phytoplankton phyto (at 10 m) over 30 years of simulation in the focus region.
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Figure C2. Seasonal cycles of phytoplankton source and sink processes integrated over the mixed layer, along with the net biological fluxes

(dotted line) and the net physical fluxes (dashed line), and the tendency (change) of phytoplankton biomass (solid line) integrated over the

mixed layer.

Figure C3. (a) Correlation between surface short-wave radiation (Wm−2) and the averaged light-related growth factor within mixed layer;

(b) Correlation between the surface heat forcing (in oCd−1) and averaged temperature-related growth factor within mixed layer. Color

indicates the time of the year and black edges the decline phase.
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Figure C4. Correlation between upwelling intensity and phytoplankton convergence of advection over the mixed layer. A negative conver-

gence equals a divergence of phytoplankton biomass due to the combined effect of upwelling and lateral transports. Color indicates the time

of the year and black edges the decline phase. The correlation coefficient (R2=0.81) is shown for the decline phase.

Figure C5. Correlation of export efficiency (defined as ratio of primary production over export below the euphotic layer) with net primary

production (NPP). Colors indicate the time of the year.
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