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Abstract. Mesocosm experiments on phytoplankton dynamics under high CO2 concentrations mimic the response of marine

primary producers to future ocean acidification. However, potential acidification effects can be hindered by the high standard

deviation typically found in the distribution of the replicates exposed to the same treatment. In experiments with multiple unre-

solved factors and a suboptimal number of replicates, post-processing statistical inference tools may fail to detect an effect. In

such cases, model-based data analyses are suitable tools to unearth potential responses to the treatment and to identify which5

uncertainties may give rise to the observed divergences. As test cases, we use data showing high variability from two inde-

pendent mesocosm experiments, where, according to statistical inference tools, biomass appeared insensitive to changing CO2

conditions. Our simulations, in stead, show earlier and more intense phytoplankton blooms in modeled replicates at high CO2

concentrations and suggest that uncertainties in average cell size, phytoplankton biomass losses and initial nutrient concen-

tration potentially outweigh acidification effects by triggering strong variability during the bloom phase. We also estimate the10

thresholds below which uncertainties do not escalate into high variability. This information may help to interpret controversial

results about acidification and to design future mesocosm experiments.
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1 Introduction

Oceans are a sink for about 30% of the excess atmospheric CO2 generated by human activities (Sabine et al., 2004). Increasing15

carbon dioxide concentration in aquatic environments alters the balance of chemistry reactions and thereby adds acidity, which

is known as ocean acidification (OA) (Caldeira and Wickett, 2003). Interestingly, the sensitivity of the photoautotrophic pro-

duction of particulate organic mater (POC) to OA is less pronounced than previously thought. A general compilation of studies

on CO2 enrichment reveals an overall increase in POC (e.g. Schluter et al., 2014; Eggers et al., 2014; Zondervan et al., 2001;

Riebesell et al., 2000) but also no CO2 effects in POC abundance (e.g. Jones et al., 2014; Engel et al., 2014). In particular, high20

variances are often present in mesocosm experiments, even in replicates of similar CO2 conditions (Paul et al., 2015; Schulz

et al., 2008; Engel et al., 2008; Kim et al., 2006; Engel et al., 2005). This variability discloses a sever reduction in the ratio

between acidification response signal and the variability in observations, which results in a low signal-to-noise ratio.
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Mesocosms enclose plankton communities, therefore they comprise a more realistic experimental set-up compared to batch

or chemostat experiments (Riebesell et al., 2008). However, mesocosm also contain a higher number of possible interactions,

thus opportunities for uncontrolled heterogeneity to spread. Moreover, physiological states vary for different phytoplankton

cells and environmental conditions, making independent experimental studies prone to divergent results. In addition, it is

impracticable to account for every possible factor that occurs in the original environment or to fine-control initial community5

structure and ecophysiological states among replicates. Such unresolved ecological details may propagate over the course of

the experiment and produce high standard deviations of same treatment replicates.

Our main working hypotheses on the origins of variability in mesocosm experiments are:

– differences among replicates can be interpreted as random variations that compromise similarity of the initial biological

state among same treatment replicates10

– such uncertainties can amplify during the experiment and generate considerable divergence in the treatment response

– which differences are more significant can be revealed by the decomposition of the variability of the outcomes in terms

of the nature, intensity and timing of the amplified response they triggered.

The confirmation of these hypotheses entails two important aspects. First, to heuristically explore variability would require ex-

periments designed to quantify the sensitivity of the mesocosm to variations in potentially relevant factors describing cell phys-15

iology and community structure. However, such design would require high-dimensional multi-factorial experimental setups,

which are hardly, if at all, manageable, even for low number of replicates. Second, post-processing comparison of variances

between treatments and variances within treatments may point to misleading conclusions. This is because variability in the

outcomes from replicates of the same treatment may be enlarged by unresolved concomitant effects that are not symmetrically

distributed. Such factors can give rise to aberrant outcomes, thus high standard deviations (Cottingham et al., 2005; Miller,20

1988), especially for experiments where a suboptimal number of replicates lowers the likelihood for non treatment related

dissimilarities to be canceled out by averaging (Ruxton and Colegrave, 2006; Peterman, 1990).

To investigate how a given system reacts to unresolved factor variations, a model-supported sensitivity analysis offers an

alternative to statistical inference. Classical approaches involve testing the robustness of model results to variations of model

control factors (as parameters and initial conditions) accounting for the system dynamics under environmental forcing (Klepper,25

1997). Such analyses are often done point-wise around some reference values of the control factors. Typically, these reference

values should be retrieved prior to the sensitivity analysis and should provide a model fit to the experimental or observational

data. When replicates are available, model results are fitted to represent the mean of the data. A large sensitivity is revealed

when small variations of a factor value induce pronounced changes in model results. In contrast, a low sensitivity is indicated

by unaltered or slightly changed modeled outcomes in spite of large variations of a factor value. From a modeling perspective,30

these sensitivity analyses help to resolve uncertainties in model results. In this study, we quantify uncertainties by a similar

approach, however, with different objective and interpretation. Its major rationale is to associate the variability in experimental

observations to a variational range bounding the uncertainty of each control factor. The margins of the variational range of each
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factor are thus confined by the ability of the dynamical model to reproduce the magnitude of the variability observed in two

independent OA mesocosm experiments, namely Pelagic Enrichment CO2 Experiment (PeECE II and III). These confidence

intervals describe the tolerance thresholds below which uncertainties do not escalate into high variability in mesocosm experi-

ments. This information can be important to ensure reproducibility, thus a comparison between results of different independent

experiments, and to increase confidence about effects of OA on phytoplankton (Broadgate et al., 2013).5

2 Method

2.1 Data integration and model description

We describe here the initial biological state that we use as reference dynamics for our hypotheses. Model equations are shown in

Table 1. Reference values of the parameters are shown in Table 2. Initial conditions and parameters are in the following refereed

as ’model factors’. Although both experiments differ in their species composition, environmental conditions and nutrient supply10

(Engel et al., 2008; Schulz et al., 2008), same parameter set is employed for PeECE II and III, a feature showing the model

validation skills. An exhaustive model documentation is given in Appendix B. The model simulates experimental data from

the Pelagic Enrichment CO2 Experiment (PeECE), a set of 9 outdoor mesocosms placed in coastal waters close to Bergen

(Norway) during the spring 2003 (PeECE II) and the spring 2005 (PeECE III). In both experiments, blooms of the natural

phytoplankton community were induced and treated in three replicates for future, present and past CO2 conditions (Engel15

et al., 2008; Schulz et al., 2008; Riebesell et al., 2007, 2008). Experimental data are available through the data portal Pangaea

(doi: 10.1594/PANGAEA.723045 for PeECE II and doi: 10.1594/PANGAEA.726955 for PeECE III).

Field data of aquatic CO2 concentration, temperature and light were used as direct model inputs (see Appendix C). Mea-

surements of POC, PON and DIN were used for model calibration. POC and PON data were adjusted for a direct comparison

with model results (see Appendix D), since some contributions remain unresolved by our dynamical equations. State variables20

of our model comprise carbon and nitrogen content of phytoplankton, PhyC and PhyN and dissolved inorganic nitrogen, DIN,

as representative for all nutrients. The dynamics of non phytoplanktonic components DH, i.e. detritus and heterotrophs, are

distinguished by DHC and DHN. Then POC = PhyC + DHC and PON = PhyN + DHN.

Mean cell size in the community, here represented as the logarithm of the mean equivalent spherical diameter ESD, is used

as model parameter. It determines specific ecophysiological features using allometric relations, relevant for the computation25

of subsistence quota, as well as nutrient and carbon uptake rates. About the latter, to resolve sensitivities to different DIC

conditions, we seek for a relatively accurate description of carbon acquisition as function of DIC and size. It has been suggested

by previous observations and models that ambient DIC concentration increases primary production (e.g. Schluter et al., 2014;

Rost et al., 2003; Zondervan et al., 2001; Riebesell et al., 2000; Chen, 1994; Riebesell et al., 1993) and mean cell size in the

community (Sommer et al., 2015; Eggers et al., 2014; Tortell et al., 2008). We adopted and simplified a biophysically explicit30

description for carbon uptake from Wirtz (2011), where the efficiency of intracellular DIC transport has been derived as a

function of mean cell size `= Ln(ESD/1µm) and CO2 concentration. For very large cells, the formulation converges to the

surface to volume ratio, that in our notation reads e−`. By contrast, the allometric dependence of primary production on CO2
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does not apply to picophytoplankton so that together we have a non uniform allometric scaling fCO2(`) in the carboxylation

rate

fCO2 =
( 1− e−aCO2·CO2

1 + a∗ · e(`−aCO2·CO2)

)
. (1)

The specific carbon absorption coefficient aCO2 reflects size-independent features of the DIC acquisition machinery, as carbon

concentration mechanisms (Raven and Beardall, 2003). The coefficient a∗ represents carboxylation depletion.5

2.2 Uncertainty analysis

In this study we perform non intrusive forward propagation of uncertainty. Non intrusive means there is not coupling between

the uncertainties and the temporal dynamics (since we consider uncertainties only present in the system initial set-up, in contrast

to intrusive methods (Chantrasmi and Iaccarino, 2012) involving stochastic dynamical equations with time-varying uncertain-

ties (Toral and Colet, 2014)). Forward refers to the fact that unresolved differences among replicates simulated as variations of10

the model control factors are propagated through the model to project the overall variability in the system response, (in contrast

to backward methods of parameter estimation where the likelihood of inputs values is conditioned by the prior knowledge of

the output distribution (Chantrasmi and Iaccarino, 2012; Larssen et al., 2006)). Then, the overall biomass variability induced

by the factors uncertainties is compared with the variability in POC experimental data. The comparison between simulated and

experimental variability in POC helps us to identify which changes in physiological state and in community structure are main15

potential contributors to the variability.

We consider model factors, φi, with i= 1, ...,N = 19, made of 14 process parameters and 5 initial conditions for the state

variables. Their reference values, 〈φi〉, were adjusted to yield model solutions reproducing the mean of each treatment. Ref-

erence values are listed in Tables 1 and 2. Factor variations are introduced as random values within the variational range

[〈φi〉−4φi,〈φi〉+4φi], were4φi is the standard deviation of the normal distribution of possible factor values. To calculate20

4φi, we first generate 104 simulations, each one with a different factor value, φi. The ensemble of model solutions simulates

the potential experimental outcomes (see Appendix A). The factor value for each POC trajectory is randomly drawn from a

normal distribution around the factor reference value 〈φi〉. Such residuals distribution is assumed by popular parametric statis-

tical inference tools as ANOVA (Field et al., 2008). We take the ensemble average over modeled replicates and calculate the

standard deviation, 4POCmod
i . Then 4φi is the standard deviation of the distribution of factor values such as 4POCmod

i does25

not exceed the standard deviation of the experimental POC data, 4POCexp, at any mesocosm, at any time. The effect size of

variations of φi on the variability is then

εi =
(4POC)mod

i

4φi
. (2)

This effect size expresses the maximum variability a factor can generate, 4POCmod
i , relative to the associated range of factor

variations, 4φi, to ensure 4POCmod
i is the closest to 4POCexp at any time. More generally, εi relates the uncertainty of a30

dependent variable X (here X =POC) and the uncertainty of the input factors φi, a proxy of what is known as sensitivity

coefficients ci = ∂X
∂φi

in the indirect method to find the variance of a dependent variable from the uncertainties of direct
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measurements (Ellison and Williams, 2012)

(4X)2 =
N∑

i=1

c2i · (4φi)2.

This expression is based on the assumption that changes in X in response to variations in one factor φi are independent

from those due to changes in another factor φj and that all changes are small, thus cross terms and higher order derivatives

are negligible. Where no reliable mathematical description of the relationship X(φi) exists, ci can be evaluated directly by5

experiment (Ellison and Williams, 2012). As in our case only the rate equation for POC changes is known, but not its analytical

solution, and, as mentioned in the Introduction, such measurements are costly in mesocosm experiments, we obtain equivalent

information through the numerical calculation of the corresponding effect sizes εi.

In the following, the standard deviation of the factors, i.e. factors uncertainty will be given as percentage of the reference

values and will be called4Φi. The actual factor range is given by:4φi = 4Φi ·φi
100 . Strong heteroscedasticity, i.e. irregularities10

in the standard deviations of experimental POC data (see, for instance, small 4POCexp at day 8 in Fig.2p), translates into

drastically enhanced effect sizes if the model-data comparison would be done at a daily basis. For this reason we consider the

temporal mean of the standard deviation per phase, i.e. prebloom, bloom, and postbloom. We inferred phases for PeECE II

from Engel et al. (2008) and for PeECE III from Schulz et al. (2008) and Tanaka et al. (2008)).

To numerically calculate the ensemble of 104 POC trajectories that simulate potential outcomes from experimental replicates15

(Fig. 7), we apply the Heun integration method with a time step of 4 · 10−4, (about 35 seconds of experimental time). The

number of modeled POC time series is chosen ensuring convergence, such as a higher number of model realizations, i.e. a

higher number of modeled replicates, will produce the same results.

Perturbations of the similarity among replicates produced by strong changes in environmental conditions (storms, dysfunc-

tional devices,...) or by errors in sample procedures are not the scope of this work. After few decades, current state-of-the-art20

of experimental techniques for running plankton mesocosms is advanced. We believe such differences are of low impact or

well-understood in terms of their consequences for final outcomes (Riebesell et al., 2010). Variations in model characteriza-

tion including structural variability (Adamson and Morozov, 2014) and uncertainties in model parametrization (Kennedy and

O’Hagan, 2001) requires extensive further analyses that are left as outlook. It is worth to stress that our analysis assumes a par-

ticular mechanistic description of phytoplankton dynamics that suggests sufficient (but not necessary) causes of controversial25

results in mesocosm experiments. Other kind of uncertainties that are not considered in this analysis may also contribute to the

observed variability.

3 Results

3.1 The CO2 effect on POC dynamics

Our model reproduces the mean of PON, POC and DIN experimental data per treatment, i.e. for future, present and past30

CO2 conditions, in the two independent PeECE experiments (Fig. 2). For PeECE II, PON is moderately overestimated and
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postbloom POC is slightly underestimated. Even so, the model represents the experimental data with similar precision than

the mean of the same treatment experimental replicates (see Appendix E). The mean of the same treatment replicates and its

associated standard deviation is typically used to describe experimental data (see Fig. 1b in Engel et al. (2008) for PeECE

II or Fig. 8a in Schulz et al. (2008) for PeECE III). Means are in the foundations of the statistical inference tools that did

not detect acidification responses for PeECE II and III. However, with our mechanistic model-based analysis, phytoplankton5

growth in future CO2 POC time series shows an earlier and elevated bloom with respect to past CO2 conditions. The future

and past reference trajectories bound the range of the CO2 enrichment effect, as shown by the dark gray area in Fig. 3. POC

variability due to variations in model factors simulating experimental uncertainties is plotted in light gray area. Our results

suggest that to avoid high POC standard deviations in experimental data potentially masking OA effects, factors variations

triggering variability during the bloom need to be reduced.10

3.2 Variability decomposition

Our method allows for a factor specific variability decomposition (4POC)mod
i of the total variability shown in in Fig. 3. The

effect of factors variations simulating experimental differences among replicates is classified depending on its timing (Fig.4).

POC variability during the prebloom phase can be explained mainly by differences of factors related to subsistence quota, i.e.

Q∗
subs and αQ, in both PeECE II and III experiments (left column in Fig. 4). This means that differences in subsistence quota15

first intensify the divergence of POC trajectories, to be damped few days later by the system dynamics. These subsistence

parameters only need to vary about 6% and 8% among replicates (see Table 3), to maximize their contribution to the4POCexp,

thus their effect size is the highest (see Fig.6). Differences in initial nutrient concentration, DIN(0), mean cell size, `, and

phytoplankton biomass loss coefficient, L∗, generate the modeled variability mainly during the bloom (with just about 20%

differences among replicates, see Table 3 and second column in Fig. 4) showing high values of effect size (gray highlight20

in Fig. 6). Amplified variability in the postbloom phase (third column in Fig. 4) emerges from uncertainties in the reference

temperature Tref for the Arrhenius equation, Eq. (B2), in sinking loss or export flux, s, and in remineralization and excretion,

r∗. Effect size of Tref is high, with just about 12% variation. To generate the high divergence during the postbloom, a strong

perturbation of parameters relevant for the non phytoplanktonic biomass is needed (about 81% of the reference value for sinking

and 96% for remineralization and excretion, see Table 3), which translates to a relatively low effect size. POC variability25

throughout all bloom phases (right column in Fig. 4) follows from varying carbon and nitrogen initial conditions, PhyC and

PhyN, nutrient uptake related factors, V∗
max, αV and Aff, and protein allocation for photosynthetical machinery, fp. About the

latter, high standard deviations of the tolerance (see Table 3) suggests non conclusive results.

Interestingly, effect size εi is low for carbon acquisition aCO2 and light absorption aPAR. Perturbations of the initial detritus

concentration, DHC(0) and DHN(0) also have no impact on the dynamics as long as they were within reasonable ranges30

(4Φi < 100). In fact, more than tenfold differences among replicates in such non relevant factors were necessary to achieve a

perceptible variability (4POC)modi .
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4 Discussion

In this study we adapted a sensitivity analysis to assess factor variations that can affect experimental data, a perspective different

to the classical description of the mean system behavior. We make use of the methodology with a low-complexity model that

describes major features of phytoplankton growth dynamics and fits the mean of mesocosm experimental PeECE II and III

data with high accuracy for all CO2 treatment levels. Then we applied our approach to decompose POC variability and we5

confirmed the working hypotheses (Figs. 4,6).

We showed that small differences in initial nutrient concentration, mean cell size and phytoplankton biomass losses are

sufficient to generate the experimentally observed bloom variability (4POC)exp.

4.1 Nutrient concentration

Differences among replicates in initial nutrient concentration substantially contribute to POC variability, a sensitivity that is,10

interestingly, not well expressed when varying the initial cellular carbon or nitrogen content of the algae, PhyC(0) and PhyN(0).

The relevance of accuracy in the initial nutrient concentration in replicated mesocosms was already pointed in Riebesell et al.

(2008). Under constant growth rate, DIN(0) determines the timing of nutrient depletion, therefore differences in initial nutrient

concentrations may also translate into temporal variations in the succession of species. We not only showed that such depen-

dence also holds in more general dynamics, but our method can also bound the variational range for differences in initial DIN15

concentration for experiments with low number of replicates. The standard deviation of DIN(0) in the experimental set-up

for PeECE III was 50% of the mean, significantly above our tolerance threshold (see Table 3 for initial DIN concentration).

Following Riebesell et al. (2007), we took day 2 as initial condition, when the measured DIN was 14± 2 µmol-C L−1, as

showed in Table 1. As 2 µmol-C L−1 is approximately the 14% of 14 µmol-C L−1, replicates variability at day 2 was about a

14%. Therefore, experimental differences in initial nutrient concentration were similar to the tolerance threshold for initial DIN20

established to avoid high variability ((20± 6)% in Table 3), which represents an explanation to the high divergence observed

in POC measurements.

For PeECE II, experimentally measured DIN concentration at day 0 was 10.7±0.8 µmol-C L−1, meaning a 7.5% difference

among replicates, below our projected tolerance level (7.5 is out of the range [14,26]). Same applies to day 2, with DIN

concentration equal to 8± 0.5 µmol-C L−1 (Table 1). Our approach shows that differences in initial nutrient concentration in25

PeECE II were not high enough to trigger the experimentally observed POC variability. Incidentally, there was a phosphate

re-addition on day 8 of the experiment, establishing new initial nutrient concentration for the subsequent days. When the

dynamics in one replicate significantly diverges from the mean dynamics of the treatment, even if the re-addition occurs at

the same time and at the same concentration in all the replicates, the mesocosm with that outlier trajectory will not response

as the others, and with the new nutrient condition, the divergence may be further amplified. In that case, nutrient re-addition30

has the same impact on the systems as variations in initial conditions of nutrient concentration. Also for PeECE II, variability

in POC is about 30% higher than variability in PON, as shown in Fig. 2. We attribute the temporal decoupling between C

and N dynamics to the break of symmetry among replicates by the nutrient re-addition due to the strong sensitivity of the
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system to initial nutrient concentrations and a concomitant change in subsistence N:C quota, which is a sensitive parameter,

especially during the prebloom phase (Fig. 4 and Fig. 6). Increase of POC : PON ratios under nitrogen deficiency has been

observed frequently during experimental studies (e.g. Antia et al., 1963; Biddanda and Benner, 1997) and has been attributed

to preferential PON degradation and to intracellular decrease of the N:C ratio (Schartau et al., 2007). We hence confirm that

nutrient re-addition during the course of the experiments results in a significant disturbance, as also mentioned in Riebesell5

et al. (2008), although a complete analysis would require a model explicitly accounting for other nutrients, as phosphate and

silicate.

4.2 Mean cell size as proxy for community structure

We found a limited tolerance to variations in mean cell size of the community, `, which has a threshold of about 22% variation

(see Table 3). If we take the averaged mean cell size of PeECE II, 〈`〉= 1.6, and III, 〈`〉= 1.8, from Table 2, we obtain10

〈`〉= 1.7. Then the absolute standard deviation is 4`= 22 · 1.7
100 ∼ 0.4. Therefore, our methodology shows that variations

within the range limited by 〈`〉±4`, that is [1.3,2.1], are sufficient to reproduce the observed experimental POC variability

during the bloom. As ` is in log-scale, the corresponding ESD increment is within the variational range 〈ESD〉±4ESD, that

is [3.7,8.1]µm (or [25,285]µm3 in volume). These values are easily reached in the course of species succession, and supports

studies showing that community composition outweighs ocean acidification (Eggers et al., 2014; Kroeker et al., 2013; Kim15

et al., 2006).

4.3 Phytoplankton loss

Another major contributor to POC variability during the bloom phase is phytoplankton biomass loss, L∗. With a standard

deviation of about 20% (Table 3), uncertainties in L∗ generate variability larger than the model response to OA, in particular

at the end of the growth phase and the beginning of the decay phase. Unresolved details in phytoplankton loss rate include,20

among others, replicate differences in cell aggregation or damage by collisions, mortality by virus, parasites, morphologic

malformations, or grazing by non filtered mixotrotophs or micro-zooplankton.

4.4 Consequences for the design of mesocosm experiments

Our model projections show that a suitable target variable to detect OA effects is the slope of the growth phase. We also

provide thresholds to uncertainties that can be used for improving future sampling strategies with low number of replicates.25

Tolerances given in Table 3 quantify how much replicates similarity can be compromised before the variability of the outcomes

outweighs potential acidification effects. Some tolerances indicate to maximal variations in observable quantities, as nutrient

concentration and community composition. We show that a better control of such dissimilarities among replicates can help to

keep the variability below the range of the acidification effect, specially during the bloom. Strategies to reduce (4POC)mod

should similarly apply to lower (4POC)exp. For example, a complete characterization of phytoplankton biomass losses, which30

includes aggregation and grazing, limits the amplification of simulated POC variability. Uncertainties in physiological states,
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like differences in affinity to nutrients and subsistence quota are more difficult to measure. However, with our analysis we

provide plausible explanations for negative results in the detection potential acidification effects (Paul et al., 2015; Schulz

et al., 2008; Engel et al., 2008; Kim et al., 2006; Engel et al., 2005). In this manner, our study also proves the limitation of

hypothesis testing tools commonly used to asses the statistical significance of effect detectability.

5 Conclusions5

Our model projections indicate that phytoplankton responses to OA mainly expected to occur during the bloom phase, present-

ing a higher and earlier bloom under acidification conditions. Moreover, we found that amplified POC variability during the

bloom can be explained by variations in initial DIN concentration, mean cell size and the phytoplankton loss rate.

The model-based analysis provides information that can be considered for refinements of experimental design and sampling

strategies. We have found specific ecophysiologial factors that should be confined, otherwise acidification responses are likely10

to be masked by variability in POC.

With our approach we reverse the question of how experimental data can constrain model parameter estimates and instead

determine the range of variability in experimental data that can be explained by means of modeling with variational ranges

bounding uncertainties in specific control factors. We tested the hypothesis whether small differences among replicates have

the potential to generate higher variability in biomass time series than the response that can be attributed to the effect of CO2.15

We therefore conclude that modeling studies that integrate data from acidification experiments should resolve physiological

regulation capacities on cellular and community level. In fact, modeling the propagation of uncertainties revealed cell size to

be a major contributor to the phytoplankton biomass variability. This motivates to use of adaptive size-trait based dynamics

since such approaches allows for the resolution of ecophysiologial trait shifts in non stationary scenarios (Wirtz and Eckhardt,

1996; Wirtz, 2013). The role of intracellular protein allocation can be also clarified by a trait-based approach, since our results20

about the impact of its variations were non conclusive.

With this study we established a foundation for further model-based analysis for uncertainties propagation that can be

generalized to any kind of experiments in biogeoscience. Extensions comprising a representation of the stochastic nature of

variations by introducing a new random value for parameters at every time step are straight forward to implement (Toral

and Colet, 2014). Another possible extension can include covariance matrices, which show the interaction of variations in25

two factors simultaneously. Finally, we argue that a more explicit description of uncertainty quantification is pivotal in our

interpretation and generalization of experimental results.

Appendix A: Model representation of replicates

The possibility of simulating a high number of replicates is one of the unique strengths of modeling. For each factor, we

simulate possible realizations of the same treatment with slight variations of the factor reference value (simulating differences30
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among replicates in physiological states and community structure). We generate a total of 104 modeled dynamical solutions

for the state variables. Examples for two factors are shown in Fig. 7.

Appendix B: Definition of relative growth rate

Relative growth rate µ is calculated from primary production rate subtracting respiration and mortality losses, µ= P−R−L.

Primary production5

Primary production rate reflects the limiting effects of light, dissolved inorganic carbon (DIC), temperature and nutrient internal

quota,

P = Pmax · fPAR · fCO2 · fT · fQ · fp. (B1)

Pmax is the maximum primary production rate, (Table 2). Specific light limitation fPAR depends on light and CO2. For the

attenuation coefficient az , we consider that in coastal regions light intensity is reduced to 1% of its surface value typically in 510

m (Denman and Gargett, 1983) and we obtain az = 0.75m−1. Then, PAR experienced by cells at mixed layer depth (MLD=

4.5m, Engel et al. (2008)), is calculated from radiation at water surface, PAR0 (see Appendix C), following an exponential

decay described by the Lambert-Beer law

PAR = PAR0

MLD∫

0

e−az·zdz.

The relationship between photosynthesis and irradiance can be formulated referring to a cumulative one-hit Poisson distribution15

(Ley and Mauzerall, 1982; Dubinsky et al., 1986). With the temperature and carbon acquisition dependence, it yields

fPAR =
(

1− e
−

aPAR ·PAR
Pmax · fCO2 · fT

)
,

where aPAR is the effective absorption related to the chloroplast cross-section and saturation response time for receptors (Geider

et al. (1998a),Wirtz and Pahlow (2010)), the carbon acquisition term fCO2 is described in Section 2.1, Eq. (1).

fT is the temperature dependence. We consider that all metabolic rates depend on protein folding that increases with rising20

temperature following the Arrhenius equation (Scalley and Baker, 1997) as described in Geider et al. (1998b) or Schartau et al.

(2007)

fT = e
−Ea ·

( 1
T
− 1

Tref

)

, (B2)

with activation energy Ea = T2
ref

10 · log(Q10) as in Wirtz (2013), where we use Q10 = 1.88 for phytoplankton (Eppley, 1972;

Brush et al., 2002) and Tref is the mean measured temperature (see Appendix C).25
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The allometric factor αQ quantifies the scaling relation of subsistence quota and cell size. We use a Droop dependency

on nutrient N:C ratio (Droop, 1973) which has been recently mechanistically derived (Wirtz and Pahlow, 2010; Pahlow and

Oschlies, 2013)

fQ =
(

1− Qsubs

Q

)

where Q= PhyN
PhyC

. Its lower reference, the subsistence quota Qsubs = Q∗
subs · e−αQ·`, is considered size dependent to reflect a5

lower protein demand for uptake mechanisms in large cells (Litchman et al., 2007).

The last term in Eq. (B1) accounts for an energy allocation trade-off in phytoplankton cells: protein allocation for photosyn-

thetic compounds as RuBisCo and pigments, fp, versus allocation for nutrient uptake, fv, expressed by fp + fv = 1 (Wirtz and

Pahlow, 2010; Pahlow and Oschlies, 2013). We simplify detailed partition models by setting the trait fractions constant.

Respiratory cost and nutrient uptake rates10

Efforts related to nutrient uptake V are represented by a respiration term. Other expenses as biosynthetic costs are neglected

(Pahlow, 2005). Respiration rate is then calculated as

R = ζ ·V

where ζ expresses the specific respiratory cost of nitrogen assimilation (Raven, 1980; Aksnes and Egge, 1991; Pahlow, 2005).

For simplicity, our model merges the set of potentially limiting nutrients (e.g. P, Si and N) to a single resource only, that is15

DIN. We follow Aksnes and Egge (1991) as described in Pahlow (2005) for the maximum uptake rate

Vmax =
1

1
V∗

max · fT
+

1
Aff ·DIN

,

comprising the maximum uptake coefficient, V∗
max, and the nutrient affinity, Aff. Besides adding a temperature dependence of

nutrient uptake as given in Schartau et al. (2007), we assume that respiratory costs decrease with increasing cell size (Edwards

et al., 2012) which leads to an allometric scaling in nutrient uptake(Wirtz, 2013) with exponent αV . We also account for the20

static proteins allocation trade-off between photosynthetic machinery, fp, and nutrients uptake, fv = 1− fp. Then the nutrient

uptake term yields

V = (1− fp) ·Vmax · e−αV ·`.

Loss rates

To describe the loss rate of phytoplankton biomass we use a density dependent term25

L = L∗ · (PhyC + DHC).
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The resulting matter flux increases the biomass of detritus and heterotrophs (DH) and a fraction of it becomes part of the

remineralizable pool. A temperature dependent remineralization term (Schartau et al., 2007)

r = r∗ · fT

describes any kind of DIN production, as hydrolysis and remineralization of organic matter, excretion of ammonia directly by

zooplankton and rapid remineralization of fecal pellets produced also by zooplankton. The other fraction of the non phyto-5

planktonic biomass is removed by settling with a rate related to the sinking coefficient, s, given in Tables 1 and 2. Our model is

calibrated with experimental data from enclosed mesocosms where aquarium pumps ensured mixing. Therefore we assume that

wealthy enough organisms were able to achieve neutral buoyancy (Boyd and Gradmann, 2002) thus sinking does not directly

affect phytoplankton biomass.

Appendix C: Forcings10

As mentioned in the introduction, we used measured aquatic CO2, temperature and photosynthetic active radiation, PAR, as

model inputs (see Fig. 8). For the two PeECE experiments the photon flux density was measured by the Geophysical Institute

of the University of Bergen. To calculate the surface radiation inside the mesocosms, PAR0, we follow (Schulz et al., 2008)

and consider that 80% of incident PAR passed through the gas tight tents of which up to 15% penetrated into c.a. 2.5 m depth,

the center of the mixed surface layer in PeECE III. Daily carbon dioxide data were interpolated and PAR signal was filtered by15

singular spectrum analysis to avoid sudden changes that could be detrimental for the performance of the numerical calculation

since Heun method requires differentiable functions.

Appendix D: POC adjustment

The applied model equations attribute phytoplankton, detritus, and herbivorous heterotrophs to particulate organic matter.

Measurements of particulate organic carbon also include some fractions of large bacterioplankton, carnivorous zooplankton,20

as well as extracellular gel particles like transparent exopolymer particles. These additional organic contributions to POC

measurements are not explicitly resolved in our model. For comparisons between simulation results and observations we

therefore have to adjusted POC data. We used data of transparent exopolymer particles (TEP) of Egge et al. (2009) for adjusting

PeECE III POC measurements. For PeECE II, POC = POC’- POC", where POC are represented by dots in Figs. 2 and 4,

POC’ are raw data from PANGAEA and POC" are the difference between particle abundance, PA, of the Coulter Counter25

measurements and the Flow Cytometry data in Engel et al. (2008):

POC" = β · (PA Coulter Counter−PA Flow Cytometry).

The scaling parameter β=0.000065 µmol-C−1 L was tuned to provide reductions between 40 and 50% from total POC, in

agreement with adjustments of PeECE III.

30
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Appendix E: Residuals of the model-data fit

We calculate the cumulative residuals (Table 4) with respect to the mean of experimental replicates per treatment, time and

mesocosm. For experimental data, residuals are calculated as

E =
∑

treat,rep,day

|Yexp
treat,rep,day−〈Y

exp
treat,day〉|/η

and for model results5

M =
∑

treat,rep,day

|Ymod
treat,rep,day−〈Yexp

treat,day〉|/η

with η = 9 the total number of mesocosms.

Author contributions. K.W., M.S and M.M.C. developed the model code, M.M.C performed the simulations and prepared the manuscript,

which was revised by K.W. and M.S.
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Table 1. States variables and their dynamics.

State variable dynamical equation ini. cond. units

phytoplankton carbon dPhyC
dt = (P-R-L) · PhyC 2.5 µmol-C L−1

phytoplankton nitrogen dPhyN
dt = V · PhyC−L · PhyN 0.4 µmol-N L−1

nutrients concentration dDIN
dt = r ·DHN−V · PhyC 8±0.5 (*) µmol-N L−1

14± 2 (**) µmol-N L−1

detritus and heterotrophs C dDHC
dt = L · PhyC− (s ·DHC + r) ·DHC 0.1 µmol-C L−1

detritus and heterotrophs N dDHN
dt = L · PhyN− (s ·DHN + r) ·DHN 0.01 µmol-N L−1

* PeECE II, ** PeECE III
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Figure 1. Solid lines show reference runs for POC, PON and DIN simulating the mean of the replicates per treatment, with different colors for

the three experimental CO2 set-ups. Dots are replicated data from the Pelagic Enrichment CO2 Experiment (PeECE II) for newly produced

POC and PON, i.e. starting values at day 2 were subtracted from subsequent measurements as in Riebesell et al. (2007).
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Table 2. Parameter values used for the reference run, 〈φi〉. All values are common to both PeECE II and III experiments, only the mean

temperature (determined by environmental forcing) and the averaged cell size in the community are different since different species compo-

sition succeeded in the experiments (Emiliania huxleyi was the major contributor to POC in PeECE II (Engel et al., 2008) but also diatoms

significantly bloomed during PeECE III (Schulz et al., 2008).

Parameter Value Units Variable Reference

aCO2 carbon acquisition 0.15 (µmol-C )−1L PhyC this study

aPAR light absorption 0.7 µmol phot−1m2 " this study

a∗ carboxylation depletion 0.15 µm−1 " this study

Pmax max. photosyn. rate 12 d−1 " this study

Q∗
subs subsist. quota offset 0.33 mol-N(mol-C)−1 " this study

αQ Qsubs allometry 0.4 - " this study

ζ costs of N assimil. 2 mol-C (mol-N)−1 " Raven (1980)

` size Ln(ESD/1µm) 1.6 - PhyC, PhyN, DIN PeECE II data

1.8 - PeECE III data

fp fraction of protein in 0.4 - " this study

photosyn. machinery

V∗
max max. nutrients uptake 0.5 mol-N (mol-C d)−1 " this study

Aff nutrient affinity 0.2 (µmol-C d)−1L " this study

αV Vmax allometry 0.45 - " Edwards et al. (2012)

L∗ phyto. losses coeff. 11 · 10−3 (µmol-C d)−1 PhyC, PhyN and this study

DHC, DHN

r∗ DIN remin. & excret. 1.5 d−1 DHC, DHN this study

s DH sinking 10 L(µmol-C d)−1 " this study

Tref referen. temperature 8.3 Celsius PhyC, PhyN and PeECE II data

10.1 Celsius DIN, DHC, DHN PeECE III data

19

Biogeosciences Discuss., doi:10.5194/bg-2016-83, 2016
Manuscript under review for journal Biogeosciences
Published: 8 April 2016
c© Author(s) 2016. CC-BY 3.0 License.



Table 3. Tolerance of the mesocosms to differences among replicates, given as a percentage of the reference factor value listed in Tables

1 and 2. According to our model projections, above these thresholds (4POC)mod
i exceeds (4POC)exper. In bold, main contributors to the

modeled variability (4POC)mod during the bloom (see Sec. 3).

factor φi 4Φi (%) averaged

PeECE II PeECE III tolerance

Future Present Past Future Present Past (%)

PhyC(0) initial phyto C biomass 68 49 46 78 60 100 67± 6

PhyN(0) initial phyto N biomass 26 19 22 21 16 29 22± 4

DIN(0) initial DIN 20 28 29 17 11 18 20±6

aCO2 carbon absorption 89 46 23 86 63 46 59± 23

aPAR light absorption >100 >100 98 >100 >100 92 > 100

Pmax maximum photosyn. rate 27 18 16 22 16 28 21± 5

Q∗
subs subsistence quota offset 6 5 6 5 4 9 6± 1

αQ Qsubs allometry 9 7 8 7 5 10 8± 2

` size Ln(ESD/1µm) 25 20 29 19 14 22 22±5

fp fraction of protein in 92 75 44 36 17 38 50± 25

photosyn. machinery

V ∗
max maximum nutrient uptake 13 11 14 10 8 14 12± 2

Aff nutrients affinity 39 31 42 38 36 55 40± 7

αV Vmax allometry 14 11 15 10 8 14 12± 2

L∗ phytoplankton losses 22 30 28 12 10 15 20±8

r∗ DIN remineralization 73 99 98 128 37 52 81± 31

s DH sinking > 100 > 100 96 > 100 61 79 >100

Tref reference temperature 17 12 14 9 7 14 12± 3

Table 4. Cumulative residuals for PeECE III.

Y E M units

POC 35.1 37.4 µmol-C L−1

PON 6.0 9.1 µmol-N L−1

DIN 6.7 9.2 µmol-N L−1
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Figure 2. As in Fig. 2 for PeECE III.

List of changes

21

Biogeosciences Discuss., doi:10.5194/bg-2016-83, 2016
Manuscript under review for journal Biogeosciences
Published: 8 April 2016
c© Author(s) 2016. CC-BY 3.0 License.



2 6 10 14 18
0

10

20

30

40

P
O

C
 (

µ
m

o
l−

C
 L

−
1
)

day

PeECE II

2 5 8 11 14 17

PeECE III

day

 

 

variability explained by factors uncertainties

range of acidification effect

future CO
2
(aq)

past CO
2
(aq)

Figure 3. Reference simulation of POC for high CO2 (red) and low CO2 (blue) experimental conditions bound the range of acidification

effect (dark gray) according to our model projections. Light gray is limited by the modeled POC variability, (4POC)mod, quantified as the

standard deviation of numerically simulated replicates calculated with differences in model factors simulating experimental uncertainties.
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PeECE II
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Figure 4. POC variability decomposition per factor, (4POC)mod
i for PeECE II. Shaded areas are bounded by the standard deviation of

104 modeled POC time series (see Sec. 2), around the mean trajectory of the ensemble (solid line). The timing of the amplification of the

variability determines four separated kinds of behavior: factor uncertainties generating variability during the prebloom, bloom, postbloom or

at irregular phase (see Sec. 3).
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PeECE III
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Figure 5. As Fig. 4, for PeECE III.
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Figure 6. Effect size εi, Eq. (2) of variations in factors φi listed in Tables 1 and 2 for different bloom phases in two OA independent

mesocosm experiments. Factors whose variations trigger variability mainly during the bloom (Fig. 4) and potentially mask acidification

effects (Fig. 3) are highlighted.
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Figure 7. Examples of 102 model projections of POC for the past CO2 treatment in PeECE III. In the left panel, model outputs with

slight variations in initial nutrient concentration, 〈DIN(0)〉±4DIN(0), and in the right panel, with slight input variations in mean cell size,

〈`〉±4`, where the means and standard deviations are given in Tables 2 and 3 respectively. To calculate system tolerances and uncertainties

effect sizes, we numerically calculate 104 model realizations, thus the distribution of input factors is closer to normal.
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Figure 8. Environmental data from PeECE II and III are taken as model inputs. Error bars denote the standard deviation of the same treatment

replicates.
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